Publication | International Conference on Machine Learning 2014
Wasserstein propagation for semi-supervised learning
Abstract
Wasserstein propagation for semi-supervised learning
J. Solomon, R. Rustamov, L. Guibas, Adrian Butscher
International Conference on Machine Learning 2014
Probability distributions and histograms are natural representations for product ratings, traffic measurements, and other data considered in many machine learning applications. Thus, this paper introduces a technique for graph-based semi-supervised learning of histograms, derived from the theory of optimal transportation. Our method has several properties making it suitable for this application; in particular, its behavior can be characterized by the moments and shapes of the histograms at the labeled nodes. In addition, it can be used for histograms on non-standard domains like circles, revealing a strategy for manifold-valued semi-supervised learning. We also extend this technique to related problems such as smoothing distributions on graph nodes.
Download publicationAssociated Autodesk Researchers
Justin Solomon
Stanford University
Raif Rustamov
Stanford University
Leonidas Guibas
Stanford University
Related Resources
1995
An Experimental Evaluation of Transparent User Interface Tools and InformationThe central research issue addressed by this paper is how we can…
2014
Special Issue: Simulation for Architecture and Urban DesignThis special issue celebrates five annual SimAUD (Simulation for…
2021
Collective Transport of Unconstrained Objects via Implicit Coordination and Adaptive ComplianceWe present a decentralized control algorithm for robots to aid in…
2019
Command Usage Arc DiagramsExploring and analyzing a database of over 60 million commands issued…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us