Publication
Swifter: Improved Online Video Scrubbing
AbstractOnline streaming video systems have become extremely popular, yet navigating to target scenes of interest can be a challenge. While recent techniques have been introduced to enable real-time seeking, they break down for large videos, where scrubbing the timeline causes video frames to skip and flash too quickly to be comprehendible. We present Swifter, a new video scrubbing technique that displays a grid of pre-cached thumbnails during scrubbing actions. In a series of studies, we first investigate possible design variations of the Swifter technique, and the impact of those variations on its performance. Guided by these results we compare an implementation of Swifter to the previously published Swift technique, in addition to the approaches utilized by YouTube and Netfilx. Our study finds that Swifter significantly outperforms each of these techniques in a scene locating task, by a factor of up to 48%.
Download publicationRelated Resources
See what’s new.
2024
HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in Computer-Aided DesignThis work presents a new Machine Learning architecture to support…
2012
Magic Finger: Always-Available Input through Finger InstrumentationWe present Magic Finger, a small device worn on the fingertip, which…
2020
PointMask: Towards Interpretable and Bias-Resilient Point Cloud ProcessingDeep classifiers tend to associate a few discriminative input…
2018
Dream Lens: Exploration and Visualization of Large-Scale Generative Design DatasetsThis paper presents Dream Lens, an interactive visual analysis tool…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us