Publication | ACM SIGGRAPH Asia – Technical Briefs Program 2017
Exploring Generative 3D Shapes Using Autoencoder Networks
Abstract
Exploring Generative 3D Shapes Using Autoencoder Networks
Nobuyuki Umetani
ACM SIGGRAPH Asia – Technical Briefs Program 2017
We propose a new algorithm for converting unstructured triangle meshes into ones with a consistent topology for machine learning applications. We combine the orthogonal depth map computation and the shrink wrapping approach to efficiently and robustly parameterize the triangle geometry regardless of imperfections such as inverted faces, holes, and self-intersections. The converted mesh is consistently and compactly parameterized and thus is suitable for machine learning. We use an autoencoder network to extract the manifold of shapes in the same category to explore and synthesize a variety of shapes. Furthermore, we introduce a direct manipulation interface to navigate the synthesis. We demonstrate our approach with over one thousand car shapes represented in unstructured triangle meshes.
Download publicationRelated Resources
2017
The Buzz Metric: A Graph-based Method for Quantifying Productive Congestion in Generative Space Planning for ArchitectureThis paper describes a novel simulation method for measuring the…
2016
Integrated Spatial-Structural Optimization in the Conceptual Design Stage of ProjectHealthcare design projects require the careful integration of spatial…
2022
Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders.Nature has spent billions of years perfecting our genetic…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us