Publication

Dirichlet energy for analysis and synthesis of soft maps

Abstract

Soft maps taking points on one surface to probability distributions on another are attractive for representing surface mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy in terms of a differential equation and provide a finite elements discretization that enables all of the quantities introduced to be computed efficiently. We demonstrate the effectiveness of our framework for understanding soft maps arising from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or point-to-point maps.

Download publication

Related Resources

See what’s new.

Publication

2024

PlotMap: Automated Layout Design for Building Game Worlds

This research presents novel AI methods for mapping stories to maps in…

Article

2024

Recently Published by Autodesk Researchers

A selection of papers published recently by Autodesk Researchers…

Project

2023

Using AI to Optimize Construction Design

How can we leverage AI to make construction design processes more…

Publication

2010

The design and evaluation of multitouch marking menus

Despite the considerable quantity of research directed towards…

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us