Publication

Perturbative solutions of the extended Einstein constraint equations

Abstract

The extended constraint equations arise as a special case of the conformal constraint equations that are satisfied by an initial data hypersurface Z in an asymptotically simple space-time satisfying the vacuum conformal Einstein equations developed by H. Friedrich. The extended constraint equations consist of a quasi-linear system of partial differential equations for the induced metric, the second fundamental form and two other tensorial quantities defined on Z, and are equivalent to the usual constraint equations that Z satisfies as a space-like hypersurface in a space-time satisfying Einstein’s vacuum equation. This article develops a method for finding perturbative, asymptotically flat solutions of the extended constraint equations in a neighbourhood of the flat solution on Euclidean space. This method is fundamentally different from the ‘classical’ method of Lichnerowicz and York that is used to solve the usual constraint equations.

Download publication

Related Resources

See what’s new.

Article

2023

Recently Published by Autodesk Researchers

A selection of recently published papers by Autodesk Researchers…

Publication

2015

3D-Printed Prosthetics for the Developing World

The growing availability of 3D printing has made it possible for…

Publication

2003

Boom Chameleon

We introduce the Boom Chameleon, a novel input/output device…

Publication

2008

Video Browsing by Direct Manipulation

We present a method for browsing videos by directly dragging their…

Get in touch

Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.

Contact us