Publication | ACM SIGGRAPH 2023
Neural Shape Diameter Function for Efficient Mesh Segmentation
Abstract
Neural Shape Diameter Function for Efficient Mesh Segmentation
Bruno Roy
ACM SIGGRAPH 2023
Partitioning a polygonal mesh into meaningful parts can be challenging. Many applications require decomposing such structures for further processing in computer graphics. In the last decade, several methods were proposed to tackle this problem, at the cost of intensive computational times. Recently, machine learning has proven to be effective for the segmentation task on 3D structures. Nevertheless, these state-of-the-art methods are often hardly generalizable and require dividing the learned model into several specific classes of objects to avoid overfitting. We present a data-driven approach leveraging deep learning to encode a mapping function prior to mesh segmentation for multiple applications. Our network reproduces a neighborhood map using our knowledge of the Shape Diameter Function (SDF) method using similarities among vertex neighborhoods. Our approach is resolution-agnostic as we downsample the input meshes and query the full-resolution structure solely for neighborhood contributions. Using our predicted SDF values, we can inject the resulting structure into a graph-cut algorithm to generate an efficient and robust mesh segmentation while considerably reducing the required computation times.
Download publicationRelated Resources
2025
GraspFactory: A Large Object-Centric Grasping DatasetA large-scale dataset enabling the training of generalizable robotic…
2025
From Gestures to Greatness: Autodesk Research Transforms Filmmaking at MIT AI HackathonLearn how Autodesk Research and Wonder Dynamics empowered 650…
2023
Generative design for COVID-19 and future pathogens using stochastic multi-agent simulationProposing a generative design workflow that integrates a stochastic…
2020
Contrastive Multi-View Representation Learning on GraphsWe introduce a self-supervised approach for learning node and graph…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us