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Abstract

We introduce a novel approach to disentangle style from content in the 3D domain and
perform unsupervised neural style transfer. Our approach is able to extract style infor-
mation from 3D input in a self supervised fashion, conditioning the definition of style on
inductive biases enforced explicitly, in the form of specific augmentations applied to the
input.This allows, at test time, to select specifically the features to be transferred between
two arbitrary 3D shapes, being still able to capture complex changes (e.g. combinations
of arbitrary geometrical and topological transformations) with the data prior. Coupled
with the choice of representing 3D shapes as neural implicit fields, we are able to perform
style transfer in a controllable way, handling a variety of transformations. We validate our
approach qualitatively and quantitatively on a dataset with font style labels.
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Figure 1: Model overview: an input shape x1 is augmented by a set of transformations which
destroy specific style features, but preserve content information, producing the
augmentations x2, ..., xn. Style is encoded in a latent vector space as a nonlinear
function S of the latent features corresponding to the input shape x1 and its
augmentations, respectively. The latent features are computed by a twin encoder
network E in a multiscale fashion. At test time the style codes condition the
generation of shapes in a preferred style, using a neural implicit decoder D.

1. Introduction

Being able to automatically synthesize shapes with a predefined style is a core task in com-
puter graphics. Classical 3D style transfer techniques need to rely on a given correspondence
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Ma et al. (2014b), work on a fixed class of geometric or topological transformations Sorkine
(2005) or use data-driven model to overcome these limitations Berkiten et al. (2017), but
without explicit control on which features should be transferred, and requiring style labels
or costly optimization procedures at inference time Cao et al. (2020) (see Appendix B for
a complete overview). We overcome these limitations by introducing a novel approach to
encode style in a compressed latent space using self supervision. Specifically, we exploit
transformations of the input that, coupled with the right choice of losses, are able to dis-
entangle style from content. This allow us to transfer style across shapes with a simple
forward pass of the network at test time, by conditioning the shape generation on a given
style code, where the notion of style can be defined according to the features one is inter-
ested in transferring. We choose to represent shapes as neural implicit functions to be able
to learn local features that can be computed at arbitrary points in space, and be able to
output shapes at arbitrary resolutions. Our contributions can be summarized as follows:
(i) We observe that arbitrary sets of input augmentations are able to capture the style of a
shape, disentangling it from content information in a self supervised fashion. (ii) The latent
space of style codes enables multiple tasks including unsupervised style classification, style
transfer, shape generation conditioned on style, and style generation.

2. Method

Wemodel 3D shapesM as neural implicit fields f : R3 7→ R, where f(x) = 1Mminy∈∂M ∥x−
y∥2, where 1M is the indicator function 1 (with values 1 outside, −1 inside M) and ∂M is
the shape boundary; f is approximated by a neural network. The network has the structure
of an autoencoder. The encoder E extracts high dimensional multi-scale local features from
a regular grid of signed distance function (SDF) at specific xyz locations. In detail (see Fig-
ure 1 and Appendix A.1), it works by applying 3D convolutions to the input and computing
latent features at multi-scale grid points. Then taking specific point set Pxyz as additional
input, calculates the multi-scale features for the point set Pxyz by trilinear interpolation
of the latent features at the grid points. The decoder D takes as input the multi-scale
features, as functions of the xyz locations and outputs their SDF (or occupancy) values.
In the feature space there is an intermediate module responsible for constructing a latent
space of global style codes from multi-scale latent features of the original and augmented
input shapes (see Appendix A.1). We will refer to this module as StyleNet. These vectors
condition the decoder input, enabling to synthesize shapes according to the preferred style.
The network is trained in an unsupervised fashion, on a reconstruction task. To characterize
the functioning of the StyleNet module first we have to formalize the notion of style. As
previously mentioned, there exist no universal definition for the notion of style. We choose
to define style according to the following assumptions:

1. Self consistency: The notion of style is defined globally on the shape: the shape
consistently has the same style at different spatial locations. That is the style of one
region of a shape is consistent with the style of another region of the same shape.

2. Disentanglement: We assume that style can be disentangled from content, i.e. there
exist transformations (e.g. smoothing, coarsening.) applied to the shapes which
change and destroy the style but preserve the content of the shapes. In other words,
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Figure 2: Examples of augmentations: the two input shapes (left column) are augmented
with coarsening and smoothing transformations (center and right columns).

content is invariant to a predefined set of transformations. In this way we have direct
control of what the notion of style is capturing.

Formally let x1 be a sample shape, belonging to a specific style set Sx1 and a specific
content set Cx1 . We assume that style can be captured as a nonlinear function of the
difference between high dimensional multi-scale local features, expressed as a function E of
the xyz coordinates of x1 and its transformed version x2 = T (x1) for some transformation
T , s.t. T (x1) ̸∈ Sx1 but T (x1) ∈ Cx1 . We remark that this setting is naturally extensible
to handle sets of N arbitrary number of augmentations T =

⋃N+1
i=2 Ti for the sampled

shape x1, i.e. xi = Ti(x1) for i = 2...N + 1. Examples of these transformations are
smoothing or coarsening (i.e. voxelizing and downsampling the shape at a low resolution)
as shown in Figure 2. We encode the two assumptions in our model using two key inductive
biases: (i) We enforce self-consistency by constructing a vector space of spatially global style
codes. (ii) We enforce disentanglement in a self-supervised fashion by leveraging arbitrary
input augmentations that are invariant to changes in content of the shape, incorporating
consistency constraints in the network loss.

Training Phase: The network is trained with the following composite loss:

Ltotal = LSDF + Lcoarse + Lfine (1)

where:

LSDF = E(x1,x2)∈X∥D(E(x2)⊕ S(E(x1), E(x2))− SDFx1∥1 (2)

⊕ denoting the concatenation operator, xi = (xgridi , x
Pxyz

i ), for i = 1, 2, SDFx1 denoting

the set of SDF values sampled near x1 (i.e. SDF (x
Pxyz

1 )) and E(x1,x2)∈X is the expectation
over the pairs in the training distribution; and:

Lcoarse = Ex2∈X∥D(E(x2))− SDFx2∥1 Lfine = Ex1∈X∥D(E(x1))− SDFx1∥1 (3)

Ex1∈X and Ex2∈X represent the expectation over the training distribution of x1 and its
augmented version x2, respectively. See Figure 5-top, for a visual explanation. LSDF is
responsible for imposing disentanglement of style and content, asking to reconstruct the fine
shape given the coarse features and the associated style code. However, this is not sufficient:
to avoid that the conditioning information of the style code is ignored by the decoder, the
consistency losses Lcoarse,Lfine penalize the reconstruction of coarse and fine shape, with
zero information coming from the style code, which is replaced with a zero vector.

Testing Phase: At test time the style codes can be used to perform different tasks: for style
transfer, a content shape xc is augmented with a transformation x̃c = T (xc) s.t. x̃c ̸∈ Sc

and its shape signature fc is computed. Then a style input shape xs is selected and its style
code vs is computed. The shape resulting from the style transfer is obtained by a forward
pass of the decoder xc 7→Ss = D(fc ⊕ vs) (see Figure 5-bottom for a visual example).
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Source Target Transfer Source Target Transfer

Figure 3: Examples of style transfer results.

3. Experiments

We evaluate our approach using the SolidLetters dataset of Meltzer et al. (2021); The
dataset is made of ≈ 13k 3D shapes of letters represented in a large diversity of fonts, with
each shape labelled with the corresponding character and font labels. As 3D datasets with
labels on style are scarce and expensive to gather, we choose to use this dataset to exploit
the font labels as style label, to be able to validate our approach in a quantitative way. We
remark that the labels are exclusively used for evaluation, while the network is still trained
in an unsupervised fashion minimizing the reconstruction loss in Eq.1. The quantitative
analysis is described in section 3. See Appendix C for further results.

Style transfer: In Figure 3,8 we show qualitative results of style transfer experiment fol-
lowing the procedure described in Section 2. We selected random pairs in the dataset, (seen
individually during training by the network), and performed style transfer, using coarsen-
ing and/or smoothing augmentations. In Figure 6 we show an example of aggregating style
from multiple sources, where we selected many instances labelled by the same font label.

Figure 4: Linear probe experiments.Left pair : coarsening augmentation Right pair :
smoothing and coarsening augmentations. For each pair: Left: confusion ma-
trix for the style codes (closer to diagonal is better) for the selected styles; Right:
accuracy scores for each font, with overall mean score reported (blue column)

Style classification: We selected five visually different fonts (Wire one, Vampiro, Sig-
nika,Viado Libre, Stalemate) and all the associated uppercase and lowercase letters. We
trained a linear classifier on their style code space, using the ground truth font labels, with
10-fold cross validation. In Figure 4, left pair, we report the mean accuracies per font av-
eraged across all 10 folds (right) and the confusion matrix averaged across all folds (left).
We report the same statistics for a model trained with both the coarsening and smoothing
augmentation on the right, showing further improvement on the accuracies. See further
results on the evidence of disentanglement of style and content in Appendix C.

Conclusions: In this manuscript, we proposed a novel approach to perform self supervised
neural style transfer on implicit representations of 3D shapes, exploiting input augmenta-
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tions that are able to disentangle style from content and to create a latent space of style
codes. Once trained, the network can be used for different tasks such as style transfer, style
classification, and style synthesis from multiple examples.We plan to further extend this
work according to Appendix D.
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Appendix A. Model architecture

A.1. Model architecture

Input shapes are preprocessed computing a grid of SDF values at a given resolution (typ-
ically 323 to 1283 ), and sampling a point cloud xyz near the surface, computing its SDF
values. The grid and the xyz coordinates are given to the network as input, while the ground
SDF values at xyz are used for training the network on reconstruction. To refer to the sdf
grid and the sampled point cloud specific for a shape x1 we use the following notation:
xgrid1 , x

Pxyz

1 .The model architecture is depicted in Figure 1. The network takes as input pair
of shapes (x1, x2) where x2 = T (x1) for some transformation T . Depending on the definition
of style, the transformation T changes the style but is invariant to the content of the shape.
The encoder E computes an overcomplete feature description of
the point cloud sampled near the surface, for the shape x1 and its
transformed version x2. This description which we refer to as shape
signature is obtained in the following way: the uniform grid of SDF
values is fed to 3D convolutional blocks which are followed by max
pooling layers; (similar to Chibane et al. (2020)), from each fea-
ture grid at a different resolution (corresponding to the output of
convolution+maxpooling block), we sample points at specific loca-
tions corresponding to the points sampled near the surface, using
trilinear interpolation. These are passed through the decoder D (a
simple MLP with LeakyRelu activation functions) which outputs
the SDF value at the corresponding xyz location. The intermedi-
ate StyleNet module, (detailed in the inset on the right) denoted
with S, takes the shape signature of x1 and x2 as input, and is responsible to output a global
latent vector, representative of the style of x1, given x2. It works by combining the two
shape signatures with some aggregation function ( in the experiments we used simple vector
subtraction, but other solution, e.g. an MLP, are possible). The output of the aggregation
function is then passed it through: (i) a MLP network which is responsible for mixing the
features; (ii) a maxpool layer, which reduces over the number of points dimension; (iii) a
final MLP layer to reduce the dimensionality and obtain the output global vector which is
descriptive of the style of x1.
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x2

x1

xc

xs
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Figure 5: Top: during training phase the network is enforced to reconstruct the original
input from the augmented one, giving structure to the latent space of style codes;
Bottom: at test time, the latent space of style vectors can be exploited for down-
stream tasks, such a style transfer: here the augmented ”r” input is upsampled
according to the style code computed from ”F” and its augmentation.

Experimental settings: For each shape in the dataset, we precompute grids of SDF
values with resolution 643, and store approximately 100k points near the surface together
with their SDF values, to enable fast dataloading during training. The points P̂xyz are
sampled according to:

P̂xyz = Pxyz +N (0, σI)

where Pxyz is a randomly sampled point on the surface and σ is chosen to be equal to
0.01 (multiple values for sigma can be used for datasets with more detailed shapes). During
trainingN = 2048 points are uniformly and randomly sampled from the stored ones, for each
shape in a minibatch. The dataset is augmented with the following set of transformations:
coarsening (i.e. voxelizing to a resolution of 83 and then recomputing the 643 grid on the
resulting shape) and smoothing using a variant of laplacian smoothing with less shrinkage
Barroqueiro et al. (2021). We experimented with two different settings, one with only the
coarsening augmentations and the other with smoothing and coarsening. The architecture
composition for this experiments is detailed in Table 1.
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E D S
Conv3D(16,3,1);LReLU() FC(code+fsize,256) FC(fsize,fsize)
MaxPool(2) LReLU() LReLU()
Conv3D(32,3,1);LReLU() FC(256,256) FC(fsize,fsize)
Conv3D(32,3,1);LReLU() LReLU() LReLU()
MaxPool(2) FC(256,256) FC(fsize,fsize)
Conv3D(64,3,1);LReLU() LReLU() Maxpool(pt)
Conv3D(64,3,1);LReLU() FC(256,1) FC(fsize,256)
MaxPool(2) LReLU()
Conv3D(128,3,1);LReLU() FC(256,256)
Conv3D(128,3,1);LReLU() LReLU()
MaxPool(2) FC(256,csize)
Conv3D(128,3,1);LReLU()
Conv3D(128,3,1)

Table 1: Architecture: the specific modules used in the experiments are reported for the
encoder E, the decoder D, the StyleNet module S with the overall feature size
fsize := 1+16+32+64+128+128 = 369, the size of the style code csize := 256
and pt being the number of sampled points fed to the network.

Appendix B. Related work

B.1. 2D neural style transfer

In the image domain neural style transfer was introduced in Gatys et al. (2016) as an
optimization problem where, given a content image and a style image, the objective is to
minimize the L2 distance between the Gram matrices of their features at specifically selected
layers of a CNN vision architecture. Later in Li et al. (2017) this was shown to be equal
to a distribution alignment problem between features, where the style loss in Gatys et al.
(2016) was shown to be equal to align the second moments of the feature distributions of
the two input images. This lead to an entire line of works Kolkin et al. (2019); Huang and
Belongie (2017); Jing et al. (2017) exploiting different techniques, such as optimal transport
Mroueh (2020) to solve the distribution alignment problem.

B.2. Neural implicit fields

3D shapes can be represented by a neural network implicitly that aims to predict either bi-
nary occupancy values or signed distance function (SDF) values at continuous xyz locations
Park et al. (2019); Chen and Zhang (2019); Gropp et al. (2020); Mescheder et al. (2019).
We chose to work with this representations as it provides a discretization-free representation
of the shape, it can well handle topological variations, and is suitable for integration with
topology optimization Liu and Ma (2016) pipelines.

B.3. 3D style transfer

In the context of 3D shapes, style transfer has been classically tackled as a two stage prob-
lem: first capture informative signals about the local geometry and the structural similarity
between a set of shapes (i.e. get a measure of style) and then transport extracted features
(transferring the style), exploiting some pairwise point correspondence Lun et al. (2015,
2016); Ma et al. (2014a). The principal limitations of these methods is that the correspon-
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dence must be known, and the shape optimization afterwards is usually slow. Spectral
techniques Sorkine (2005); Wang and Solomon (2019), exploit the eigenbasis of geometry
informative operators (e.g. the Laplace-Beltrami operator) to solve for a functional corre-
spondence between shapes and then perform frequency transfer . The principal limitation
of these methods is that there the notion of style is reduced to the high frequency features
in the spectrum of the operator. These techniques were extended with learning based ap-
proaches in Berkiten et al. (2017); Marin et al. (2020). In Liu and Jacobson (2019, 2021)
style transfer is recasted as an optimization problem in the normal domain, to deform a
shape to align to a specific geometric primitive such as the cube. While it works nicely, the
stylization is limited to low frequency deformation, which can align the shape exclusively
to the target primitive. More recently, style transfer has been tackled with learning based
methods. This benefited both, the ability to capture and measure the style signal Meltzer
et al. (2021) by exploiting the deep features extracted from the data, and the transferring
the style by solving implicitly for the correspondence between shapes, e.g. by recasting the
problem to a generative model conditioned on style information. Cao et al. (2020) extended
the approach of Gatys et al. (2016) to Poincloud data, using a PointNet encoder Qi et al.
(2016). Segu et al. (2020) extended this work assuming disentanglement between content
and style. In Liu et al. (2020) it was observed that by overfitting a network to learn a
subdivision scheme for meshes, that network could be used at test time to stylize another
low resolution mesh. Our method differs from these in that it is tailored to work with neu-
ral implicit representations, enables style transfer with a simple forward pass, without the
requirement of solving any optimization procedure, and can capture multiple complex styles
(and synthesize new ones) without the need to retrain the network from scratch. Closer to
our work in Chen et al. (2021b) the authors proposed a deep generative model that refines a
low-resolution coarse voxel shape, via voxel upsampling, into a detailized higher resolution
shape, by conditioning on a style code. This work differs in the fact that we work with
neural implicit representations, therefore alleviating the problem of working with higher
resolutions of voxels, and their work is specific to voxel upsampling, while ours can handle
different input transformations.

Appendix C. Additional results

Aggregating style from a set of shapes: Our method makes it also possible to synthesize
a single style code from a collection of shapes that essentially come from the same style.
Different letters from the same font is a clear example of such situation when different shapes
share the same style but no single shape can contain all the stylistic features required to
define that style. Given a set of shapes X = x1..xn, respectively belonging to the set of
styles S1..Sn we can compute their shape signatures f1...fn and concatenate them, before
feeding them to the StyleNet module. In this way one can get a single style code which is
representative of the overall style of a collection of shapes (see Figure 6).

Style clusters: Our network is able to correctly disentangle style information from con-
tent. This can be seen cluster different styles in the latent space of codes in an unsupervised
fashion, without relying on any style label. In Figure 7 we visualize TSNE projections cor-
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Source Targets Transfer

Figure 6: Style transfer from multiple sources: For a content source shape (left) we can
select multiple style targets (center) and obtain a single style code to generate
the transfer result on the right.

responding to the style codes in the quantitative experiment in Figure 4 showing further
evidence of the disentanglement properties of the style space.

Additional style transfer results: For additional qualitative examples of style transfer
refer to Figure 8.

Figure 7: TSNE projections of style space: Left: TSNE projections of style codes labeled
by letter, Right: TSNE projections of style codes labeled by style. While the
space does not show any structure w.r.t to letters labels (i.e. content), it shows
clustering w.r.t. to style labels, assessing the disentanglement capabilities of our
approach.

Appendix D. Conclusions and Future work

Future work: We performed an experimental preliminary study on the font labelled
dataset Meltzer et al. (2021). Nevertheless we plan to extend these results to real datasets
such as Koch et al. (2018); Chang et al. (2015) and to test the integration of the method
with topology optimization pipelines. From a methodological perspective, multiple paths
could be investigated: performing multiresolution style transfer building a hierarchy of style
codes, extending the architecture akin to Chen et al. (2021a), adding a Gaussian prior to
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Source Target Transfer

Figure 8: Examples of style transfer results. From left to right, content input, style target,
and transfer result

the latent space of codes to be able to generate novel styles from scratch by sampling at
test time.
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