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We present a method for enforcing manufacturability constraints in generated parts such that

they will be automatically ready for fabrication using a subtractive approach. We primarily target

multi-axis CNC milling approaches but the method should generalize to other subtractive methods

as well. To this end we take as user input: the radius of curvature of the tool bit, a coarse model

of the tool head and optionally a set of milling directions. This allows us to enforce the following

manufacturability conditions: 1) surface smoothness such that the radius of curvature of the part

does not exceed the milling bit radius, 2) orientation such that every part of the surface to be

milled is visible from at least one milling direction, 3) accessibility such that every surface patch

can be reached by the tool bit without interference with the tool or head mount. We will show

how to efficiently enforce the constraint during level set based topology optimization modifying

the advection velocity such that at each iteration the topology optimization maintains a descent

optimization direction and does not violate any of the manufacturability conditions. This approach

models the actual subtractive process by carving away material accessible to the machine at each

iteration until a local optimum is achieved.

1 Introduction

The aim of this work is to optimally synthesize the geometry of a mechanical part under a specified

set of loading conditions and constraints such that the part can be successfully and accurately

manufactured using a subtractive process. This process typically begins with a solid block of stock

material and gradually removes material from the block until the remaining material has the shape

of the designed part. One of the most common subtractive approaches is called “milling” and uses

rotary cutters otherwise known as “tools,” “end-mills” or “bits” to remove the material [4]. This

process inherently limits the types of shapes that can be manufactured, since the milling machine

must be able to hold the part rigidly and the rotary bit must be able to access the material surface

without interference. Other important considerations must also be taken into account such as

vibration of the part during material removal and stresses on the bit itself by the milling process.

We focus the scope of this work on the problem of synthesizing optimal shapes whose surface is

entirely accessible by a user-specified milling machine and tool.

The process of synthesizing optimal shapes given specified boundary conditions including loads

and restraints is generally called structural topology optimization and there are two primary cate-

gories, density-based and boundary-based [13]. Density-based approaches discretize the volume of

the part and assign a density to each discrete cell, then the densities are driven toward solid (1)

and empty (0) while supporting the specified boundary conditions [3]. Boundary-based approaches

instead track the shape of the external interface of the solid part and move this boundary incre-

mentally towards optimality. In order to enforce the manufacturability constraint, having a precise

knowledge of the boundary is advantageous so we make use of the latter approach. In addition,

the method we employ uses an implicit representation known as a level set [11, 2] to track the

boundary.



1.1 Related Work

In [9], the problem of manufacturability is tackled by a different approach. During topology op-

timization, a set of millable extrusions are fit to the geometry generated by the level set method

and this approximate geometry is readily manufacturable. However the final optimized geometry

without constraints in general cannot be represented by a set of extrusions and thus some level of

optimality is lost in this approximation process.

In [14, 5, 7], topology optimization using a density-based method and a so-called ‘projection’ or

‘visibility map’ is used to constrain output to manufacturable parts. Manufacturable here is simply

defined as every element in the density volume must have no occlusion in the milling direction.

Occlusion means that there must be no density higher than the element’s density in elements along

the specified milling direction. Depending on the manufacturability technique, elements violating

the constraint are either filled or removed. While this approach is convenient, unfortunately density-

based methods do not converge to solid and empty elements until the later stages of the algorithm

and so the constraint will not be physically accurate until this point of the optimization. In [14, 5]

there is no explicit modeling of the subtractive bit or holder for milling manufacturability. In [7] the

subtractive bit is modeled as a cylinder with hemi-spherical cap, but there is no constraint on the

bit length or model of the holder. In [8] the ‘projection’ method was extended to include multi-axis

milling constraints by using affine transformations to rotate the densities to align with the milling

directions before performing an aggregated ‘projection.’ They also include a method for modeling

the bit and holder, and model the effect of these on the optimized geometry. In this method the

user must specify the set of possible milling directions from which material can be removed.

Our method works in a similar way to [17, 15] where a level set-based topology optimization is

performed and the level set velocity function is constrained in order to enforce the manufacturing

property. In contrast to [17, 15] which constrain the part to be manufactured with a two-sided

cast, our manufacturing method is a more general subtractive constraint with a user defined tool

from either a fixed set of directions or automatically determined 5-axis subtraction.

1.2 Contributions

Mill geometry. To our knowledge this is the first level set-based method to incorporate acces-

sibility of a user defined physical tool bit and mill head.

Multi-axis constraint. We find the most accessible milling direction from a user supplied set

or automatically choose the best milling direction to simulate 5-axis milling.

Compatible with a shape gradient-based formulation. We impose our milling constraint

by modifying the shape gradients used in the level set-based topology optimization algorithm in

such a way that a descent direction is maintained in every optimization iteration.

2 Definition of the Milling Constraint

We consider a tool bit (or end mill) and head that is defined using the following parameters: bit

radius r and bit length b define the shape of the tool bit represented by a cylinder capped with

a hemisphere oriented in the milling direction m, and the head radius h defines another such

capped cylinder for the tool holder and head. We assume that the end of the head cylinder extends



infinitely far away from the surface. Additionally, for 3-axis milling, we allow the user to specify a

set of milling directions M from which the mill can approach the surface of the part. Whereas for

5-axis milling, we consider that the milling tool can be oriented to approach the surface from an

arbitrary direction and our algorithm automatically chooses the milling direction. See Figure 1 for

an illustration of the quantities defined above.
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Figure 1: Left: Milling geometry definitions. Middle: Example of inaccessible partial cavity.

Right: Example of a millable surface point.

For the purpose of this work, a part is millable if all its surface points are accessible in the sense

that a tool bit as described above can be brought in from infinity along an allowed milling direction

until it touches the surface point, making no intersection with the interior of the part.

Definition 1. Let Ω be a shape with boundary surface ∂Ω. A point x ∈ ∂Ω is millable if there

exists at least one milling direction for which the tool bit touches x and the tool bit and head as

defined in the above text do not intersect with the interior of Ω. The boundary surface as a whole

is millable if all its points are millable.

See Figure 1 for examples of millable and non-millable points.

3 Topology Optimization with Millability Constraints

3.1 Topology Optimization

Topology optimization problems can be formulated abstractly as the search for an optimal shape

belonging to a class of admissible shapes, denoted herein by Adm. The specific notion of admissi-

bility that we will use in this paper will be defined below (see Definition 2). The sought-after shape

Ω solves the constrained optimization problem

min
Ω∈Adm

F(Ω)

s.t. Gi(Ω) ≤ 0 ∀ i = 1, . . . , k
(1)

in a suitable sense — namely, we content ourselves with a feasible (i.e. constraint-satisfying) local

minimum of (1). Here F ,G1, . . . ,Gk : Adm → R are the objective and one or more inequality

constraint functions. In structural topology optimization problems, at least one of these functions

is formulated in terms of the solutions of linear elasto-static partial differential equations with



respect to one or more load cases. Each load case consists of a surface traction (a.k.a. Neumann

boundary condition) applied to a subset of ∂Ω and a prescribed displacement (a.k.a. Dirichlet

boundary condition) applied to another subset of ∂Ω.

We will use level set-based topology optimization [2, 11] with the augmented Lagrangian algo-

rithm [12] for solving the problem (1). This is an iterative strategy, whereby shapes are represented

as the interior regions delimited by the zero-contour of piecewise smooth level set functions defined

on an ambient design domain. The level set function for the shape at each iteration is updated

in a manner that improves the optimization objective and reduces the constraint violation until

a feasible, locally optimal admissible shape is achieved. Specifically, the update is performed by

integrating a well-chosen boundary normal speed function for a small pseudo-time in each iteration

by means of the standard level set Hamilton-Jacobi equation. (This update procedure is known

as advection with respect to the chosen boundary normal speed.) In our case, the speed function

on the boundary of the shape in the current iteration equals the negative shape gradient of the

augmented Lagrangian which is a well-chosen algebraic combination of the objective and constraint

functions. The speed function is then extended to a narrow band of the boundary by insisting that

the extension be constant along the normal direction (to achieve this we solve the normal extension

Hamilton-Jacobi equation for a time proportional to the width of the band). If L denotes the

augmented Lagrangian and dL denotes its shape gradient at Ω, then we now have a speed function

v : R3 → R such that

v(x) = −dL(x) (2)

for all x belonging to the boundary ∂Ω of the geometry Ω. Additionally, we set v to zero on any

part of the boundary of Ω we wish to hold fixed, such as the surface patches where the non-zero

surface loads and prescribed displacements of each load case are applied. The chosen speed function

is a descent direction for the augmented Lagrangian since it can be shown [6] that

L(Ωε) = L(Ω) + ε

ˆ
∂Ω
v dL+O(ε2) = L(Ω)− ε

ˆ
Γ

(
dL
)2

+O(ε2) , (3)

where Ωε is the advected geometry at the pseudo-time ε and Γ is the subset of ∂Ω that is allowed to

move. This formula implies that L(Ωε) < L(Ω) for sufficiently small ε. After iteratively applying

this procedure and also updating the penalty coefficients and the Lagrange multipliers used to

define the augmented Lagrangian, the shape converges to a local solution of (1).

3.2 Admissible Shapes

We wish to perform level set-based topology optimization, but we also wish to ensure that the

resulting shape is millable as defined in Section 2. We achieve this by incorporating millability

into the definition of admissible shapes. Thus in our setting, a shape is deemed admissible if the

following definition holds.

Definition 2. A shape Ω is admissible if these requirements are met:

• Ω is the interior region delimited by the zero contour of a piecewise smooth level set function;

• ∂Ω contains all subsets where Dirichlet and Neumann boundary conditions from structural

load cases are applied;

• Ω wholly contained in a specified design domain;

• ∂Ω is millable according to Definition 1.



3.3 The Archetypical Topology Optimization Problem for Millable Shapes

The archetypical structural topology optimization problem, namely volume-constrained compliance

minimization, defines the objective function F as the average compliance of Ω with respect to at

least one load case, and imposes exactly one inequality constraint: namely that the volume of Ω

must be less than or equal to some fraction of the volume of the design domain. We will tackle this

topology optimization problem in the present work, but with an additional millability constraint.

That is, we require the optimized shape to belong to the space of admissible shapes defined in

Definition 2 above, ensuring that the optimized shape is millable as described in Section 3.4. In

other words, we solve the problem:

min
Ω∈Adm

MeanCompliance(Ω)

s.t. Volume(Ω) ≤ V0

(4)

where Ω ∈ Adm if and only if Ω satisfies Definition 2. Here

MeanCompliance(Ω) :=
L∑

`=1

1

L

ˆ
Ω
σ

(`)
Ω : e

(`)
Ω .

where σ
(`)
Ω and e

(`)
Ω are the stress and strain tensors in Ω induced by the `th structural load case.

3.4 Maintaining Admissibility in Level-Set Based Topology Optimization

Thanks to the admissibility criteria of Definition 2, the algorithm outlined in the Section 3.1 must

be modified slightly before it can be applied to solve the optimization problem (4). This is because

the choice of speed function (2) is no longer suitable as it can violate admissibility. For example,

suppose that advection with respect to −dL causes a part of the boundary of the shape at the next

iteration to become inaccessible with respect to the specified milling direction through occlusion

with another part of the boundary of the shape. To rectify this issue, we propose in this paper a

strategy for modifying the speed function (2) so that the shape remains millable from one iteration

to the next while still ensuring that the Lagrangian decreases.

We are inspired by the classical gradient projection method [12] in which the outward-pointing

components of the descent direction orthogonal to the active constraint boundary are set to zero

in order to prevent violation of the constraints in those components. We adapt this method to

level set-based shape optimization as follows. We first assume that our initial shape does not

violate the millability condition, which is easily achieved by initializing with a convex hull of the

input geometry for example. Next, in each iteration we modify the speed function at each point

of the boundary of the shape by smoothly transitioning it to zero when a violation of millability

is predicted in the next iteration. The goal is to force the boundary velocity to vanish where a

violation of millability is predicted, thereby halting any movement of the boundary there.

To be precise, we introduce a “filter” function η (defined precisely in Section 3.5 below) that

assigns a value in [0, 1] to each point of the boundary. It assigns the value zero to any point belonging

to the subset Γ ⊆ ∂Ω where a violation of millability is detected. Its values then transition smoothly

from 0 to 1 in a small “collar” around the periphery of Γ, and it assigns the value one to all other

points of ∂Ω. To obtain the modified speed function, we multiply the original speed function by η.

In other words,

vmodified := −ηdL .



It is important to realize that, since η is everywhere positive, then the modified boundary speed

remains a descent direction for the Lagrangian. This is easily seen by substituting vmodified for v

in formula (3). Therefore we reduce the value of the Lagrangian during each iteration of topology

optimization while only allowing the shape to be modified from directions accessible by the milling

tool during that iteration.

3.5 Definition of the Filter

We now define the function η precisely. Note that the velocity of a point x ∈ ∂Ω has the form

v(x) = v(x)n(x), where n(x) is the outward-pointing unit normal vector field at x. If v(x) > 0 then

the boundary of the shape grows near x; if v(x) < 0 then the boundary of the our first requirement

for the definition of η is that η(x)v(x) ≤ 0 for all x on the boundary of the shape, i.e. preventing

growth, as this is a means to avoid occlusion of previously accessible regions of the surface of the

shape. Next we choose the “best” milling direction from amongst all “accessible” ones, where a

direction is accessible if there is no intersection between the shape and the tool bit or head (see

Figure 1), and best means closest to the surface normal.

To state the above considerations rigorously, let Vi(x) denote the volume occupied by the union

of the milling tool and head when it is oriented along the milling direction mi and the tip of the

head is located at x. Then we define η as follows:

η(x) =

0 if v(x) ≥ 0

max{|mi · n(x)| : all mi ∈M s.t. Vi(x) ∩ Ω = ∅} otherwise.
(5)

The initial set of milling directions M is either specified by the user depending on their desired

machine configuration; or for 5-axis milling, we explore several methods in the following section.

3.6 Convergence Properties

The fact that our algorithm chooses a descent direction for the augmented Lagrangian means

we can ensure that the value of the augmented Lagrangian decreases in every iteration of each

inner loop of the augmented Lagrangian algorithm (assuming the advection time is chosen with a

backtracking line search, as we do). This fact alone certainly does not guarantee the convergence

of the sequence of shapes to a locally optimal shape satisfying the constraints; and a rigorous

analysis of the convergence properties of our algorithm is beyond the scope of this paper (and

would undoubtedly be quite difficult). However, we do observe in all our examples that the norm

of the filtered shape gradient of the augmented Lagrangian decreases to zero within acceptable

tolerances in each inner loop of the augmented Lagrangian algorithm. We also observe that the

volume fraction constraint violation decreases to zero within acceptable tolerances over the course

of the algorithm, and the millability constraint is always satisfied by construction. See Figure 2 for

a graph of the relevant data for the augmented Lagrangian algorithm as a function of iteration (i.e.

augmented Lagrangian value, volume fraction, compliance, Lagrange multiplier, penalty ceofficient)

typical of our algorithm.

It is well-known that gradient-based optimization algorithms applied to highly non-convex prob-

lems such as topology optimization have a tendency to get stuck in local minima. Our algorithm

is no exception. In fact, it may perform less well than conventional level set-based topology opti-

mization from this point of view because it is likely that the “projected” nature of our algorithm



Figure 2: Optimization algorithm data as a function of iteration for the TorqueStruct example

(see Section 5.1 for problem definition). The relative rate of change of the augmented Lagrangian

and the volume fraction constraint violation in the final iteration are approaching 1%.

may cause it to stop prematurely at an undesirable locally optimal shape for which there exists a

nearby millable shape with better performance that could easily be reached using an un-filtered

descent step but not a filtered descent step. This is a limitation of our algorithm. However, the

shapes that we can reach using our algorithm are nevertheless quite acceptable.

4 Implementation

The interesting implementation challenge is to compute for any choice of i and x the sets Vi(x)∩Ω

appearing in the milling constraint defined in Section 3. Conveniently, we can use a level set

representation for Vi(x) and then take advantage of a collection of level set operations that together

lead to a very efficient algorithm. In addition this algorithm can be run in parallel to take advantage

of modern multi-core architectures.

We implemented the volume-constrained compliance minimization problem using the level set-

based topology optimization method outlined in [2] but with the modification of the boundary

speed function described in the previous section. We used the level set library from [10] that

creates signed distance functions and has implementations for the following functions: ray-casting,

computing offsets, advection, and morphological closure. For completeness, these are given as

Algorithms 1 through 4 in the Appendix.

4.1 The Millability Filter in the Three-Axis Case

The algorithm used to compute η for 3-axis machines is as follows: We find a set of points x of the

boundary of Ω by projecting grid points in the narrow-band of φ onto the zero level set along ∇φ.



Then for each x, we loop over each milling direction and test for accessibility. The accessibility

test combines two ray casting operations. The first tests against the bit intersection with the part

and the second tests against mill head intersection with the part. One can see from Figure 3 that

a ray originating at p in direction −m will only intersect the iso-surface of Ω offset by r if the

bit will intersect with the part (i.e. Vbit ∩ Ω 6= ∅ where Vbit denotes the volume occupied by the

bit). A similar test is also performed for the mill head except the iso-surface at h is used for the

ray cast instead and the ray origin is p − mi(b + h). Combining these two tests we can easily

determine Vi(x) ∩ Ω. Note that when using a narrow-band representation for Ω, the narrow-band

must be extended to include iso-surfaces offset up to h. This process can be performed once during

initialization using a standard level set offset function. Pseudo code for the above can be found in

the appendix as Algorithm 6 and Algorithm 5.

Ω 
x

r

Figure 3: Example showing that a ray casting test from p in −m against Ω offset by r is equivalent

to testing whether Vbit ∩ Ω 6= ∅

4.2 The Millability Filter in the Five-Axis Case

In the following sections we explore several different methods for obtaining the most accessible

milling direction for a 5-axis machine. All of the following methods begin by testing the milling

direction opposite to the surface normal m0 = −n. This direction would provide the maximal value

for η(x). But it is possible for the surface point x being tested to be inaccessible from this direction,

yet accessible from another direction. To find another direction, we propose several methods. All

our methods are essentially searches on the hemisphere above x, with ever-more refined search

strategies.

Hemisphere sampling. In this method we subsample the hemisphere to obtain a discrete set

of directions M and test each to find the most accessible direction. In our implementation we

used a fixed set of 26 samples on the sphere to form M. If we consider the center of a cube, the

milling directions point from the cube center to the center of every face, the midpoints of all the

edges and the cube corners (See Figure 4). These directions were all normalized. We used the

3-axis algorithm (Algorithm 6) with this M to approximate a 5-axis procedure, and we note that

in this procedure the accessibility test automatically filtersM to those in the hemisphere such that

n(x) ·mi < 0 (Algorithm 5).

This method has several drawbacks: first, all directions in M must be tested to determine

the most accessible, second it is possible that all of the directions are inaccessible but a small



Figure 4: The set of milling directions M used in our implementation of ‘Hemisphere sampling’.

perturbation of one of the directions could be actually accessible. The advantage of this method

is that it does not just perform a local search of part of the sphere and will not be trapped by

concavities.

Normal search. A dense sampling of the hemisphere is not practical so in this method we rely

on the signed distance field φ around Ω to guide a local search of the hemisphere. If a milling

direction is tested and fails, the intersection hit-point xhit from the ray-trace, along with an offset

is used to determine a new milling direction. This is done by moving from xhit in the direction of

∇φ(xhit) until either the medial axis of ∂Ω or the periphery of the level set narrow band is reached

— determined by finding either a peak or a plateau along the line emanating from xhit in the

direction ∇φ(xhit), respectively. A peak is a point y where the signed distance ceases increasing

beyond y in the search direction, while a plateau consists of points y such that φ is constant near

y. This new direction is in turn tested and updated until an accessible direction is found or an

iteration limit is reached (see Figure 5). The advantage of this method is that it is a local search and

often will quickly find an accessible direction in very few iterations (typically fewer than a coarse

sampling of the whole hemisphere). The disadvantage of this method is that it is not guaranteed

to find a solution even if one exists. It is possible for the method to move away from the accessible

direction in some corner cases (see Figure 6). Details are shown in Algorithm 7.

Heat search. This method is an extension to the ‘Normal search’ method that handles the

drawback of moving away from accessible directions. Instead of following the surface normal at

the intersection point, we follow the direction of heat diffusion away from the surface toward the

bounding box of the geometry. This requires an initial step of solving the transient heat equation

to an approximate steady-state in the volume between the surface of Ω+ (Ω offset by r) and the

bounding box [16]. For this, we voxelize this domain and use a finite difference method to discretize

the spatial derivatives as well as a first-order Euler method with sufficiently small time-step ε to

discretize the time derivatives. We set two Dirichlet boundary conditions: on the vertices of the

boundary of the voxel grid adjacent to Ω+ we set the temperature to zero; and on the vertices of

the bounding box we set the temperature to one. Once we have the temperature field T on the

voxel grid, we integrate trajectories tangent to ∇T using sub-voxel multi-linear interpolation of T
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Figure 5: Example showing a successful result from the ‘Normal Search’ method for determining an

accessible milling direction. The search algorithm begins with m1 = −n and performs a ray-trace

on Ω+, which is Ω offset by the bit or head radius. The intersection xhit is found and a new milling

direction m2 is found by offsetting from Ω+ in the normal direction up to the periphery of the

narrow-band (shown as dotted gray line). Direction m2 is then tested with another ray-trace, and

in the same way leads to m3 which finally results in no intersection with Ω+ and this direction is

returned as a candidate milling direction.

together with a first-oder Euler method. Thus the gradient of the temperature field guides the

search for the milling direction (See Figure 7). Note that it is important to solve the heat equation

between the offset surface Ω+ and the bounding box and not Ω and the bounding box since the

offset surface will close off some exits from cavities that are narrower than the bit diameter.

4.3 Finite Element Analysis

In order to compute the mean compliance of a shape Ω and its shape gradient, we must solve the

linear elasto-static equations in Ω with respect to one or more load cases. To this end, we use a

finite element-based structural solver (Autodesk NASTRAN) in a discretization of Ω into elements

according to the following procedure.

The level set function defining the shape at each iteration is defined on a uniform, background

Cartesian grid. We do not use this grid for the the structural solver. Instead, in the first iteration

we define a co-located conforming tetrahedral mesh using the meshing capabilities of the solver

(essentially this performs a standard level set to mesh conversion on the level set function defining

the initial shape). In the first iteration, we use this mesh to compute the finite element solution.

In subsequent iterations, when the shape no longer conforms to this mesh, we nevertheless use an

“active” subset of this mesh for the finite element solution. To be precise, we use the values of

the level set function to detect which tetrahedra are fully inside the shape, which are cut by the

boundary of the shape, and which are fully outside the shape. We then solve the discrete linear

elasto-static equations only in the interior and cut tetrahedra. The stiffness matrix for the union of

these tetrahedra is assembled from the interior tetrahedra in the usual way, and by multiplying the

contribution from each cut tetrahedron with its volume fraction of intersection with the shape (and

thresholded by a small value to avoid ill-conditioning). We use linear Lagrange shape functions

inside these elements.

The load vectors corresponding to each load case can always be computed because the surface
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Figure 6: Left: Example showing an unsuccessful result from the ‘Normal Search’ method for

determining an accessible milling direction and Right: a successful result from ‘Heat Search’. The

‘Normal Search’ follows milling directions −m1, intersects at xhit and offsets to the narrow-band

to find −m2. When following −m2 a new intersection is found but the new offset does not escape

from the overhanging geometry and is unable to find an accessible direction even though one exists.

The ‘Heat Search’ follows a trajectory through the gradient of the heat ∇T (q) which quickly finds

an accessible direction. Other trajectories are shown in light gray illustrate ∇T .

patches where the surface loads and prescribed displacements of each load case are applied belong

to the evolving shape at every iteration. This is because we set the speed function governing

the shape updates to zero on these surface patches. Therefore, since the initial mesh contains a

triangulation of these surface patches, the subset of the mesh used for the finite element solution

at every subsequent iteration does as well.

Once the solutions to the discrete linear elasto-static equations have been computed, we con-

struct their per-element strain energy densities (the negative shape gradient of the compliance is the

strain energy density) in the boundary tetrahedra of the active subset of the mesh. The negative

shape gradient of the augmented Lagrangian at the current iteration is a linear combination of the

sum of the strain energy densities and the negative shape gradient of the volume (equal to −1).

We assign to the grid nodes nearest the boundary of the shape at the current iteration the value

of the negative shape gradient in the nearest boundary tetrahedron. We then extend these values

to a narrow band of the boundary of the shape using the Hamilton-Jacobi equation for normal

extension described in Section 3.

4.4 Shape Update Strategies

Finally we conclude with some implementation details concerning the way in which the shape is

updated and how the milling constraint fits into it. We have two variants: an algorithm that assumes

initial millability and ensures millability in each subsequent iteration as described in Section 3; and

an algorithm that initially relaxes the millability constraint and enforces it only at convergence.

Strict algorithm. At each iteration the negative shape gradient of the augmented Lagrangian

is evaluated with finite element analysis and extended to a narrow band of the shape boundary

as described in the previous section. We obtain the advection speed function by multiplying the

extended negative shape gradient with the milling filter η as described in Section 3. Positive speeds

that could allow for shape growth are removed in this way. The shape Ω is then updated by level

set advection with this speed function. This algorithm ensures that we only remove accessible



Figure 7: Example showing the heat field T for a slice through the center of TorqueStruct

(see Figure 8 right). An arrow plot illustrates the gradient of the heat field ∇T and shows how

trajectories in this field lead from the surface of Ω+ (blue) to the accessible boundary (red).

material at each step and it requires that the initial shape of Ω be fully accessible (a feasible

start). Convergence can be tested when either the speed approaches zero or the change in objective

function is below a threshold. The final step performs the morphological closing of Ω, which

explicitly enforces fillets and fills any cavities smaller than the tool radius r that have been created.

The result of this operation is a very minor cleaning of the level set since the fillets and curvature

of cavities are already implicitly controlled by the filter function η. See the details in Algorithm 9.

Relaxed algorithm. A more relaxed version of the above algorithm allows for positive values

in the speed function so that the algorithm can begin with an infeasible starting condition before

eventually converging to a feasible solution. In order to converge to a feasible solution we apply

a positive velocity whenever we detect inaccessible regions (i.e. points where η = 0) thus filling

in cavities or otherwise inaccessible regions of Ω. Values between α = 0.1 and α = 0.25 work

well although there is a trade-off between speed of correcting inaccessible regions with interfering

with the subtractive milling. When α is too large, surface regions that were inaccessible may grow

too much and this overshooting will need to be compensated with material removal in subsequent

iterations. See Algorithm 10 for details.

5 Results

5.1 Problem setups

SupportStruct. This problem setup consists of a plate supported from four foot plates (See

Figure 8). We used a single load case with a vertical mechanical load of 3KN applied to the top

surface of the top plate, while the four lower plates have fixed Dirichlet boundary conditions on

their bottom surfaces. The plates and material are modelled as uniform in density with a Poisson

ratio of 0.29 and Young’s modulus of 17 GPa. In this problem we also define a pair of symmetry

planes and enforce mirror symmetry in the output geometry across the planes. The dimensions of



the bounding box of the geometry are 50mm × 50mm × 50mm.

TorqueStruct. This problem setup consists of a set of four plates supported with a set of four

loads creating a twisting load and supported by a fixed plate below (See Figure 8). We also use a

single load case and each loaded plate receives a mechanical load of 50N applied to its top surface

and the lower plate has a fixed Dirichlet boundary condition on its bottom surface. The plates and

material are modelled as uniform in density with a Poisson ratio of 0.3 and Young’s modulus of

210 GPa. The dimensions of the bounding box of the geometry is 60mm × 63mm × 60mm.

SkateTruck. This problem setup consists of the support structure for the axle and connecting

to the body of a skateboard. This case is provided as an illustration for the subtractive constraint

applied to a more complex real-world problem. It consists of 6 load cases, one is illustrated in

Figure 9. The material is Aluminum, modelled as uniform in density with a Poisson ratio of 0.33

and Young’s modulus of 68.9 GPa. The dimensions of the bounding box of the geometry are 188mm

× 44mm × 151mm.

Upright. This problem setup consists of the upright in a suspension system of a performance

automobile. This case is also provided as an illustration of the constraint applied to a more complex

real-world problem. One of the 5 load cases is illustrated in Figure 9. The material is Aluminum,

modelled as uniform in density with a Poisson ratio of 0.33 and Young’s modulus of 68.9 GPa. The

dimensions of the bounding box of the geometry are 188mm × 44mm × 151mm.

Figure 8: Left: The problem setup for the SupportStruct: The design space is a box enclosing

the top plate that is loaded from above and supported by four plates below with Dirichlet boundary

conditions on their bottom faces (indicated by the lock symbols). Two symmetry planes cut through

the design space. Right: The problem setup for the TorqueStruct: The design space is the union

of the shown boxes with a central cylindrical column subtracted away. The single load case is

shown where the top plates are loaded with a twisting type load. The bottom plate is fixed with a

Dirichlet boundary conditions on its bottom face.

5.2 Optimization algorithm

In our experiments on the SupportStruct and TorqueStruct we ran level set topology optimiza-

tion using the Augmented Lagrangian method described in Section 3 but with boundary speed



Figure 9: One of the load cases used to define the problem along with the design space for Left:

SkateTruck. Right: Upright.

modification as described in Section 3. We minimize compliance subject to a volume fraction

constraint of 20 and 30 percent of the initial design space respectively.

In our experiments on the SkateTruck and Upright we ran level set topology optimization

using a proprietary method, with the objective of minimizing compliance subject to a volume

fraction constraint of 30 percent of the initial design space, but now including a stress constraint.

The proprietary aspect of the algorithm is how the stress constraints are handled. Our intention

with this experiment is to highlight the versatility of our millability filtering approach — it can be

applied to any shape update scheme to produce millable results. Indeed, the proprietary method

assembles the boundary speed from the shape gradients of the objective and constraint functions

in a different manner than the “standard” method described in Section 3. Nevertheless, when we

modify this algorithm’s boundary speed exactly as described in Section 3, we obtain the expected

outcome that the Lagrangian still decreases for sufficiently small shape updates while the millability

of the updated shape is maintained.

In all the experiments, the geometry with loads and fixity applied are all considered preserved

regions and at each step in the optimization forced to remain part of the optimized geometry via

boolean union operations. In all the examples, the relaxed algorithm was used to allow for recovery

from infeasible states with α = 0.25.

5.3 Parameter experiments

We ran experiments to test the effect of the various milling tool parameters on the SupportStruct

problem. Figure 10 (a-c) shows how the output varies as we modify the bit length. The access

to the bottom cavity becomes reduced with shorter bits resulting in a squatter result (a). Figure

10 (d-f) shows how changing the head radius affects the result. In f) the effect is most noticeable

where a large head prevents access to the geometry above the fixed plates and again squat result is

obtained. In Figure 10 (g-i) the tool radius is varied and so the curvature of the resulting geometry

is reduced as the tool increases in radius, giving a smoother result with fewer divots.

We tested some variations of milling directions for 3-axis setups as shown in Figure 11. These

illustrate how the preserved regions prevent removal of material that is inaccessible from the spec-

ified milling directions. We found that in general the milling constraint did not hinder the volume

constraint satisfaction as long as the parameters of the bit allowed for enough material to be re-

moved. For instance, the example in Figure 11 right could not remove enough material to meet the



a) b = 2, r = 3, h = 15 b) b = 5, r = 3, h = 15 c) b = 10, r = 3, h = 15

d) b = 3, r = 3, h = 10 e) b = 3, r = 3, h = 15 f) b = 3, r = 3, h = 25

g) b = 10, r = 3, h = 15 h) b = 10, r = 7, h = 15 i) b = 10, r = 10, h = 15

Figure 10: Optimized parts with 3-axis milling using M: (+X,-X,+Y,-Y,+Z,-Z) and varying tool

and head parameters.

volume target unless we specified a long enough bit length.

5.4 Algorithm experiments

We evaluated the performance of the 5-axis search algorithms on the TorqueStruct example since

the design space has a deep cavity, it serves as an illustration of the different η search algorithms (see

Table 5.4). Figure 12 shows the output after 40 iterations for each of the 5-axis search algorithms in

section 4 as well as an unconstrained topology optimization result. Each method converged to the

target volume fraction, however the relative compliance and the geometry varied. As expected, the

unconstrained result had the lowest compliance, but of the constrained versions the ‘Heat search’

was able to identify surface elements deep inside the cylindrical cavity as accessible, while the

‘Normal search’ was only able to remove material from the top and gradually opened the central

cavity. The ‘Hemisphere search’ also was not able to widen the cavity and resulted in the highest

compliance.

In terms of performance, the ‘Normal search’ had least impact on computation time as it does



Figure 11: Optimized parts with 3-axis milling with varying milling directions. Left: b = 20, r = 3,

h = 15, M: (+X,-X). Right: b = 50, r = 3, h = 15, M: (-Z)

not need the heat equation solve and the ‘Hemisphere’ method samples all 26 directions for each

point.

Figure 12: Search algorithm comparison. From left to right, Hemisphere search, normal search,

heat search and no subtractive constraint. In the final image there are two areas highlighted where

the output would not be manufacturable due to inaccessibility caused by overhangs and features

that are too small for the bit to mill.

Algorithm Relative compliance Volume Avg time(s)/iter

Hemisphere 1.000 0.302 8.641

Normal 0.968 0.301 8.333

Heat 0.901 0.301 14.179

No subtractive 0.659 0.302 7.359

Table 1: Comparison of the three accessibility search algorithms as well as the baseline optimization

unconstrained by any subtractive constraint.

Figure 13 shows a comparison between unconstrained topology optimization on a skateboard

truck (above) and the result of topology optimization with the 5-axis CNC constraint described

above (using ‘Heat Search’). Note that the unconstrained version has a number of features that

would be impossible to mill, such as small holes, thin features and cage structures that would not

be accessible by the tool. The constrained version avoids all of these areas and results in a much

more ‘compressed’ result with fewer struts and all the cavities are open to attack from the tool.

The constrained result is just 8% heavier and 2% stiffer than the unconstrained version. To validate



this result we manufactured the design using a 5-axis Matsuura MX-330 CNC milling machine. We

used a 1
4 inch bull nose end mill for roughing and a 1

8 inch ball nose end mill for finishing.

Figure 13: Top: Comparison between unconstrained topology optimization and 5-axis CNC milling

constrained topology optimization. Bottom: Manufactured result using a 5-axis CNC milling

procedure.

We demonstrated the algorithm with another case study for a racing car upright. Figure 14

shows the unconstrained topology optimization results along highlighted regions where the curva-

ture is too high or the tool bit cannot access the surface. Alongside this is the constrained 5-axis

result that again is more compact without inaccessible undercuts and larger features. We also

validated the output by generating a fully machined version of the result shown at the bottom of

Figure 14.

6 Conclusion

We have demonstrated a novel method for topology optimization with a manufacturing constraint

suitable for subtractive milling machines. Our constraint allows the user to define a milling strategy

for 3-axis or 5-axis machines as well as the shape of the tool bits and machine heads that will be

used to manufacture the part. We have shown results for variations of the constraint parameters.



6.1 Extensions

Here we explore several potential extensions to the method as well as future work.

It is possible to consider an even wider range of tool bits and heads by adding additional head

layers (approximating the head with two or more capped cylinders), or additionally by modeling a

tapered frustum instead of a cylinder. Frustum intersection can be achieved by modifying the ray

casting function. Another extension would be to allow the user to specify a set of potential tools at

their disposal and then the optimization can do accessibility testing for each tool and choose the

tool with highest η value.

One of the limitations of the strict algorithm is that the velocity function is clamped such that

no growth can occur in the part. Often a topology optimization will require the shifting a subset of

the part region or the growth of a subset of the part while another region shrinks. This limits the

effectiveness of the topology optimization. We presented the relaxed algorithm as one method to

alleviate this restriction. Another potential method is to detect regions with positive velocity and

then to backtrack to the previous iteration and set η = 0 in that region so no volume is removed,

thus anticipating the growth.

The algorithms presented here enforce accessibility for the specified machine parameters, this

should ensure that the part is millable however it may be very slow to manufacture. Optimizing

for milling time is a very interesting extension for future work.
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8 Replication of Results

The results were obtained using optimization algorithms defined in section 5.2 using the level set

framework from [10] and the pseudo code algorithms are provided in the appendix for ease of

replication.



9 Appendix

Algorithm 1: LevelSetRayCast

Input: Level set, rayStart, rayDirection, levelSetValue, hitPoint

Result: Returns true if the ray crosses the level set at levelSetValue and stores the intersection

point in hitPoint

Algorithm 2: LevelSetOffset

Input: Level set Ω, offset value o

Result: Applies an offset of o to the signed distance function for Ω such that the zero-levelset is

uniformly advanced outwardly in the direction of on, where n is the surface normal. If the

level set is narrow band then the narrow band must be updated such that it centers on the

new zero-level set.

Algorithm 3: LevelSetAdvection

Input: Level set Ω, scalar field v, time t

Result: Solves the Hamilton-Jacobi equation on the signed distance function with the speed

defined by the scalar field v over a duration t. Note that a velocity extension method

improves the stability of advection [1].

Algorithm 4: LevelSetClose

Input: Level set Ω, close value o

Result: Morphological operation that performs an offset by o followed by an inset or negative

offset of o. The result is a removal of holes of radius o.

Algorithm 5: MillingTest: Level set evaluation for Vi(x) ∩ Ω

Input: Level set Ω, surface normal n(x), offset point p, milling direction mi, filter value η(x)

Result: Returns accessibility boolean, the updated filter η(x) for this mi and the intersection point

xhit
if n(x) ·mi < 0 then

hit, xhit = LevelSetRayCast(Ω,p,−mi,r,xhit);

if !hit then

hit, xhit = LevelSetRayCast(Ω,p−mi(b+ h),−mi,h,xhit);

if !hit then

η(x) = max (η(x),−mi · n(x));

return (accessible = true, η(x), xhit);

end

else

return (accessible = false, η(x), xhit);

end

end

return (accessible = false, η(x), xhit);



Algorithm 6: MillingConstraint for 3-axis

Input: Level set of Ω, n, set of milling directions M
Result: Evaluation of η

Extend narrow-band of Ω up to h;

for x on boundary of Ω do

p = x+ n · r;
η(x) = 0;

for mi in M do

accessible, η(x), xhit = MillingTest(Ω,n(x),p,mi,η(x));

end

end

return η;

Algorithm 7: MillingConstraint for 5-axis with NormalSearch

Input: Level set of Ω, n

Result: Evaluation of η

Extend narrow-band of Ω up to h;

for x on boundary of Ω do

p = x+ n · r;
accessible = false;

η(x) = 0;

m = −n;

while !accessible do

accessible, η(x), xhit = MillingTest(Ω,n(x),p,m,η(x));

x′hit = xhit ;

do

x′hit = x′hit + n(xhit);

while φ(x′hit)− φ(xhit) > 0;

m =
x′
hit−p

||x′
hit−p||

;

end

end

return η;



Algorithm 8: MillingConstraint for 5-axis with HeatSearch

Input: Level set of Ω, n

Result: Evaluation of η

Extend narrow-band of Ω up to h;

T = SolveHeatEquation(Ω+);

for x on boundary of Ω do

p = x+ n · r;
q = p;

accessible = false;

η(x) = 0;

m = −n;

while !accessible do

accessible, η(x), xhit = MillingTest(Ω,n(x),p,m,η(x));

q = q + ε ∇T (q)
||∇T (q)|| ;

m = ∇T (q)
||∇T (q)|| ;

end

end

return η;

Algorithm 9: Inner Loop of the Augmented Lagrangian Algorithm for Level Set Topology

Optimization — CNC Constraint Strict Algorithm

Input: Initial part domain Ω, Boundary conditions, Objective function, Milling parameters r,b and

h, set of milling directions M
Result: Optimized version of Ω

while !converged do

EvaluateSensitivities(Ω,Boundary conditions,Objective function);

v = ComputeShapeDerivative();

η = MillingConstraint(Ω,n,M,maxIters);

for x on boundary of Ω do

if v(x) > 0 then
η(x) = 0

end

end

ε = LineSearch(Ω,v);

LevelSetAdvection(Ω,ηv,ε);

end

LevelSetClose(Ω,r);



Algorithm 10: Inner Loop of the Augmented Lagrangian Algorithm for Level Set Topol-

ogy Optimization — CNC Constraint Relaxed Algorithm

Input: Initial part domain Ω, Boundary conditions, Objective function, Milling parameters r,b and

h, set of milling directions M
Result: Optimized version of Ω

while !converged do

EvaluateSensitivities(Ω,Boundary conditions);

v = ComputeShapeDerivative();

vmax = max(v);

η = MillingConstraint(Ω,n,M,maxIters);

for x on boundary of Ω do

if η(x) == 0 then
v(x) = αvmax

else
v(x) = η(x)v(x)

end

end

ε = LineSearch(Ω,v);

LevelSetAdvection(Ω,ηv,ε);

end

LevelSetClose(Ω,r);
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Figure 14: Left: Unconstrained topology optimization of race car upright with highlighted non-

machinable regions, Right: 5-axis CNC milling constrained topology optimization. Bottom:

Manufactured result using a 5-axis CNC milling procedure.
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