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Beyond Heuristics

1 Three high-performing designs 
from space plan optimization.

A Novel Design Space Model for Generative Space Planning 
in Architecture

1

ABSTRACT
This paper proposes a novel design space model that can be used in applications of generative 
space planning in architecture. The model is based on a novel data structure that allows fast subdi-
vision and merge operations on planar regions in a floor plan. It is controlled by a relatively small set 
of input parameters and evaluated for performance using a set of congestion metrics, which allows 
it to be optimized by a metaheuristic such as a genetic algorithm (GA). The paper also presents a set 
of guidelines and methods for analyzing and visualizing the quality of the model through low-res-
olution sampling of the design space. The model and analysis methods are demonstrated through 
an application in the design of an exhibit hall layout. The paper concludes by speculating on the 
potential of such models to disrupt the architectural profession by allowing designers to break free 
of common "heuristics" or rules of thumb and explore a wider range of design options than would 
be possible using traditional methods.
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INTRODUCTION
Architectural design is an extremely complex task. A typical 
design project may take several years to complete, with many 
interrelated decisions that must be made along the way. Since 
human designers are limited in their ability to consider all these 
decisions at once, we tend to break down complex problems 
into a sequence of smaller problems that can be more easily 
solved based on "rules of thumb," or strategies that have been 
proven to work in the past. In computer science, simple proven 
strategies for solving complex problems are called "heuristics." 
Although heuristics can be useful for efficiently generating work-
able solutions, when applied to complex problems, they are not 
guaranteed to produce the best overall solution. In the context of 
design, they can also lead to "design fixation," where "designers 
limit their creative output because of an overreliance on features 
of preexisting designs" (Youmans and Arciszewski, 2014).

To address the limitations of heuristic methods, the field of 
computer science has developed a set of optimization methods 
known as "metaheuristics." In general, metaheuristics are 
stochastic algorithms that can find optimal solutions to complex 
problems by iteratively sampling possible solutions, evaluating 
them based on specified performance factors, and using this 
information to derive better and better designs. The applica-
tion of metaheuristic optimization algorithms to architectural 
design problems is commonly referred to as generative design. 
With generative design, architects can leverage the power of 
computing to explore a much wider range of solutions than is 
possible with traditional design methods. Because the algorithms 
have no inherent intuition or bias for solving specific problems, 
they can help architects break free of the heuristics found in 
traditional design processes, leading to the discovery of not only 
high-performing design solutions but also novel ones.

The successful application of these methods relies heavily 
on the specification of a well-defined design space model. A 
design space model is a digital model that defines a set of 
design solutions based on a finite set of input parameters, and 
automatically evaluates each solution based on one or more 
pre-defined metrics. This model forms a conceptual "space" 
containing all possible design options, with each input parameter 
defining a dimension of the design space. During optimization, a 
metaheuristic algorithm "searches" this space by stochastically 
sampling design options, evaluating their performance, and using 
this information to find better designs. 

The formulation of the design space model is critical to the opti-
mization process because it describes both the range of possible 
design solutions (scope), as well as how the designs are related 
within the space (structure). However, while the application of 

metaheuristic search algorithms to design problems has been 
well-explored in the literature, there has been relatively little 
study of how designers should go about designing such models, 
and how they can be analyzed and evaluated before the optimi-
zation is performed.

In this paper, we describe a novel design space model that can 
be used to solve two-dimensional space planning problems in 
architecture. Space planning is one of the most complex prob-
lems in architecture, and deals with the optimal arrangement of 
a set of programs or features within an architectural floorplan 
(Homayouni 2000). Furthermore, we present a set of guidelines 
and methods for evaluating the scope and structure of a design 
space model to decide whether the model is fit for optimization 
using metaheuristic algorithms. To demonstrate these methods, 
we show their application in the design of an exhibit hall layout.

LITERATURE	REVIEW
The application of metaheuristic optimization algorithms toward 
space planning problems has been widely explored, as evident 
in the excellent review by Calixto and Celani (2015). Among the 
research cited in this review, the most relevant to our design 
space formulation is the work of Flack and Ross (2011), who 
propose a space planning model based on the subdivision and 
merging of contiguous plan areas. Our work extends this method 
to non-orthogonal layouts and proposes a novel data structure 
that optimizes the subdivision and merging operations. 

While the research cited in this review explores a variety of 
different model representations and optimization algorithms, 
there is little discussion of how the design space model can be 
evaluated by designers before the optimization is run. We extend 
this work by proposing a set of guidelines that can be used to 
analyze the quality of a design space model based on its scope 
(the bias vs. variance tradeoff) and its internal structure (the 
complexity vs. continuity tradeoff). We also introduce a method 
for visualizing these qualities based on low-resolution sampling of 
the design space.

THE DESIGN PROBLEM
To demonstrate the effectiveness of our design space model we 
applied it to a real-world design project: the layout of a 288,000 
square foot exhibit hall for a major event happening later this 
year. Our clients in the project were the event organizers, 
the event production company, and the facility management 
company. The aspirations of the project were to create a novel 
event layout that accommodated the programmatic needs of 
the event while maximizing exposure between exhibitors and 
attendees. 
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An initial analysis of layouts from previous versions of the same 
event (Figure 2) revealed the application of many heuristics 
or "rules of thumb," such as orthogonal layouts and clustering 
of food and beverage programs. While these rules of thumb 
created reasonable solutions, they did not have any fundamental 
connection to the aspirations of the project and thus artificially 
restricted the range of possible design solutions. By applying 
our design space model and optimization method, we were able 
to break free of some of these limitations, delivering a layout 
proposal that was unique yet high-performing based on the 
desires of the client. 

THE DESIGN SPACE MODEL
Our design space model is based on the morphology of urban 
street layouts. Starting with the boundary of a two-dimensional 
space, the model uses a series of "avenues" to subdivide the 
space into a collection of smaller parcels. It then merges some 
of those parcels to form larger regions to accommodate the 
programmatic requirements of the layout. In the rest of this 
section we will describe how the design space is defined through 
a set of constants and boundary conditions, how it is parameter-
ized to produce a variety of space plan options, and how each 
option is evaluated relative to the goals of the project.

Design Space Definition
The boundary of the design space is determined by the walls of 
the exhibit hall and represented in the model as a closed polyline 
(Figure 3a). Another set of polylines define "no-go zones," such 
as egress areas, restrooms, and vertical cores where no event 
programs can be placed. A final set of constants are the three 
entrances to the exhibit hall. These entrances are represented by 

points and define the starting point of three avenues, which are 
the basis of the subdivision process described in the next section.

Design Space Parameterization
The design space is parameterized using two sets of parameters. 
The first set of three parameters guides the placement of three 
main circulation avenues that subdivide the plan into a set of 
smaller cells. The second set of 22 parameters guide the place-
ment of the 11 major expo programs along the circulation routes, 
which then grow by merging adjacent cells until each program’s 
size requirement is met. These circulation and program parame-
ters describe a 25-dimensional design space that contains a wide 
range of valid plan layouts for the exhibit hall.

The first step of the subdivision process is the placement of three 
main avenues that connect the three expo hall entrances with a 
point on the opposite wall (Figure 3b). The location of this point 
is parameterized in the domain of the polyline edge representing 
the wall directly opposite each entrance. The avenues are 
used to subdivide the plan boundary into a variable number of 
macro-regions, which are then further subdivided into micro-re-
gions according to the following procedure:

1. Identify macro-regions that share at least one edge with the exhibit 

hall boundary.

2. For each of these macro-regions identify the longest edge that is 

shared with the exhibit hall boundary and locate the midpoint of the 

edge.

3. Draw a secondary avenue line perpendicular from this midpoint to 

the opposite edge of the macro-region.

2 Event layout from previous two 
years.

3 Design space model definition:  
(a) boundaries and constraints 
(b) subdivision based on avenues 
(c) regular subdivision into cells 
(d) program seed parameterization 
(e) cell merging based on seeds 
(f) standard booth placement

2
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Finally, each micro-region is further subdivided using a fixed grid 
of 40 x 20 ft, which is aligned to the longest edge of the asso-
ciated micro-region. This process results in a total subdivision of 
the original plan boundary into a series of smaller cells that are 
then used to place the various event programs (Figure 3c).

After the plan has been subdivided into smaller cells, the next 
step is the placement and allocation of space for the event’s 
programs. Based on references from past events and early 
conversations with the clients, we generated a list of 11 major 
programs and associated area requirements. Following the city 
example, these major programs are placed along the three main 
avenues, forming "monuments" that serve as visual markers for 
visitors in navigating the space (Figure 3d). The placement of 
each of these programs is parameterized with a pair of parame-
ters [j, k], where j is an integer in the range [0,2] that dictates the 

avenue along which the program is placed, and k is a float in the 
range [0,1] that dictates where it is located along the avenue. 

In addition to the 11 main programs that are individually param-
eterized, there were an additional set of programs relating to 
the food and beverage (F&B) service of the event. To reduce the 
dimensionality of the design space, we chose not to individually 
parameterize the location of the F&B programs. Instead, these 
programs are always located at the ends of the primary and 
secondary avenues, where they hit the exterior walls of the expo 
hall. This strategy distributes the F&B programs around the floor 
plan, avoids dead ends, and minimizes congestion while creating 
attractions that draw people further into the space. Although 
they are not individually parameterized, the location of these 
programs is determined by the placement of the avenues, so 
they can be indirectly controlled by the optimization algorithm 
when testing various design options.

(a)

(d)

(b)

(e)

(c)

(f) 3
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Once the "seed points" of all the programs are placed, they are 
allocated in the plan according to the following procedure (Figure 
3e):

1. For each program, the cell that contains the program’s seed point is 

identified.

2. The neighbors of the starting cell are identified as the set of all cells 

that share at least one edge with the starting cell.

3. A neighbor is chosen for merging with the starting cell, such that the 

resulting area minimally meets the area requirements of the given 

program.

4. If all neighbors fall short of meeting the area requirement, the 

largest neighbor is chosen for merging. The process then repeats 

from step 2 until the area requirement is met.

The merging process results in a set of variable-size cells based 
on the needs of the program. Once the merging process is 
complete, the remaining cells are populated with a collection 
of standard 20′ x 20′, 20′ x 10′ and 10′ x 10′ exhibitor booths 
(Figure 3f).

Both subdivision and merging operations are implemented using 
a novel data structure (Figure 4) that allows fast subdivision 
and the union of a collection of planar contiguous cells with an 
arbitrary number of edges. The plan is represented by a collec-
tion of vertex and cell objects. Vertex objects have a physical [x, 
y] location in the plan, and store a list of pointers to cell objects 
to which they belong. Cell objects are defined by a list of vertex 

objects, ordered counterclockwise, which represent the polyg-
onal boundary of each cell. Based on this data structure, we can 
implement efficient methods for neighbor search, subdivision, 
and merging without resorting to expensive geometric opera-
tions such as nearest neighbor searches, booleans or splits. 

The dual steps of subdivision and merging create a complex 
design space capable of creating a very large variety of design 
options that are guaranteed to accommodate the programmatic 
needs of the event. While all potential design options are valid, 
some options are clearly better than others, and it is the goal of 
the optimization algorithm to search through the design space 
and discover the optimal designs. To do this, the algorithm must 
be able to evaluate each design based on one or more predeter-
mined performance metrics—or goals—which are the focus of the 
next section.

Design Space Metrics
Based on discussions with the clients, we determined that the 
most critical goal of the event layout was the distribution of foot 
traffic, such that all exhibitor areas are evenly activated without 
creating undesirable congestion in any particular area. While a 
certain level of congestion is important for activating the various 
programs and exhibitor booths, experience from past events 
revealed that certain concentrations of high-activity programs 
such as F&B can lead to concentrations of congestion that are 
uncomfortable for attendees.

4 Cell mesh data structure and three primary operations.
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5 Visualization and calculation of output metrics buzz (left) and exposure (right).

To capture these desires in the model we developed two related 
but distinct measures. The first one is called "buzz," and measures 
the spatial distribution of high traffic areas in the plan (Figure 
4a). Higher values of buzz represent plans that not only create a 
large amount of foot traffic, but distribute this foot traffic evenly 
throughout the plan. The second metric is called "exposure," 
and measures the average foot traffic around each exhibitor 
booth (Figure 4b). Higher values of exposure represent plans 
where a large percentage of booths have a high level of traffic 
surrounding them. Both metrics were calculated using a novel 
static graph-based simulation method, which is fully described in 
a related paper.

The set of 25 design parameters and two metrics form the input 
and output interface of the design space model. Unlike some 
gradient-based methods, metaheuristic optimization algorithms 
do not rely on any knowledge of the internal workings of the 
model to derive optimal designs. Instead the model is treated 
as a generic "black box" function, which represents the complex 
mapping between the input parameters and the output metrics. 

This is an advantage for design models, which are typically 
composed of many interrelated geometric operations, few of 
which can be analytically defined or differentiated. However, this 

also means that the mapping between the inputs and outputs 
of the model is a crucial factor in the success of the optimiza-
tion. Despite this importance, there are few guidelines to help 
designers analyze the quality of their design spaces to ensure 
that the optimization yields good results. Without such guide-
lines, designers have no way of knowing whether the algorithm 
is efficiently searching the design space and finding the most 
optimal designs. In the next section we formulate two such 
guidelines, and demonstrate a visualization method for evaluating 
our model based on them. 

DESIGN	SPACE	EVALUATION
To help designers evaluate the quality of their design space 
models we propose two guidelines formulated as tradeoffs 
between two extreme conditions of the model. The first tradeoff 
is bias vs. variance, which relates to the scope or breadth of the 
design space. A model with "high bias" is too simple, and does 
not capture enough variation in possible designs. You can think of 
such a model as being too "biased" towards a particular solution. 
On the other hand, a model with "high variance" is too flexible, 
and captures a much larger set of possibilities than is necessary 
for solving a problem. Such models often have a high percentage 
of invalid designs, which makes them difficult to search during 
optimization. A good design space model lands somewhere in 
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6 Design space evaluation.
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between these two extremes—capable of creating a wide range 
of possible designs without being so vast that the search process 
becomes intractable.

The second tradeoff is complexity vs. continuity, which relates 
to the internal structure of the design space and the mapping 
between input parameters and output metrics. Complexity refers 
to the potential of the design space to generate unpredict-
able, non-intuitive results. A model with insufficient complexity 
is usually not worth the effort of optimization because we 
can easily determine the best design using our own intuition. 
Continuity refers to the internal consistency and structure of the 
design space. For the design space to be searchable, individual 
designs within the design space should maintain some internal 
relationships, which allows the search algorithm to navigate 
between adjacent designs and make valid predictions about 
the performance of designs based on the designs around them. 
Although these two properties are often at odds with each 
other, a designer’s goal should be to maximize both—to create a 
model that is complex enough to allow unexpected solutions, yet 
continuous enough to be searchable.

To evaluate these tradeoffs in our design space model, we 
propose a visualization method based on a low-resolution 
regular sampling of the design space, which allows us to visually 
understand both the scope and the internal structure of the 
model. To perform the analysis we first narrowed our scope to 
the three avenue parameters since they have the most effect 
on the topology of the plan and thus the resulting value of the 
two metrics. We then created a design of experiments (DOE), 
which is a set of design options, based on a full permutation of a 
low-resolution sampling along the three parameters. In this case 
we chose to discretize each input into 16 steps, which yields 16 
x 16 x 16 = 4,096 designs. 

To smooth out the effect of the remaining 22 input parameters 
we also tested each design five times using random values for 
the other parameters and averaged the values of the output 
metrics. This gave us a total of 20,480 designs that had to be 
evaluated. The discretization of the main parameters and number 
of trials was fine-tuned based on the time it took to generate 
each design option and the total time we had to run the 
experiment. In this case, each design took roughly 20 seconds 
to compute, so the whole experiment took roughly five days to 
complete on a single computer. 

Based on this sampling we can visualize the design space as 
a series of interpolated "response surfaces" with two input 
parameters mapped onto the x and y axes, and one of the 
metrics mapped onto the z axis. Figure 6 shows the resulting 

visualization for the "buzz" metric. Since we had to keep one 
of the input parameters constant in each plot, the visualization 
consists of 16 separate plots, with each plot representing a slice 
along the third input parameter. 

Based on this visualization, we can draw some conclusions about 
the quality of our design space model based on the two tradeoffs. 
The plots show us that the transition between high and low 
scores is gradual in certain zones and more abrupt in others. In 
general, the landscapes show a degree of overall continuity while 
revealing local complexities between the input parameters and 
the output metric scores (Figure 6 inset). The design space also 
seems to be more continuous along the parameter represented 
along the y axis than the one along the x axis. 

We can also learn about the scope of the design space by 
studying the form of resulting plans at its boundaries. As stated 
earlier, the merging process guarantees that all options within 
the space are valid designs. Thus we are not in danger of creating 
a model with too much variance. However, we can also see that 
the initial subdivision process leads to a wide variation of plan 
designs. Thus, our model is not overly biased towards particular 
solutions such as orthogonal layouts. 

Finally, we can also study areas of high performance to deduce 
strategies that may lead to high-performing designs even before 
optimization. For example, we can see that the high performing 
region of the design space in the top left x-y quadrants is 
produced whenever both avenues miss the central obstacle in 
the exhibit hall. Now that we have located some potential strat-
egies and have confirmed the relative continuity of our design 
space, we can be confident that the optimization process can 
search the design space and exploit those strategies to find the 
overall optimal designs. 

DESIGN OPTIMIZATION
The final step of our design process was to run the design space 
model through a metaheuristic optimization algorithm to find the 
optimal designs. In this case we chose to use a genetic algo-
rithm (GA), which despite being one of the oldest metaheuristic 
algorithms (Holland, 1975), remains one of the most popular and 
widely used (Marler and Arora 2004). 

As indicated by their name, GAs find optimal solutions to 
complex problems by mimicking the evolutionary process in 
nature. This process begins by creating an initial generation of 
random solutions. These solutions are then ranked according to 
performance in the specified objectives. The best solutions are 
selected for "cross-over," a process in which pairs of solutions mix 
their input parameters to create a new generation of "children" 
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solutions. Often, "mutation" is introduced by randomly altering 
the value of a small number of input parameters. By iteratively 
repeating this process over many generations of solutions, the 
algorithm can navigate to high-performing areas of the design 
space, eventually finding designs that are optimal, or close to 
optimal.

We performed the optimization using a variant of the NSGA-II 
genetic algorithm (Deb et al. 2002) with the following settings:

• Designs per generation: 320

• Number of generations: 100

• Avenue parameters mutation rate: 0.5

• Program seed parameters mutation rate: 0.3

• Cross-over rate: 0.9

One side effect of the visualization process described in the 
previous section is that we already had a large dataset of designs 
to start with. So instead of a typical first generation of random 
samples, we started the optimization with the 320 highest 

performing designs from our dataset. In addition to giving the 
optimization an early boost, this technique also reduces the 
chances of getting stuck in a local minimum because the initial 
designs were evenly sampled from the entire design space.

Figure 7 shows all the designs explored during both the analysis 
and optimization process plotted according to the two goals of 
the optimization (maximizing the values of both output metrics). 
The 20,480 designs produced during the analysis step are shown 
in gray, and the 32,000 designs explored during optimization 
range from cyan (early designs) to magenta (later designs). The 
plot shows that the optimization process is able to improve on 
the performance of even the most optimal designs found during 
the original low-resolution sampling of the design space. This 
demonstrates the utility of our hybrid process, which combines 
an initial low-resolution sampling of the design space to interpret 
the quality of the design space and produce an initial population 
of high-performing designs, with an optimization process that 
can further explore the design space to discover even better 
designs. 

7 Results of optimization by objectives. Grey color represents designs from analysis stage, optimization designs range from cyan (early) to magenta (later). 
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RESULTS
The optimization process produced a subset of 38 Pareto-
dominant designs, which were all equally high-performing based 
on tradeoffs between the two metrics. From these we selected 
three designs that represented three distinct strategies for the 
event layout (Figure 1). These designs were then discussed with 
the clients, and the appealing features of each one were synthe-
sized into a floor plan that was handed off to the production 
management company for further refinement.

CONCLUSION
Recently many architects and designers have become infatuated 
with the promise of generative design. Through the application 
of metaheuristic optimization algorithms, these methods can 
transcend the limitations of our traditional heuristic-based design 
processes, and help us discover novel and high-performing solu-
tions to our most complex design problems. 

As generative design tools gain wider adoption, the designer’s 
role will be transformed from designing static three-dimensional 
objects to designing highly multi-dimensional design spaces that 
can be explored and optimized by artificially intelligent systems 
such as genetic algorithms. However, as designers begin to adopt 
these tools, they will need clear theories and guidelines for how 
to design a good design space model, evaluate its quality, and 
predict its ability to be optimized by an autonomous system. In 
other words, designing a generative design model requires expe-
rience, creativity, analytical thinking, and even "typologies"—just 
as traditional design does.  

Although there have been many technical descriptions of the 
tools and some promising applications, we are still lacking a 
unified theory of design space design, and its wider applica-
tions towards the architectural design process. To address this 
shortfall, this paper provides three main contributions. The first 
is a description of a novel design space model for application in 
architectural space planning. The second is a set of guidelines 
for evaluating the qualities of a design space based on the bias 
vs. variance and complexity vs. continuity tradeoffs. The third is 
a set of methods for evaluating these tradeoffs through low-di-
mensional sampling and visualization. It is our hope that a deeper 
focus on the design implications of these technologies will 
lead to the adoption of these tools by a wider set of designers, 
causing a disruption in the architecture industry towards more 
innovative and higher performing designs.
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