
Vincenzo Ferrero
Design Engineering Laboratory,

Oregon State University,
Corvallis, OR 97331

e-mail: Ferrerov@oregonstate.edu

Bryony DuPont
Design Engineering Laboratory,

Oregon State University,
Corvallis, OR 97331

e-mail: Bryony.DuPont@oregonstate.edu

Kaveh Hassani
Autodesk, Inc., Autodesk Research,

San Rafael, CA 94903
e-mail: Kaveh.Hassani@autodesk.com

Daniele Grandi
Autodesk, Inc., Autodesk Research,

San Rafael, CA 94903
e-mail: Daniele.Grandi@autodesk.com

Classifying Component Function
in Product Assemblies With
Graph Neural Networks
Function is defined as the ensemble of tasks that enable the product to complete the
designed purpose. Functional tools, such as functional modeling, offer decision guidance
in the early phase of product design, where explicit design decisions are yet to be made.
Function-based design data is often sparse and grounded in individual interpretation. As
such, function-based design tools can benefit from automatic function classification to
increase data fidelity and provide function representation models that enable function-
based intelligent design agents. Function-based design data is commonly stored in manu-
ally generated design repositories. These design repositories are a collection of expert
knowledge and interpretations of function in product design bounded by function-flow
and component taxonomies. In this work, we represent a structured taxonomy-based
design repository as assembly-flow graphs, then leverage a graph neural network (GNN)
model to perform automatic function classification. We support automated function classi-
fication by learning from repository data to establish the ground truth of component func-
tion assignment. Experimental results show that our GNN model achieves a micro-average
F1-score of 0.617 for tier 1 (broad), 0.624 for tier 2, and 0.415 for tier 3 (specific) functions.
Given the imbalance of data features and the subjectivity in the definition of product func-
tion, the results are encouraging. Our efforts in this paper can be a starting point for more
sophisticated applications in knowledge-based CAD systems and Design-for-X consider-
ation in function-based design. [DOI: 10.1115/1.4052720]
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1 Introduction
Function-based design is a foundational tenet in product design

[1]. Function is defined as the application of the product purpose
toward solving a design problem [2,3]. Components within the
product complete sub-functions necessary to materialize the over-
arching product function. In product design, functional modeling
is used to support and guide designers during early conceptual
design phases [4,5]. Here, a designer determines the sub-functions
needed to complete the primary product function and purpose [1].
These sub-functions are connected through flows that capture
their interactions. In practice, these flows represent material,
energy, and signal transfer [6].
Currently, function-based design suffers from subjectivity caused

by the designer’s interpretation of function and flow as it applies to a
design. Efforts have been made to standardize function and flow
into taxonomies to limit subjectivity, while increasing shared
domain understanding [6]. The standardization of function-based
design principles has led to meaningful curation of taxonomy-based
design repositories [7–9]. While these design repositories have been
widely accepted into literature, there remain challenges in function
interpretation defined by designer expertise in function-based
design. The human interpretation and assignment of function
have generated repositories that are often unorganized, sparse,
and unbalanced.
Low data quality and scarcity of design repositories have led to

an under-utilization of deep learning methods in the data-driven
product design field [10,11], as they require large amounts of data
[12,13]. Prior work addressed the issue of scarce structured
design knowledge datasets by automatically extracting function
knowledge from a corpus of mechanical engineering text to

construct a design knowledge base [14]. For modalities of data
other than text, researchers relied on synthetic design data [15],
small amounts of curated knowledge [16], or scraped public
online design repositories and manually labeled design knowledge
[17,18]. Yet, it remains challenging to apply data-driven methods in
the field of mechanical design [19,20]. However, recent progress in
graph representation learning and graph neural networks (GNNs),
show promise in knowledge discovery in sparse datasets [21,22].
Rapid advancements in deep learning for sparse datasets present
an opportunity to apply such methods on design repository data
to forward the state-of-the-art in data-driven design, specifically
in the context of function-based design shared understanding, stan-
dardization, and computer representation.
In this paper, we use GNNs and sparse data from a design repo-

sitory to classify component function based on assembly and flow
relationships. We represent data from a hierarchical taxonomy-
based design repository through graphs. The focus of these
graphs is to capture function-flow-assembly relationships within
products housed in the design repository. We then introduce a hier-
archical GNN framework that capitalizes on the three-tier hierarchi-
cal nature of the repository data. Using the hierarchical GNN, we
classify component function in three tiers ranging from broad
primary functions to detailed tertiary functions as introduced in pre-
vious literature [6]. We exhaustively evaluate our GNN framework
using four types of GNN layers and compare its results against other
feed-forward networks to determine the fidelity of our proposed
GNN architecture. We also compare our hierarchical GNN architec-
ture against independently trained GNNs for each component func-
tion tier. The performance of our GNN framework is presented and
subsequently explored through confusion matrices and feature
importance analysis.

1.1 Specific Contributions. The research presented here con-
tributes to the area of function-based data-driven product design by
leveraging recent developments in graph representation learning to
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enable a more descriptive shared understanding between humans
and computers about the function of parts in an assembly. Our inter-
est in function classification stems from recent work that applies
data-driven approaches to various engineering design tasks [10],
such as searching a design space [23], model-based systems engi-
neering [24], or selecting appropriate manufacturing methods
[17]. Such work points toward intelligent design agents enabled
by knowledge-based design systems, which have been explored
by the design research community over many years [10,25].
In the context of our work, functional modeling supports the use

of automated reasoning systems, as well as facilitating communica-
tion and understanding between designers and co-creative agents,
both of which could benefit from a better-shared understanding of
the problem when working on a creative task [15,26,27]. We see
function as an important theoretical element to allow an intelligent
design agent to better understand the designer’s intent when
co-creating with the designer. Predicting low-level functions of a
design is an initial step toward this vision. The work we present
here contributes the following:

(1) A novel approach to automatically predict the function of a
part in an assembly using graph neural networks.

(2) A publicly available relational assembly graph model to
represent design repository data.

(3) Experimental results of part function classification from a
graph representation of the assembly.

In this body of work, we use the Oregon State Design Repository
(OSDR) as our structured taxonomy-based data source [28,29]. We
provide a publicly available subset of the OSDR dataset used in our
work, the assembly graphs representing the OSDR data, and the
GNN implementation for the research community to leverage in
future work.1 Furthermore, graph representation of the OSDR can
be leveraged in data searching tasks and other GNN tasks beyond
function classification. GNN and OSDR graph representations can
be used to ascertain design knowledge on material choice, assembly
order, amfailure modes, Design for the Human Element, Design for
the Environment, and component-system classification tasks.

2 Background
In this section, we introduce fundamental concepts and research

supporting the extraction of functional knowledge using GNNs.
Here, we introduce literature in function-based product design in
the context of design support and deep learning. Next, design repo-
sitories are discussed as a source of semantic product data that can
be used in modern deep learning techniques. Finally, literature and
background are established for graph representation and GNNs.

2.1 Function-Based Product Design. Function-based design
has been used as a bridge to bring Design-for-X (DfX) objectives,
such as Design for the Environment, from post-design analysis to
the earlier design phases of product development. To this end,
function-based design has been used with life-cycle assessment
data to provide function-based sustainable design knowledge to
designers [30–32]. In human-centered product design, function
has been related to human error and interaction points to determine
which functions need special consideration for ergonomics [33,34].
These recent developments in function-based design for meeting
DfX objectives suggest a need to predict, learn from, and model
function in components as a means to bring further curated data
to early design phases.
Previous efforts have been made to use machine learning for

improving function-based design methodologies. In other research,
association rules and weighted confidence has been used to deter-
mine the function of a component within product configurations
[35–37]. Decision trees have proved useful in reducing the feasible

design space of functional assignment when considering product
assembly [38]. Furthermore, deep learning approaches have been
used to disambiguate customer reviews based on function, form,
and behavior [39].

2.2 Taxonomy-Based Design Repositories and Knowledge
Discovery. Taxonomy-based design repositories store product
design data relevant to design engineers [28,40]. This type of
design repository is generated through expert taxonomy descrip-
tions of classical product life cycle inventory (LCI) data. For
example, given common product data such as a bill of materials,
specialized taxonomy data can be appended to LCI data. The
OSDR is a taxonomy-based repository that houses product LCI
data along with assigned specialized taxonomy descriptions
[7,29]. In the OSDR case, specialized taxonomy data includes
product assembly child-parent notation, functional-flow basis
assignment to components, and a standardized component naming
schema.
Adoption of design repositories in research and industry has been

slow due to resource commitment, human curation, intuition-based
knowledge extraction, and lack of well-structured product data.
Efforts have been made to improve design repository generation
by limiting subjectivity through taxonomy standardization [6,41–
44]. Furthermore, recent approaches have been introduced to
streamline data addition to design repositories [45]. Despite the
described challenges, design repositories have been shown to be
useful in data-driven design approaches, particularly in machine
learning and knowledge extraction tasks.
Design repositories are useful in knowledge discovery tasks and

have been effectively employed within machine learning
approaches [46–49]. Specifically related to function-based design,
design repositories were used in the automated extraction of func-
tion knowledge from text [14]. In our work, we assert that recent
advancements in graph representation learning have allowed for
the ability to generate predictive models from sparse, incomplete,
subjective, and otherwise unbalanced repository data.

2.3 Graphs in Product Design. Graphs are robust data struc-
tures that represent interactions (i.e., edges) among constituents
(i.e., nodes) of a system. They can also capture the direction of inter-
actions, properties of interactions (i.e., edge attributes), and proper-
ties of the system constituents (i.e., node attributes). In product
design, knowledge graphs [50,51] which are a specific type of
graph that represent structural relations between entities of a
domain, are widely used. Classically they are most often used in
natural language processing tasks [52–54]. Current efforts in
knowledge graphs have facilitated robust graph representation of
domain-specific semantic relationships of product design [55].
TechNet was developed in 2019 by mining semantic relationships
of elemental concepts found in US patent data. B-link was intro-
duced in 2017 by mining engineering domain knowledge from
engineering-focused academic literature [56]. Knowledge graphs
have supported product design by providing language and design
relationships. Specifically, engineering design knowledge graphs
have been used in concept generation and evaluation [57].
However, there is a need to expand on knowledge graphs with stan-
dardized product design resources, such as design repositories.
Recently, a knowledge graph framework has been introduced to

create rich node and edge features based upon taxonomy-based
product design models [58]. Here, graphs generated with product
design taxonomies capture meaningful relationships between
product materials, manufacturing method, tolerance, function, and
other product features. Specifically, product design knowledge
graphs have been useful for case-based reasoning and concept simi-
larity search. In this work, we expand on taxonomy-based graphs
with the representation of repository data in a graph structure,
with a focus on function, flow, and assembly representations. The
generated graphs are then used in prediction tasks using GNNs.1https://github.com/VincenzoFerrero/OSDR-GNN
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2.4 Graph Neural Networks. Standard deep learning archi-
tectures such as convolutional neural networks (CNN) and recurrent
neural networks (RNN) operate on regular-structured inputs such as
grids (e.g., images, volumetric data) and sequences (e.g., signals,
text). Nevertheless, many real-world applications deal with irregu-
lar data structures. For instance, molecular structures, interaction
among sub-atomic particles, or robotic configurations cannot be
reduced to a sequence or grid representation. Such data can be
represented as graphs, which allow for jointly modeling constitu-
ents of a system, their properties, and interactions among them.
GNNs [59–65] can directly take in data structured as graphs and
use the graph connectivity as well as node and edge features to
learn a representation vector for every node in the graph. Because
GNNs utilize the strong inductive bias of connectivity information,
they are more data-efficient compared to other deep architectures.
GNNs have been successfully applied to point clouds and meshes
[66,67], robot designs [68], physical simulations [69,70], particle
physics [71], material design [72], power estimation [73], and mol-
ecule classification [65].
Let G= (V, E) denote a graph with vertices (node) V, edges E,

node attributes Xv for v∈V and edge attributes euv for (u, v)∈E.
Given a set of graphs {G1, …, GN} and their node labels

y1v1 , . . . , y
1
vm
, . . . , yNv1 , . . . , y

N
vk

{ }
, the task of supervised node classifi-

cation is to learn a representation vector (i.e., embedding) hv for
every node v∈G that helps predict its label. GNNs use a neighbor-
hood aggregation approach, where representation of node v is iter-
atively updated by aggregating representations of neighboring
nodes and edges. After k iterations of aggregation, the representa-
tion captures the structural information within its k-hop network
neighborhood [74]. Formally, the kth layer of a GNN is defined as

h(k)v = f (k)θ h(k−1)v , g(k)ϕ h(k−1)v , h(k−1)u , euv : u ∈ N(v)
{ }(( )

(1)

where h(k)v is the representation of node v at the kth layer, euv is the
edge feature between nodes u and v, and N(v) denote neighbors of v.
fθ(.) denotes a parametric combination function and gϕ(.) denotes an
aggregation function. We initialize h(0)v = Xv.
Different instantiations of fθ(.) and gϕ(.) functions result in differ-

ent variants of GNNs. In this paper, we compare the performance of
four well-known variants of GNNs including GraphSAGE [61],
graph convolution network (GCN) [62], graph attention network
(GAT) [63], and graph isomorphism network (GIN) [64]. For an
overview of GNNs, see Refs. [21,22].

3 Methods
In this section, we describe the methodology for function classi-

fication using a GNN on repository data that is represented by
graphs. First, the data selection and processing is presented. Then,
we describe graph schema and graph construction. Finally, a
GNN and related parameters are introduced to predict the hierarchi-
cal functions.

3.1 Data Selection and Processing

3.1.1 Data Selection. The OSDR is a function-based relational
framework built upon consumer product component (artifact) infor-
mation [9,28,29]. The repository schema includes system-level bill
of materials, system type, component function and flow, material,
and assembly relationships. The data within the OSDR utilizes pub-
lished standard taxonomies for component, function, and flow
naming. These standard taxonomies are referred to as basis terms
[6,43]. The basis taxonomies feature a hierarchy system that
allows for broad-to-specific identification of component name,
function, and flow per component artifact in the OSDR. In the tax-
onomy hierarchy systems within the OSDR, tier 1 basis terms
encompass the broadest description of the basis term. In ascending
order, tier 2 and 3 increase specificity, information, and accuracy of
the basis definition. An example of the basis term hierarchy from

each taxonomy is shown in Table 1. This example is not represen-
tative of any product within the OSDR and only demonstrates the
hierarchical structure of taxonomy basis terms.
The OSDR encapsulates the data of 184 consumer products and

7275 related artifacts. Artifacts are generally components but can
also represent sub-assemblies and systems. Artifacts are related
through parent-child a familial hierarchy (hypernym and
hyponym relations). Functional relationship and product-level func-
tional models are captured through component-level function, input
flow, and output flow. In this regard, the OSDR houses 19,627
component-related function data points with 19,667 corresponding
flow data points.

3.1.2 Processing. For our methodology, the data from the
OSDR needed to be filtered and processed prior to developing
the product graphs. We removed 24 consumer products from the

Table 1 Example hierarchy for component (Supporter), function
(Branch), and flow (Signal) basis terms

Primary (Tier 1) Secondary (Tier 2) Tertiary (Tier 3)

Component

Supporter Stabilizer Insert
Support

Positioner Washer
Handle

Securer Bracket

Function

Branch Separate Divide
Extract
Remove

Distribute

Flow

Signal Status Tactile
Taste
Visual

Control Analog
Discrete

Fig. 1 Simplified relational assembly graph example of compo-
nents from Table 6
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dataset due to a lack of completion in function, flow, or assembly
definition. From the 160 products, data points are represented by
a single component defined by material, component basis, parent
component, functional basis hierarchy, input flow, output flow,
input component, and output component. Each data point is a
unique representation of the components defined by flow attributes.
Concisely, there are many data points per component depending on
the number of functions and related flows managed by that compo-
nent. The processing and filtering of the data within the OSDR
resulted in 15,636 data points represented by 137 component
basis terms, 51 function basis terms, 36 flow basis terms, and 16
material categories. An example vegetable peeler product with com-
ponent, function, and flow data is shown in Table 6 found in
Appendix A.

3.2 Assembly-Flow Graph Generation. The processed
OSDR data is represented through relational graphs. Relational
graphs are a specific type of graphs with the following properties:
(1) they are directed graphs, meaning edges between nodes have
directions, (2) they are also attributed, meaning that the graphs
contain node and edge attributes, and (3) they are multi-graphs,
as more than one edge is allowed between any two nodes. Graph
representation of the OSDR is needed to apply our proposed
GNN architecture outlined in Sec. 3.3. In the context of the
OSDR, the relational graphs are generated per system to represent
the assembly and flow relations within the system. These assembly-
flow graphs are defined by nodes and connecting edges. Figure 1
shows the graph structure. The graphs are generated using prede-
fined schema definitions from the OSDR. These definitions can
be found in related literature and explored through the hosted
version of the OSDR [75].2

The nodes are representative of each artifact data point and carry
the following features: system name, system type, component basis
term, material, and functional basis hierarchy. The nodes are con-
nected through two edge types denoted as flow edges and assembly
edges.
A flow edge is defined as the connections between functions

within the system and the movement of energy, signals, and mate-
rials through a system in which a function or set of functions mod-
ifies. A function has an input flow and an output flow. Flow edges
are directional and defined by the data specified flow basis represen-
tation regardless of flow basis hierarchy. In this regard, we are not
backing out higher-tier flow labels. Flow edges are defined by only

the assigning flow basis term found within the data. Flow edges are
only represented once per input-output relationship. Assembly
edges are non-directional physical connections between artifacts
in the classical product assembly sense. Both assembly and flow
edges are used to capture the totality of physical-functional interac-
tion between artifacts. By representing both physical connections
(assembly) and function connections (flow) through edge defini-
tions, we aim to classify component function using late-stage
design defined physical product assembly and early design stage
defined function-flow definition. Considering the totality of the
product design process increases the breadth of contribution of
this work.

3.2.1 Dataset Metrics. We generated 160 assembly graphs
representative of the 160 non-filtered products from the OSDR. Net-
workX [76], a PYTHON library for graph processing, is used to mate-
rialize the relational graphs [77]. Per graph, there is an average of 98
nodes and 791 edges. When singling out flow edge type, there is an
average of 537 flow edges per graph. For assembly edges, there is
an average of 262 edges per node.

3.2.2 Assembly-Flow Graph Processing. We pre-process the
data as follows. For initial node attributes, we concatenate
one-hot encoding of component basis, system name, system type,
and material features resulting in a 316-dimensional multi-hot
initial node feature. For edge attributes, we concatenate one-hot
encoding of input flow, output flow, and an indicator of whether
the edge represents an assembly connection. This results in a
75-dimensional initial edge feature. The dataset contains 9, 22,
and 23 category labels for tiers 1, 2, and 3 functions, respectively.
It is also noteworthy that label distribution in all three tiers is
highly skewed. The label frequencies are shown in Fig. 3.

3.3 Learning Architecture. Inspired by recent advances in
graph representation learning, our approach learns dedicated node
representations for each functional tier prediction task. As shown
in Fig. 2, our method consists of three GNN encoders that take in
graphs connectivity information along with initial node and edge
features and produce dedicated node embeddings for each tier.
Each GNN is then followed by a dedicated multilayer perceptron
(MLP) that acts as a specialized classifier for that tier. Furthermore,
we utilize the hierarchical nature of function tiers to augment the
predictions and use hierarchically structured local classifiers with
a local classifier per tier.
Assume a training set D = [G1, G2, . . . , GN ] of N graphs where

each graph is represented as G= (A, X, E) where A ∈ {0, 1}n×n

Fig. 2 The proposed hierarchical graph neural network framework

2https://design.engr.oregonstate.edu/repo
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denotes the adjacency matrix (one-hop connectivity information),
X ∈ Rn×dx is the initial node features, and E ∈ Rn×n×de is the
initial edge features. We define three GNNs gθk (.) :R

n×n × Rn×dx ×
Rn×n×de �−→ Rn×dh , k = {1, 2, 3} parametrized by θk{ }3k=1 corre-
sponding to tiers 1 to 3 functions, respectively. This results in
three sets of dedicated node embeddings Ht1 , Ht2 , Ht3 ∈ Rn×dh .
GNNs are essentially learning to extract strong representations for
down-stream classifiers. We use three MLPs fψk

(.) :Rn×(dh+|Yk−1|) �−→
Rn×|Yk |, k = {1, 2, 3} parameterized by ψk

{ }3
k=1 where kth MLP is

the dedicated classifier for predicting tier k function classes. The
kth MLP receives the learned node representations from its dedi-
cated GNN gθk (.) (i.e., Htk ) and predictions of the predecessor
MLP in hierarchy fψk−1 (.) to predict the function classes for kth
tier. Because the first MLP does not have any predecessors (i.e.,
first tier in hierarchy), we simply pass a vector of zeros to
emulate the input predictions.
During the training phase, we utilize teacher forcing [78] to

enhance the training process. Teacher forcing is a procedure in
which during training, the model receives the ground truth output
(rather than predicted output) as input at the next step. In other
words, rather than feeding the kth MLP with the actual predictions
of (k− 1)th MLP, we feed it with ground truth labels of (k− 1)th tier
labels. During inference, however, we do not have access to the
ground truth labels. Therefore, we feed the subsequent MLP with
the probability distribution of the predicted labels. We use
Softmax function over the MLP predictions to transfer the raw pre-
dictions into proper probability distributions. Furthermore, we use
frequency-based weighting to address the data imbalance during
training. We compute the loss such that less frequent classes con-
tribute more to the total loss compared to frequent classes. This
practice prevents the model from paying more attention to frequent

classes and ignoring the rare ones. We jointly optimize the model
parameters with respect to the aggregated and weighted cross-
entropy losses of all three functional tier predictions using mini-
batch stochastic gradient descent. The process of training for one
mini-batch is shown in Algorithm 1.

Algorithm 1 Training the proposed model with teacher forcing
for one mini-batch.Htk ,Ytk

p , Y
tk
g denote learned node representation,

predicted labels, and ground truth labels for tier k function hierarchy.

Input: Cross-entropy loss L, GNNs gθk (.), MLPs fψ k
(.), sampled batch of N

graphs {Gj}Nj=1, concatenation operator ∥
L ← ∅
for G in a batch {Gj}Nj=1 do

// Compute dedicated node embeddings
Ht1 ← gθ1 G( )
Ht2 ← gθ2 G( )
Ht3 ← gθ3 G( )
// Compute tier predictions
Yt1
p ← Softmax fψ1

Ht1 ∥ 0
[ ]( )( )

Yt2
p ← Softmax fψ2

Ht2 ∥ Yt1
g

[ ]( )( )

Yt3
p ← Softmax fψ3

Ht3 ∥ Yt2
g

[ ]( )( )

// Compute joint loss across all tiers
L ← L+ L Yt1

p ,Y
t1
g

( )
+ L Yt2

p , Y
t2
g

( )
+ L Yt3

p ,Y
t3
g

( )

end
// Compute gradients and update parameters

θk,ψk

{ }3
k=1← θk,ψk

{ }3
k=1−γ∇

θk ,ψk{ }3k=1

1
N

∑N
j=1

L

Fig. 3 Distribution of class frequencies in (a) tier 1, (b) tier 2, and (c) tier 3 function categories
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4 Results and Method Validation
In this section, we introduce the GNN architecture implementa-

tion and results. We explore results further with confusion matrices
to determine function-specific performance. We then validate the
results of the SAGE graph neural network algorithm against three
other state-of-the-art GNNs. The GNN types are GCN, GAT, and
GIN [62–64]. In closing, we highlight feature importance to deter-
mine the most consequential taxonomy-based data features toward
classifying component function and look to investigate how our
proposed hierarchical GNN architecture compares to a group of
independent GNNs.

4.1 Experimental Protocol. Given the small size of the
dataset, we use a 10-fold cross-validation procedure by dividing
the data into 10 folds, holding one fold of as the validation set,
and using the remainder nine folds for training. We report the
mean and standard deviation of the metrics after running the exper-
iments 10 times. In each run, we train a model on the train folds and
report the results on the validation folds. This allows us to investi-
gate the model’s performance without bias toward train/test splits.
Also, given the imbalanced nature of the labels in all three func-
tional tiers, we use precision (P), recall (R), and F1-score metrics
to report the results. These metrics are defined as follows:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2 ×
P × R
P + R

(2)

where TP, FP, and FN denote the number of true positive, false pos-
itive, and false-negative predictions. Moreover, we report the
metrics with three types of averaging: micro, macro, and weighted
averaging. Micro-averaging computes F1-score by considering the
total number of TP, FP, and FN, whereas macro-averaging com-
putes F1-score for each label and averages it without considering
the frequency for each label. On the other hand, weighted-averaging
computes F1-score for each label and returns the weighted average
based on the frequency of each label in the dataset. In practice,
micro-averaging is useful in heavily imbalanced datasets, macro-
averaging is useful in balanced datasets, and weighted-averaging
is useful in datasets where some features are balanced, and some
are not. On all accounts, we are trying to maximize the precision
(P), recall (R), and F1-score metrics for each function tier prediction.
However, we are most interested in micro-average performance as
our dataset is unbalanced and sparse.

We initialize the network parameters using Xavier initialization
[79] and train the model using Adam optimizer [80] with an
initial learning rate of 1e-3. We use a cosine scheduler [81] to sche-
dule the learning rate and also use early-stopping with a patience of
50. We also apply Leakey rectified linear unit (ReLU) non-linearity
[82] with negative slope of 0.2, and dropout [83] with probability of
0.1 after each GNN layer. We choose the number of GNN layers
and hidden dimension size from the range of [1, 2, 3] and [64,
128, 256], respectively. Finally, we choose the GNN layer type
from GraphSAGE [61], GCN [62], GAT [63], and GIN [64]
layers. We implemented the experiments using PyTorch [84] and
used Pytorch Geometric [85] to implement the GNNs. The experi-
ments are run on a single RTX 6000 GPU where on average, one
epoch of training takes about 1 s and 1.5 GBs of GPU memory.

4.2 Results. To investigate the performance of the GNNs on
the dataset and compare it with other feed-forward networks, we
trained an MLP, a logistic regression (linear) model, and four
types of GNNs including GraphSAGE [61], GCN [62], GAT
[63], and GIN [64]. To train the GNNs, we used the connectivity
information along with initial node and edge features, whereas for
the MLP and linear models, we only used initial features. The
results are shown in Table 2. We observe a classification weighted
precision of 0.617, 0.466, 0.401 for tier 1, tier 2, tier 3 functions,
respectively. When strongly considering the data imbalance (micro-
average), we observe a precision of 0.595, 0.445, 0.363 for tier 1,
tier 2, tier 3 functions, respectively. If we ignore data imbalance
(macro-average), there is a precision of 0.544, 0.349, 0.235 for
tier 1, tier 2, tier 3 functions, respectively. Moreover, results
suggest that: (1) GNNs outperform MLP and Linear models in all
tiers across all metrics. For example, the best performing GNN in
tier 1 function prediction outperforms the MLP model with an abso-
lute F1-score of 0.119, a relative improvement of 25%. This implies
that connectivity information plays an important role in the predic-
tions. (2) Among GNNs, a GNN with GraphSAGE layers slightly
performs better in tier 1 function predictions, whereas for tier 2
and 3 predictions, GNNs with GIN layers perform better. This
shows the importance of treating the GNN layers as hyper-
parameters that can yield better performance.

4.2.1 Function-Specific Performance. We also investigate the
performance of models on individual labels using confusion matri-
ces. Figure 4 shows the confusion matrix for each function tier.
These matrices show the accuracy of a function being correctly

Table 2 Mean and standard deviation of precision, recall, and F1-score on validation folds after 10-fold cross-validation

Micro Macro Weighted

Method Precision Recall F1 Precision Recall F1 Precision Recall F1

Tier 1 Linear 0.451± 0.05 0.451± 0.05 0.451± 0.05 0.445± 0.05 0.345± 0.03 0.352± 0.04 0.468± 0.05 0.451± 0.05 0.429± 0.05
MLP 0.476± 0.05 0.476± 0.05 0.476± 0.05 0.443± 0.05 0.360± 0.04 0.369± 0.04 0.488± 0.05 0.476± 0.05 0.461± 0.05
SAGE 0.595± 0.02 0.595± 0.02 0.595± 0.02 0.544± 0.04 0.444± 0.03 0.465± 0.03 0.617± 0.02 0.595± 0.02 0.589± 0.03
GCN 0.580± 0.04 0.580± 0.04 0.580± 0.04 0.522± 0.04 0.443± 0.04 0.454± 0.04 0.613± 0.05 0.580± 0.04 0.576± 0.05
GAT 0.593± 0.04 0.593± 0.04 0.593± 0.04 0.518± 0.04 0.448± 0.04 0.464± 0.05 0.604± 0.03 0.593± 0.04 0.587± 0.04
GIN 0.594± 0.04 0.594± 0.04 0.594± 0.04 0.486± 0.05 0.438± 0.05 0.450± 0.05 0.603± 0.04 0.594± 0.04 0.591± 0.05

Tier 2 Linear 0.294± 0.04 0.294± 0.04 0.294± 0.04 0.293± 0.03 0.181± 0.02 0.174± 0.02 0.396± 0.05 0.294± 0.04 0.285± 0.05
MLP 0.328± 0.04 0.328± 0.04 0.328± 0.04 0.285± 0.03 0.196± 0.02 0.195± 0.02 0.390± 0.04 0.328± 0.04 0.320± 0.05
SAGE 0.431± 0.05 0.431± 0.05 0.431± 0.05 0.346± 0.04 0.283± 0.03 0.280± 0.03 0.466± 0.05 0.431± 0.05 0.423± 0.04
GCN 0.427± 0.05 0.427± 0.05 0.427± 0.05 0.349± 0.04 0.282± 0.04 0.285± 0.04 0.458± 0.04 0.427± 0.05 0.421± 0.05
GAT 0.440± 0.04 0.440± 0.04 0.440± 0.04 0.336± 0.03 0.289± 0.03 0.285± 0.03 0.459± 0.04 0.440± 0.04 0.431± 0.05
GIN 0.445± 0.05 0.445± 0.05 0.445± 0.05 0.322± 0.04 0.287± 0.03 0.286± 0.04 0.456± 0.04 0.445± 0.05 0.440± 0.05

Tier 3 Linear 0.300± 0.19 0.300± 0.19 0.300± 0.19 0.204± 0.12 0.218± 0.17 0.190± 0.13 0.327± 0.18 0.300± 0.19 0.281± 0.17
MLP 0.287± 0.16 0.287± 0.16 0.287± 0.16 0.188± 0.11 0.218± 0.16 0.179± 0.11 0.279± 0.19 0.287± 0.16 0.254± 0.16
SAGE 0.329± 0.13 0.329± 0.13 0.329± 0.13 0.191± 0.11 0.192± 0.12 0.168± 0.09 0.367± 0.19 0.329± 0.13 0.313± 0.14
GCN 0.325± 0.18 0.325± 0.18 0.325± 0.18 0.235± 0.16 0.231± 0.19 0.204± 0.15 0.397± 0.25 0.325± 0.18 0.323± 0.19
GAT 0.283± 0.14 0.283± 0.14 0.283± 0.14 0.164± 0.09 0.175± 0.11 0.155± 0.09 0.294± 0.19 0.283± 0.14 0.265± 0.14
GIN 0.363± 0.18 0.363± 0.18 0.363± 0.18 0.227± 0.13 0.237± 0.17 0.214± 0.14 0.401± 0.21 0.363± 0.18 0.351± 0.18

Note: Bolded values are the highest result for each tier.
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classified and, when incorrectly classified, which functions are
selected instead of the true function. The color axis determines
the occurrence ratio of the function classification. Ideally, high clas-
sification occurrence should be observed in matching indices (i.e.,
denser diagonal), indicating correct classification. As an example,
we can observe that the model sometimes confuses the “divide”
class with the “remove” class in tier 3 function predictions.

4.3 Feature Importance. To investigate the contribution of
the node and edge features to algorithm performance, we systemi-
cally drop features and observe the changes in F1-scores. Specifi-
cally, in this analysis, we drop single-node features, look at
eliminating edge types, and lastly, remove all features from nodes
and edges. By eliminating edge types and features, we look to dis-
cover if assembly edges and flow edges are more important toward
prediction accuracy. In the edge importance analysis, we also look
at retaining all edges without any features. We then eliminate all
node and edge features to determine if graph topology impacts func-
tion predictions. Table 3 shows the feature importance analysis per
function tier. The results suggest that component basis has the
highest impact on the performance among node features, whereas
flow is the most influential edge feature. We also observe that
initial node/edge features contribute more to the performance com-
pared to topological information.

4.4 Hierarchical Versus Independent Graph Neural
Networks. We investigate the contribution of introducing hierar-
chy on performance by comparing our hierarchical GNN

framework with independently trained GNNs (i.e., no input from
previous predictions). The results in Table 4 suggest that introduc-
ing hierarchical training significantly improves the performance on
tier 3, in which we observe an absolute 0.068 increase in micro
F1-score a relative improvement of 23%. We also see a marginal
enhancement in tier 2 predictions. Because tier 1 GNNs do not
have any predecessors in the hierarchy, they produce almost identi-
cal results in both cases.

4.5 Assumptions and Limitation. The OSDR is a
multi-decade-long project that has been manually influenced by
many organizations and design engineers. Knowing this, we reiter-
ate that the data from the repository is unbalanced, sparse, and often
non-congruent. We observe noted cascading label imbalance and
absence from higher-order hierarchy taxonomy to lower-order tax-
onomy terms. Tier 3 classifications in function, flow, and compo-
nent basis terms per component are often missing assignment. In
short, the OSDR shows a user-curated bias toward defining higher-
order basis terms in both function and flow, as shown in Figs. 3 and
5. Although the data is incomplete and imbalanced, we maintain
that the compilation of the OSDR is representative of knowledge
from many design engineers with varying expertise. As such, the
OSDR can be thought of as a sampling of function-based domain
knowledge ranging from novice to expert design engineers.
In using a hierarchical GNN model, we inherit the assumptions

that were used to create and facilitate the propagation of such taxo-
nomies. Function, flow, and component taxonomies are directional,
but parent-child assembly relationships are not. As such, in our
graph representations, flow edges are directional, whereas assembly

Fig. 4 Confusion matrices of (a) tier 1, (b) tier 2, and (c) tier 3 function predictions. The rows represent the ground truth
whereas the columns represent the predictions.
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edges are not. The GNN model takes into account direction infor-
mation and models non-directional assembly edges as
bi-directional. We recognize that the OSDR taxonomy approach
is one of many adopted function, flow, and component standardiza-
tions. These taxonomies are applied to a wide breadth of consumer
products. We choose to adopt the OSDR taxonomies as a starting
point, but we realize that this definition of function might be gener-
alizable to all design problems and domains.

5 Discussion
As shown in Sec. 4.2, we observe that the overall performance of

the GNN with GraphSAGE layers is marginal but strongest in tier 1
function prediction. Tier 2 and 3 function predictions are competi-
tive against other GNN types, only coming third to GNN with GIN
(tier 2) and second to GNN with GIN (tier 3) layers. These results
are reasonable given the unbalanced and very sparse product
design data. With a repository of just 160 products spanning
various industries (automotive, consumer goods, furniture), it is
encouraging that the proposed GNN architecture was able to ascer-
tain part-level functional classification with a micro-average
F1-score of 0.595, 0.445, and 0.363, respectively.
Where the model fails can be identified through the relative per-

formance between function classes. The confusion matrices shown
in Fig. 4 could serve as a valuable tool for a practitioner wanting to
adopt our method, as they explicitly show the relative performance
of all classes of function we can predict. The confusion matrices
also suggest cascading false negatives and false positives as our
model moves from tier 1 through tier 3 function predictions. We
theorize this is caused by the significant scarcity of tier 3 function
data, as shown in Fig. 3. Moreover, tier 2 and 3 suffer from more
significant data imbalance in comparison to tier 1. In context, the
concatenation of a high number of classification labels and data
imbalance found in tier 2 and 3 functions resulted in some meaning-
ful false negatives and false positives during testing.
Why the model fails could be attributed to subjectivity in the

function definitions and to data imbalance caused by the overall
OSDR embedded bias toward defining tier 1 functions and solid

flows. In the tier 3 predictions shown in Fig. 4, we observe that the
model often confuses function labels that are related. For example,
“decrement” is often confused with “extract”. In the same regard,
“transmit” is often confused with “collect,” “display,” “link,” and
“remove.” The model appears to somewhat ascertain the contextual
function correctly but has trouble discerning the details that individ-
ualize some tier 3 functions. In this example, the GNN model finds
that these unlabeled components generally are “moving” flow.
However, themodel can not classify if the component is “extracting,”
“decrementing,” or “removing” a material flow or “transmitting” a
signal or energy flow. These findings can be indicative of fuzzy
human assignment of functions that are similar and subjective. Con-
fusion in low-frequency function classes can be also be attributed to
conflicting knowledge caused by sparse edges, especially consider-
ing confusion between material flows and the other flows.
Moreover, the results in Tables 2 and 3 show that macro scores are

usually lower than micro scores, indicating that the least populated
classes are poorly classified relative to the more populated classes.
Based on this, further application of this work should collect addi-
tional data for the least populated classes. Researchers looking to
apply these methods would benefit by augmenting the current
dataset to address data imbalance and scarcity guided by Fig. 3,
while also modifying the dictionary of functions to suit their task.
Looking at Table 3, we anticipated that function would be product

family-specific and would cause model confusion between industry
domains. This is evident as isolating system type lead to a lower
micro-average F1-score compared to having no features. Table 3
shows an adversarial effect between flow edges and assembly
edges. When only considering flow edges, the GNN model per-
formed better than with both edge types. Conversely, when just con-
sidering assembly edges, performance sharply declines. Upon
discovering this effect, we theorized that energy and signal flows
are not always correlated with physical assembly or “closeness” of
components that are inputting or outputting these types of flows.
While there is a significant overlap between the two edge types,
the slight differences in flow and assembly edges are enough to
cause the adversarial effect. As noted in Fig. 5 in Appendix B, a
majority of our flow edges are labeled “solid.” This finding is advan-
tageous in future work considering geometric and CAD embed-
dings. Whereas it might be challenging to capture energy and
signal flows in CAD data, it might be more promising to capture
solid flows. As such, solid flows are likely the most analogous
bridge between assembly and function.
Upon identifying the effects of GNN selection and feature impor-

tance, we ran an experiment to hyper-parameterize our GNN archi-
tecture to select the best GNN and set of features per hierarchy tier.
Table 5 shows the best results of 0.617, 0.624, 0.415 per-tier micro-
average F1-score. The hyper-parameterization of the GNN architect
demonstrates a marked improvement in tier 2 and 3 predictions over
the original GraphSAGE-based GNN architecture. However, under-
standing that the repository data set is a curation of human knowl-
edge of functional assignment, we looked at the effect of fuzzy

Table 3 Feature importance for function prediction, when using GraphSAGE

Features Tier 1 F1-score Tier 2 F1-score Tier 3 F1-score

Node Edge Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

Com. Basis All 0.615± 0.03 0.478± 0.03 0.612± 0.03 0.468± 0.04 0.301± 0.03 0.464± 0.04 0.351± 0.25 0.245± 0.26 0.357± 0.26
Sys. Name All 0.464± 0.05 0.287± 0.04 0.473± 0.05 0.332± 0.04 0.165± 0.03 0.342± 0.04 0.184± 0.16 0.077± 0.05 0.191± 0.17
Sys. Type All 0.459± 0.05 0.338± 0.04 0.452± 0.06 0.329± 0.04 0.179± 0.02 0.327± 0.05 0.132± 0.09 0.051± 0.03 0.144± 0.08
Material All 0.523± 0.04 0.383± 0.04 0.507± 0.04 0.391± 0.04 0.221± 0.03 0.393± 0.05 0.157± 0.17 0.077± 0.08 0.162± 0.18
None All 0.472± 0.06 0.331± 0.04 0.467± 0.06 0.342± 0.04 0.183± 0.03 0.342± 0.05 0.132± 0.09 0.067± 0.07 0.122± 0.10
All Flow 0.625± 0.04 0.471± 0.03 0.624± 0.04 0.469± 0.04 0.305± 0.04 0.465± 0.04 0.353± 0.31 0.205± 0.28 0.351± 0.31
All Assem. 0.447± 0.03 0.344± 0.03 0.435± 0.04 0.287± 0.03 0.173± 0.02 0.279± 0.04 0.370± 0.16 0.196± 0.06 0.400± 0.18
All None 0.497± 0.03 0.360± 0.03 0.487± 0.03 0.359± 0.03 0.219± 0.02 0.353± 0.03 0.347± 0.16 0.172± 0.10 0.310± 0.17
All All 0.595± 0.02 0.465± 0.03 0.589± 0.03 0.445± 0.05 0.286± 0.04 0.440± 0.05 0.363± 0.18 0.214± 0.14 0.351± 0.18
None None 0.239± 0.03 0.155± 0.01 0.223± 0.03 0.161± 0.04 0.050± 0.01 0.181± 0.06 0.132± 0.12 0.045± 0.04 0.125± 0.12

Note: Bolded values are the highest result for each tier.

Table 4 Performance of hierarchical and independent GNNs

F1-score

Tier Method Micro Macro Weighted

1 Hierarchical 0.625± 0.04 0.471± 0.03 0.624± 0.04
Independent 0.622± 0.03 0.465± 0.04 0.622± 0.04

2 Hierarchical 0.469± 0.04 0.305± 0.04 0.465± 0.04
Independent 0.478± 0.04 0.321± 0.04 0.475± 0.04

3 Hierarchical 0.370± 0.16 0.196± 0.06 0.400± 0.18
Independent 0.302± 0.33 0.187± 0.3 0.305± 0.33
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human assignment of function. To evaluate the effect of human
assignment in the data, we looked at the top-k predictions by the
GNN, as this would be more analogous to how the method would
be applied in a use case. By selecting the correct result from the
top-3 and top-5 predictions, as shown in Table 5, we achieve an
F1-score of 0.932, 0.948, 0.825 per-tier micro-average for top-3
and F1-score 0.974, 0.975, 0.955 micro-average per-tier for top-5
predictions. These results are a significant improvement over the
results, which only consider top-1 predictions. Future work could
benefit from implementing a temperature-based probability sam-
pling approach from the top-3 predictions to further improve the
quality of the method. In addition, future work should look at estab-
lishing a comparison between the method described in this work
and a human baseline, as this would also provide insights into the
biases of the current dataset and ambiguities around function defini-
tion. Future work could improve performance by collecting more
data, and including more complex products, possibly from different
industries.

6 Conclusion
In this work, we use graph neural networks to classify the func-

tion of parts in an assembly given design knowledge about the part,
such as the semantic name, the material, the assembly connections,
and the energy flowing into and out of the part. Here, we extract
data from 160 products in the OSDR and represent it within 160
graphs and a total of 15,636 nodes, with each node containing
design knowledge about the part in a multi-dimensional feature
vector. With this data, we are able to train a GNN to predict the
top-1 function of a part with a micro-precision of 0.617 for tier 1
(broad), 0.624 for tier 2, and 0.415 for tier 3 (specific) functions.
When considering top-3 functions, the GNN architecture predicts
function with a micro-precision of 0.932 for tier 1 (broad), 0.948
for tier 2, and 0.825 for tier 3 (specific) functions. Our results
suggest that the hierarchical structure of products and relevant
design knowledge describing sub-components can be learned effec-
tively with graph neural networks. The quality of these results show
promise in supporting the development of a larger function dataset
from a more extensive set of products. Our method could be further
developed by learning from the geometric data of the part, a prom-
inent design feature missing from the current work in place of the
semantic name of the part.
There are several research directions to expand on this work. By

inferring the function of a design at any point in the design process,
an intelligent design agent could better support the designer
throughout various tasks, such as the design of complex systems
like industrial machinery. The quality required from the predictive
system will be dictated by the task being performed. For some use
cases, high-quality top-3 predictions could be sufficient to give
enough context to the design agent to support the designer. For
example, function data could support the designer during the con-
ceptual design stage in assessing the feasibility of a design [24],
searching for functionally similar parts [20], or by enabling auto-
mated functional modeling [36,37,86]. In the detail design stages,
it could aid in verifying the satisfaction of higher-level design

Fig. 5 Distribution of flow edges

Table 5 Top-K results using the best combination of features
and hyper-parameters

F1-score

Tier Top-K Micro Macro Weighted

1 Top-1 0.617± 0.03 0.466± 0.05 0.619± 0.03
Top-3 0.932± 0.02 0.763± 0.04 0.930± 0.02
Top-5 0.974± 0.01 0.877± 0.04 0.972± 0.01

2 Top-1 0.624± 0.03 0.481± 0.05 0.626± 0.03
Top-3 0.948± 0.01 0.790± 0.04 0.945± 0.01
Top-5 0.975± 0.01 0.883± 0.05 0.973± 0.01

3 Top-1 0.415± 0.04 0.325± 0.03 0.432± 0.04
Top-3 0.825± 0.03 0.629± 0.04 0.841± 0.02
Top-5 0.955± 0.01 0.819± 0.03 0.957± 0.01
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requirements [26]. Furthermore, this work could further the devel-
opment of function-based sustainability methods and other
function-related environmental considerations during the early
design phases [30,31,87]. A human-centric case study should be
conducted to establish a baseline against which the method pre-
sented in this work can be evaluated.
In future work, we look to enable knowledge-based CAD

systems through automated function inference by bridging a gap
in understanding between the designer and an intelligent design
agent. We envision design tools extending beyond documentation,
simulation, and optimization towards intelligent reasoning tasks
that help designers make informed design decisions.
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Appendix A: Data Example From the Oregon State Design Repository

Appendix B: Statistics
• 30.82% of edges are assembly and 69.18% are flows.
• Three out of 160 graphs are DAG.

Appendix C: Hyperparameters and Architecture
For GNNs, we represent the edge features as follows. We represent the in-flow and out-flow features as one-hot representations and the

assembly link as a single indicator. Thus, if there are N unique flows in the dataset, the initial edge features are represented as a 2N+ 1
vector. We concatenate the one-hot representations of the node features to create the initial node feature. For the linear and MLP baselines,
we first project the initial node and features to embeddings of the same size using two dedicated linear layers. We then represent each node

Table 6 Vegetable peeler example product data

System
Vegetable peeler ID 1

Component
Unclassified

Child of
–

Material
–

Input Flow – From
–

Output Flow
– To –

Function Tier 1/2/3
–

– 2 Blade 1 Steel Solid - Inta Solid - Int Branch/Separate/-
– 2 Blade 1 Steel Solid - Extb Solid - Int Channel/Import/-
– 2 Blade 1 Steel Solid - Int Solid - Ext Channel/Export/-
– 2 Blade 1 Steel Solid - Int Solid - Ext Channel/Export/-
– 2 Blade 1 Steel Mechanical - 3 Mechanical - Ext Channel/Export/-
– 2 Blade 1 Steel Solid - Int Solid - Int Channel/Guide/-
– 2 Blade 1 Steel Status - Int Status - Ext Signal/Indicate/-
– 2 Blade 1 Steel Solid - 1 Solid - int Support/Secure/-
– 3 Handle 1 Plastic Control - Ext Control - Int Channel/Import/-
– 3 Handle 1 Plastic Human - Ext Human - Int Channel/Import/-
– 3 Handle 1 Plastic Human Energy - Ext Human Energy - Int Channel/Import/-
– 3 Handle 1 Plastic Human - Int Human - Ext Channel/Import/-
– 3 Handle 1 Plastic Human Energy - Int Mechanical - 2 Convert/-/-
– 3 Handle 1 Plastic Solid - 2 Solid - Int Support/Secure/-

aInt (Internal) is nonspecific flows from inside the system.
bExt (External) is nonspecific flows from outside the system.

Table 7 Statistics of graphs

Mean STD Min Max 0.25 Quantile 0.5 Quantile 0.75 Quantile Skewness Kurtosis

Nodes 97.72, 100.01 3.00 930.00 42.50 79.50 125.50 4.62 31.51
Edges 790.71 1039.16 0.00 9634.00 180.50 461.50 981.25 4.45 31.42
Density 0.11 0.13 0.00 1.50 0.06 0.08 0.13 7.51 73.52
Degree 13.29 7.82 0.00 58.73 8.44 11.13 17.10 2.33 9.61

Table 8 Selected hyper-parameters

Tier Model Node feature Edge feature Batch size Hidden dimension Num. layers Learning rate

1 GAT All Flow 64 256 3 0.01
2 GIN All Flow 64 64 2 0.01
3 GIN All Assembly 64 128 3 0.01
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by summing up its embedding with the summation of the dot product of all the neighbor node-edge pairs. We then pass the computed
embeddings to MLP or linear models. As mentioned, we choose the number of GNN layers and hidden dimension size from the range
of [1, 2, 3] and [64, 128, 256], respectively. The best performing hyper-parameters are reported in Table 8.
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