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Abstract. We consider cooperative manipulation by multiple robots as-
sisting a leader, when information about the manipulation task, environ-
ment, and team of helpers is unavailable, and without the use of explicit
communication. The shared object being manipulated serves as a phys-
ical channel for coordination, with robots sensing forces associated with
its movement. Robots minimize force conflicts, which are unavoidable un-
der these restrictions, by inferring an intended context: decomposing the
object’s motion into a task space of allowed motion and a null space in
which perturbations are rejected. The leader can signal a change in con-
text by applying a sustained strong force in an intended new direction.
We present a controller, prove its stability, and demonstrate its utility
through experiments with (a) an in-lab force-sensitive robot assisting a
human operator and (b) a multi-robot collective in simulation.

Keywords: robot cooperation, distributed robotics, manipulation, force-
based control

1 Background

Cooperative (or collaborative) manipulation is the task where two or more
agents, which may be any combination of robots and humans, must work to-
gether to manipulate an object too large or unwieldy for one agent to handle
alone. Often one agent may act as a leader, seeking to move the object along a
privately known trajectory through space, aided by an arbitrary number of inde-
pendent helper agents who have no direct knowledge of the path or destination.

Challenges associated with this task can include the following: (1) The details
of the environment (topography of the ground, locations of obstacles, etc.) may
not be known by some or all agents, and may change dynamically. (2) The
number and locations of the agents participating in the task may not be known.
(3) The properties of the object (mass, geometry, etc.) may not be known. (4)
There may be unexpected disruptions (e.g., the object or agents may bump into
obstacles). (5) Communication may be problematic, e.g., unreliable, undesirable,
or unscalable.
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We are interested in the case of an unanticipated need to move an object,
with no opportunity for advance preparation. That is, the properties of the
environment, object, set of helpers, and desired manipulation trajectory are all
unknown, and some of these elements may also be changeable and dynamic.
Further, if the leader is a human, then communicating the details of a desired
trajectory to the helper robots is unlikely to be quick, easy, or detailed and
accurate. From a usability standpoint, the ideal way for the robots to give help
would be for the human to try to move the object in the desired way directly, by
exerting forces on it, and for the robots to supplement the leader’s force to enable
the manipulation, without requiring any explicit instruction. An approach that
works under these restrictive conditions could also be used in a scenario where
more information or communication is available.

2 Related work

Work on collective manipulation typically assumes that all robots share knowl-
edge about the intended trajectory, inertial parameters of the payload, and/or
number and locations of teammates, and that explicit robot-to-robot commu-
nication is available [1, 7, 15, 17, 19]. Some work has considered the problem of
obtaining such information in partially restricted cases, e.g., estimating iner-
tial parameters using carefully coordinated actions and knowledge about the
team [15]. Some studies rely on specialized gripper hardware that constrains
freedom of movement in specific ways [10]. A subcategory of cooperative manip-
ulation is collective transport, where movement is limited to a plane [4, 9, 10].
Here we consider cases where only limited payload information (local mass and
relative center of mass (CM) location) can be obtained, no other information or
explicit communication is available, movement in any dimension may be desired,
and off-the-shelf hardware can be used.

3 Challenges and assumptions

In general, a helper robot cannot disambiguate wrenches that are due to guid-
ance from a leader, collisions, other agents, or the load itself (Fig. 1B). Thus to
successfully follow guidance forces and reject all others, each robot must have
a contextual framework through which it can observe, filter, and classify sensed
forces, and apply an appropriately calculated control torque to smoothly accom-
plish the task goal.

In previous work [4], we presented an adaptive control framework for col-
lective transport, a special case of the more general cooperative manipulation
problem, in which an unknown object is carried by an arbitrary number of robots
with movement strictly in a horizontal plane. That work followed an operational
space control paradigm [12] in which the robots allow movement in the plane
and prevent movement out of the plane. That is, the contextual framework that
robots used to interpret forces was the a priori knowledge that only movement
in the plane would be intended.

In this paper, we modify our previously presented controller to permit more
general collaborative manipulation tasks, encompassing movement in any di-
rection. The central principle robots use to determine context is to interpret



A force-mediated controller for cooperative object manipulation 3

Fig. 1. A: A robot collective transports an unknown object following a leader’s guid-
ance. B: Two helper robots handle a small rigid object, guided by a human leader’s
force applied to one corner (blue arrow). The left-hand robot experiences a single
multi-dimensional wrench at its end-effector, with no disambiguation of components
resulting from the leader, the object’s inertial properties, and forces due to the other
agent. C: Physical testing of cooperative manipulation of a basket, using a Franka
Emika Panda. D: An example application scenario: a robot helps a human manipulate
a load in a challenging field situation of installing solar panels.

transient or weak forces as unintended (e.g., perturbations due to collisions),
and sustained stronger forces as intentional control signals. We show that if
each robot can estimate the payload’s mass and relative CM location, then it
can respond to control signals in any direction, switching between dimensional
contexts without loss of controller stability or compliance. We demonstrate this
framework in physical collaborative experiments using a compliant 7-DoF ma-
nipulator.

The key assumptions of the approach are: (1) Each agent can obtain an
estimate of the load’s relative CM location and its share of the mass (the latter
may typically be m/na, for a system of na agents and total mass m, with both m
and na unknown to the agents). (See §4.2 for a discussion of how this assumption
can be realized.) (2) There are enough agents to handle the load (na is large
enough that m/na is significantly less than the carrying capacity of any single
agent). (3) The grasp or connection between each agent and the shared load is
rigid, with no slippage or in-grasp rotation. (4) Agents have some compliance,
permitting a degree of conflict between forces exerted by different agents without
immediately causing instability. (5) Each agent knows the orientation of its base
with respect to a shared reference vector (e.g., robots can sense the direction of
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d Binary 6× 1 dimensional constraint vector, [x, y, z, roll, pitch, yaw]T .
Db Binary diagonal matrix s.t. diag(Db) = d.

Λx, Λν Inertial matrices associated with task and null spaces, respectively.
p The end-effector pose of the robot in cartesian space.

µx, µν Coriolis matrices associated with task and null spaces, respectively.
x An n×1 subvector of p consisting of the task-related pose dimensions.
J the (non-square) standard manipulator Jacobian.
ν An m×1 null-space velocity vector, where the total degrees of freedom

of the manipulator can be written n+m.
JE The extended (n+m)× (n+m) manipulator Jacobian.
Jt The task-space Jacobian.
η A 6 × 1 vector describing the pose in non-task-related dimensions,

with task dimensions (from x) set to zero.
Zν The null-space Jacobian.
q Joint positions.
wt An n × 1 vector of estimated external wrench along task-related di-

mensions.
Ke,Kν , γ Controller gain constants (stiffness).
Bn, Dν , Dx Controller gain constants (damping).

T Joint torque.
f Force (from force/torque sensors) expressed in the robot’s base frame.

Table 1. Control variables and constants.

gravity while moving over uneven terrain). We do not assume other knowledge
about the environment, task, agent numbers or locations, nor direct explicit
communication.

We note that compliance can be helpful in multiple ways. For instance, it
facilitates movement of the object in response to the guiding force, providing
displacement as well as force cues that can be used by helper robots to infer the
intended motion.

4 Control methodology

4.1 Closed loop control dynamics
The system dynamics for each agent take the standard form

T = M q̈ + C(q, q̇)q̇ + g(q) + Text (1)

where the load mass and inertia are modeled as connected rigid components
of the end-effector, incorporated into the mass/Coriolis/gravitational matrices
accordingly.

Each agent’s (dynamic) context for the intended manipulation is encoded as
a binary 6 × 1 vector d, expressed in the robot’s base frame. di > 0 indicates
the agent should follow a guiding force along dimension i; di = 0 indicates a
dimension where any external force is likely to be disturbance-related.

We can use d to decouple the instantaneous control torque applied in the
robot’s joint space into two components: a task controller, and a null or residual
controller. Using d as a dimensional filter on the full manipulator Jacobian J
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gives a task Jacobian Jt such that ẋ = Jtq̇. The null space Jacobian Zν can
be derived as in [18]. This allows us to develop a task-specific control schema,
and use the complementary space to enact a different form of control on the
remaining null dimensions.

In a previous study [4], we considered a framework in which the task space
was the set of dimensions in which external forces should be rejected, and the
null space allowed free movement along other dimensions. Here we invert that
division, so that instead of assigning a high priority task of stabilisation against
unknown inertial dynamics (with the force-following component relegated to a
lower priority null space), we assign the collaborative force-following goal to
the high priority task space, while disturbance rejection of out-of-task forces
is accomplished in the null space. This assignment allows the force-following
behaviour of each agent (and hence the collective) to be more sensitive and
responsive.

The task space controller takes the following form (a task passivity-based
control):

ẍc = Λ−1x (wt − (µx +Dx)ẋ− γKex̃) (2)

where wt is an estimate of the guiding external wrench in the chosen task domain,
expressed in the robot’s base frame, and measured by the robot using either
joint torque sensors or a wrist-based force/torque sensor; (x, ẋ) describes the
trajectory of the end-effector in the task-space dimensions only (i.e., x is a subset
of the full 6×1 end-effector pose vector p); and Λx, µx are the task-space dynamic
inertia and Coriolis matrices, respectively [20]. The error-correcting stiffness term
Ke is explored in section 4.2.

In a cluttered dynamic environment, it is likely that disturbance forces will
be due to environmental collisions. Rigidly maintaining null-space target posi-
tioning during a collision risks potential damage to the robot or the colliding
object/person. However, the control space of the null component is defined by
the residual degrees of freedom that remain unused by the task controller (i.e.,
it is thus both task- and robot-dependent). Noting this, we can take advantage
of the greater number of degrees of freedom offered by redundant manipulators,
and use a redundant joint space to accommodate collisions compliantly while
minimally impacting the task space behavior. (If, instead, a high rigidity null
space is desired, or the robot has insufficient DOFs to accommodate all possi-
ble task space configurations while rejecting error, a high stiffness impedance
controller based on joint space error could be used.)

We define ν as a null space velocity vector [4] [20] and create an impedance
control-based input torque of the following form:

Tν = −Z#T
ν

[
ZTKνJE η̃ −Bν(ΛνŻ#q̇ + (µν +Dν)ν)

]
(3)

where µν , Λν are the null Coriolis and inertial matrices [20], Kν is a stiffness term
acting on offsets in non-task-space end-effector dimensions, and Bν , Dν represent
damping gains. The null position error state variable η̃ can be calculated using
D̄b, the binary matrix derived from the negation of d, assuming that for small
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changes in η and q, we can use the expanded (full-rank) Jacobian JE to transform
errors in joint space to the (non-task-constrained) end-effector frame dimensions:

δη = D̄bJEδq (4)

(In fact for x = 0, where the goal joint configuration qd is governed solely by
null space control input, η̃ is the 6x1 end-effector pose projection of the joint
error q̃.)

The input torque corresponding to the task control components can be writ-
ten

Tt = −JTt
(
Λx(J̇ q̇) + (wt − (µx +D)ẋ− γKex̃)

)
(5)

and our total input torque becomes

T = Tt + Tn + C(q, q̇) + g(q). (6)

4.2 Inertial estimation and error compensation

Here we discuss the need for each agent to have an estimate of local load mass
(mi) and CM location (ri), the relationship between mass inertia matrix error
and controller responsiveness, and how these estimates can be achieved.

A robot can calculate an estimated mass inertia matrix M i
est using q, mi,

and ri. The true (unknown) mass inertia matrix of the (local) system is M i. We
define the error in this inertial estimation as follows:

∆M i = M i −M i
est. (7)

When a follower agent senses an external force, we can assume that this force
is predominantly composed of a wrench imparted by the guiding agent, and any
residual uncompensated inertial elements of the load:

Fext = Wt + JT∆M i(q)q̈. (8)

Assuming a constant load, M i, and hence ∆M i, are bounded above [21]. In
fact, given our assumption of enough agents to handle the load, ‖M i‖ ≤ mmax,
where mmax is the maximum load each agent can support. (Ideally it would be
significantly less.) Then an absolute lower bound for the external guiding wrench
can be written

Wt,min = fext − JT (Mmax(q)−M i
est(q))q̈ (9)

where Mmax(q) is the mass matrix for a load of mass mmax at joint configuration
q. Based on this minimum guiding wrench input, and the current system state,
we can project a minimum expected end-effector pose estimate xg, given a dis-
crete time-window ∆t. The difference between the actual pose and this forward
projection can be written as an error term in the task domain, x̃ = xg − x.
This allows us to introduce an error correction term into our control accelera-
tion equation, using a spring stiffness gain matrix (Ke) (see Eqn. 2), and our
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challenge then becomes choosing a suitable Ke so that it fully compensates for
model error.

From Eqn. 9, suppose f(Mmax,q) is the inertial force applied by the maximum
load the robot could support (calculated given the joint configuration q). Then a
possible choice of the elements ke of Ke is |kje| ≥ max‖(f(ML,max,q))j‖, i.e., we
estimate the maximum possible force exerted by the inertial mass matrix upper
bound Mmax in each task dimension {j}, and choose Ke to guarantee sufficient
compensation force. Note that given Eqn. 9, the ratio of {maximum force it is
reasonable for the guiding agent to exert} :: {upper bound of load estimate}
represents a metric for the system responsiveness.

Ke need not be constant: an adaptive stiffness term can be used without loss
of stability [14] (provided K̇e is bounded), as shown in [4], to create regions or
dimensions of high and low responsiveness based on the expected impact of errors
in the inertial estimate. Adaptive stiffness can also be increased temporarily in
response to unexpected motions of the load, to prevent instability that could
otherwise result if load inertia estimates are poor [4].

Other work has shown approaches for multiple robots to collaboratively esti-
mate load parameters [15], [8]. In future work we plan to extend these approaches
to the case without explicit communication. In the reductive case of a single guid-
ing agent and a single follower (as in §5.1), an upper bound on ∆M i can be found
by examining the force residuals ∆f(q) at the extremes of inertial offset, while
only the follower agent is carrying the load (call this a stiffness tuning phase).
Since in this case it is also relatively trivial to obtain a high degree of accuracy in
inertial load estimation [16], in practice these residual force errors are minimal,
and a small constant Ke suffices to fully compensate for model error.

4.3 Controller stability
In this section, we consider the stability of the full operational space controller,
including the model-error correction component described above. Let our state
variable be z = {q̃, ν, T̃ , f̃ , x̃}. . From [11], we can demonstrate asymptotic sta-
bility for the system if there exists a function V (z) such that in a neighborhood
Ω of an equilibrium point z = 0, the following three conditions are satisfied:

1. V (z) ≥ 0 ∀z ∈ Ω, and V (0) = 0;
2. V̇ (z) ≤ 0 ∀z ∈ Ω;
3. the system is asymptotically stable for the largest positive invariant set L in
{z ∈ Ω | V (z) = 0}.

The total wrench acting on the system along the task dimensions can be writ-
ten f = wt + f̃ , where wt is the estimated input guiding input wrench as before,
and f̃ is the total force estimation error, now including not only inaccuracies in
the system model as above, but also other sources of error such as sensor noise.
(Note that we are not considering the constrained null dimensions, so this error
term is not confounded by disturbance rejection). At equilibrium, f = f̃ , and we
can introduce a disturbance observer to track error in the force domain. Using

the task state error defined previously, we desire ẋg = 0, so
˙̃
f = −Γ−1f ẋ, where

Γf is symmetric and positive definite.
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Let V (x, f) be a candidate Lyapunov sub-function that considers only task-
related energy terms:

V (x, f) = x̃TKex̃ +
1

2
ẋTΛxẋ +

1

2
f̃TΓf f̃ (10)

This function is positive definite along (x, f) and positive semi-definite on the
full state z (condition 1 above). Differentiating, we find

V̇ = 2x̃TKeẋ + ẋTΛxẍ +
1

2
ẋT Λ̇xẋ + f̃TΓf

˙̃
f (11)

Substitute the closed form dynamics from Eqn. 2 to obtain

V̇ = 2x̃TKeẋ+ ẋTΛx
[
Λ−1x (wt − (µx +D)ẋ− γKex̃)

]
+

1

2
ẋT Λ̇xẋ+ f̃TΓf

˙̃
f (12)

We can substitute the disturbance observer defined in Eqn. 4.3 and obtain an
estimate of the task dimension force error by examining the position error in com-
bination with the environmental stiffness. Then, considering the skew-symmetry
of Λ̇x − 2µx [20], we find condition 2 above on V̇ is satisfied provided

2x̃TKeẋ− γx̃TKeẋ− ẋTDẋ < 0 (13)

and since D is constant and positive definite, we require only that the controller
gain γ > 2 to ensure conditional stability.

Furthermore, under the set condition x = 0, our null state error term
ZTKnJη̃ reduces to ZTKnq̃, and the null space control torque is analogous
to that used in [20]. By using a similar subset function candidate VL on the
set L = {q̃, ν, T̃ , f̃ = 0, x̃ = 0}, it can be shown that the system is asymptoti-
cally stable conditional to L (condition 3 above). Hence all conditions for overall
system stability are fulfilled.

4.4 Task-frame switching
The guiding agent can indicate a change in d (e.g., switching from lifting to
horizontal carrying) to the other agents using the payload as the medium for a
physical signal. For this paper, we note that in the absence of slow changes in
uncompensated force driven by unknown load inertia (and with the assumption
of a joint-compliant null-space control), disturbance forces are likely to be abrupt
in onset and of limited duration. We can use the dynamic characteristics of
such disturbances to define an admittance/rejection filter, establishing a set of
time- and magnitude-based characteristics that signify a force imposed by the
knowledgeable agent intended to change the dimensional domain of the task,
and thus adjust the vector d on the fly. §6.2 discusses examples.

5 Experimental validation

The approach requires a force-sensitive manipulator with (ideally) > 6 degrees
of joint freedom. The Franka Emika Panda cobot meets these needs (7 DOF)
and is readily commercially available, making it an ideal platform with which
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to undertake proof of concept experiments. In §5.1 we discuss hardware test-
ing/demonstration of the approach, using the single physical Panda available to
us to assist a human leader. In §5.2 we discuss simulations with four Pandas
assisting a leader. All code is available at [2].

5.1 Implementation in hardware

We implemented an initial parameter estimation phase without a human in
the loop, using a two-stage recursive least squares method [13] to estimate
approximate mass and CM location of the load, without requiring any fore-
knowledge of the load parameters or grasp point. Although the inclusion of
off-diagonal inertias will in theory improve the stability region [14], we are in-
terested in exploring the case where inertial estimation is imprecise or not all
parameters can be determined. The estimation trajectory comprised a series of
sinusoidal joint velocity commands (phase offset to each other to minimize in-
version errors due to singularity points), operating symmetrically around the
robot’s default neutral pose. The joint velocity control during this inertial es-

timation phase was defined as: q̇(t) = ai sin
(

2π t−tLωi

)
, with amplitudes a =

[0.3265,−0.3265, 0.225,−0.3,−0.4435, 0.3,−0.3625], cycle period scaling factor
ω = [3.68, 2.04, 2.98, 1.75, 4.43, 2.749, 1.4], tL a phase offset constant.

The parametric convergence of the overall mass and CM location (relative to
the end-effector grasp centroid) was usually accomplished in < 5s, with a mass
estimation accuracy within ±5% and centre of mass accuracy ±10%. We did
not seek to ensure highly accurate parameter estimation, because we anticipate
precise inertial information to be difficult to obtain in the multi-agent case, and
did not want this to be a necessary pre-condition when assessing the success of
this proof of concept.

When calculating the null-space Jacobian projection Z, we must take par-
ticular care to ensure the devolved sub-Jacobian Jm [18] is well-conditioned,
by using a robust inversion function; this necessarily increases the computation
time required. The joint control torque is thus updated asynchronously, leading
to non-zero errors in torque and projected position estimation; however, we find
that the small correction stiffness Ke (described in §4.2) serves to accommodate
these errors and ensure stability without impacting performance.

The Franka Panda is extremely sensitive to discontinuities in control inputs.
Abrupt changes in torque input can result in a safety system lock, and aside from
the need to low pass filter the raw torque sensor data due to a high noise level,
there is also the potential for such discontinuities during task switching. There-
fore, when a request for task dimension change has been registered, the real-time
controller (a) sends a short burst of torque commands (∼50ms) comprising mass
and Coriolis compensating elements only, in order to bring the system smoothly
to equilibrium, and (b) re-establishes a new null space origin at the current joint
and end-effector positions. This ensures a relatively smooth transition between
task contexts.
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Fig. 2. Hardware implementation: behaviour in null-space (constrained; left) vs. task-
space (unconstrained; right) dimensions. Top left: torque was applied around the pitch
axis (relative to the robot’s base). Bottom left: a force was applied in the Z (vertical)
dimension. Top right: torque was applied around the yaw axis (relative to the robot’s
base). Bottom right: a force was applied in the Y (lateral) dimension. In all cases, blue
indicates the applied force or torque, orange indicates the system response along or
around the axis in question. Controller gains: Dx = 5.0I3,Ke = 0.2I3, γ = 2.5,Kν =
diag(240, 120, 120, 120, 120, 120, 120), Bν = 0.2, Dν = 4.0I4.

As discussed in section 4.4, we use a force input from the guiding agent to
signal task dimension switches (changes in d). For each test case discussed in
the next section, we established a set di of pre-coded potential task domain
vectors, and time and wrench magnitude thresholds (tth, wi,th) such that any
external force or torque > wi,th applied for > tth along a non-task dimension
would signal a switch in the task dimension vector. In our case, the number of
pre-coded states di is small; however, with a sufficiently granular set of di, we
can attain as much dimensional control flexibility as desired.

5.2 Implementation in simulation

To demonstrate the efficacy of this method for multi-robot cooperation without
direct communication, we used a simulated Franka Emika Panda model created
in the Unity platform [3], and implemented the controller described above on
four simulated robots manipulating a large shared load. A separate simulated
leader applies forces and torques to the load. Each Panda is mounted on an
omnidirectional wheeled base; it uses lateral motion of its end-effector in the
task space as a control input to its base, thereby moving along with the leader’s
guidance in the plane, and extending its effective workspace.
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Fig. 3. Robot guidance without and with contextual information. The human guide ap-
plies a torque to rotate the end-effector through 90 degrees, around the roll axis. In the
first sequence of images (top), the robot control torque compensates for gravitational
load, but otherwise is compliant in all dimensions. In the second sequence (bottom), we
implement our decoupled force/impedance algorithm with the task constraint vector
d = {0, 0, 0, 1, 1, 0}, rejecting wrenches in any direction other than roll and pitch. X’s
show the position of the end of the object across successive frames. Video: [5].

6 Results

6.1 Controller performance within static task domain

To investigate the performance of the two control elements (force following vs.
impedance-control), we defined our task domain as d = {1, 1, 0, 0, 0, 1}, applied a
set of short disturbance forces to a load held by a single robot, and examined the
resulting end-effector trajectory. A sample output is shown in Fig. 2, with motion
and force expressed relative to the robot’s base frame of reference. Disturbances
in the pitch or vertical motion are rejected by the null controller, while those
around the yaw axis or along the lateral Y axis result in motion for as long as
the wrench is applied, and do not return to the origin position afterwards.

To demonstrate the behavioural difference between our chosen decoupled
control schema and a more conventional compliant control that might be used
for, e.g., a learning by demonstration context, we consider a task whose goal is
a 90 degree rotation of a manipulated object around the base’s roll axis. Fig. 3
compares the motion of the robot and object for each of the two control schemes
in response to the same user input wrench. In the top set of images, the robot
is under a free-floating (mass-compensated) control without contextual informa-
tion about which wrench dimensions should be followed. Since the user input—as
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Fig. 4. Performing a collaborative task where force following and rejection dimensions
change, under the guidance of a human operator. The human guides the robot to first
insert a key into a slot, then turn it 90◦ and slide it along the slot. Left: Still image
after insertion, during the turning phase. Right: The force and motion mapping for
one dimension (roll). Force following vs force rejection phases are indicated through
colour on the torque input (blue = force follow, red = force reject). Controller gains:
Dx = 5.0I3,Ke = 0.2I3, γ = 2.5,Kν = diag(240, 120, 120, 120, 120, 120, 120), Bν =
0.2, Dν = 4.0I4. Task-switch thresholding: (tth = 1.5s, wth = (5N, 0.5Nm)). Video: [5].

expressed through the shared load—has wrench components in multiple dimen-
sions, the robot’s end-effector position not only rotates, but also moves in the
Y and Z dimensions. In the bottom image series, the robot is controlled by our
decoupled controller and supplied with a dimensional context which restricts
motion in Y and Z (d = {0, 0, 0, 1, 1, 0}). This controller decouples the wrenches
imparted by human manipulation of the load and responds only to those along
or around the task dimensions, resulting in an end-effector pose that changes
only along the roll axis, as desired. In other words, with this control framework
and given a suitable context, we can shape the robot’s resultant trajectory with
much greater precision. See video at [5] (part 1).

6.2 Controller performance with a changing task domain

To demonstrate switching between contexts when the motion requirements of
a task have a clearly defined dimensional change, we consider a collaborative
key/lock positioning/insertion and rotation task. We pre-code a set of dimen-
sional constraints di corresponding to the key insertion (i = 0), and key turn/slide
(i = 1):

di =

{
{1, 1, 1, 0, 0, 1} i = 0

{0, 1, 0, 1, 1, 0} i = 1
(14)

Fig. 4 shows a snapshot during the process, and the roll input torque and
end-effector angle over the interaction. Initially, the robot is free to move in (x, y,
z, yaw), but in order to maintain the key in the correct orientation for insertion,
constrained in (roll, pitch). Once the key has been inserted into the slot, the
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Fig. 5. Behaviour of a four robot collective using our controller, following a two-stage
guiding force. Top left: stable state counteracting inertial load, before external force
application. Top right: An external force is applied along the global X axis. Bottom
left: An external torque is applied around the global X axis. Bottom right: The corre-
sponding local Y and local pitch pose of one robot during this process. Video: [5].

human seeks to shift the robot’s context to allow a 90 degree turn, and does this
by applying a firm roll torque for 2s. The robot then shifts its constraints to a
new dimensional set where it is free in (y, roll, pitch) but constrained in (x, z,
yaw). See video at [5] (part 2).

The plot on the right of Figure 4 shows the roll torque applied to the robot
through the shared load, and its corresponding roll angle. During the first phase
(indicated by a red color on the input torque), the robot successfully rejects
motion around its roll axis. Once the time/magnitude threshold for context
switching has been passed, the contextual control dimension changes to d1, and
the roll input torque (now shown in blue) results in a corresponding angular
rotation.

6.3 Multi-robot performance with changing task domain

To demonstrate that this control methodology can be extended to multiple
robots with no direct communication, knowing only a (local) estimate of the
load inertia, we implemented a simulated trial with four Franka Emika Panda
robots using the Unity platform.

After grasping a shared load, each robot applies a joint torque sufficient to
counteract the gravitational inertia of its portion of the manipulation object
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(assumed for this proof of concept to be known ahead of time). An external
guiding force is then applied in two stages, first horizontally in the plane, then
rotationally around the long axis of the load object.

The corresponding dimensional control constraints for each stage are:

di =

{
{1, 1, 0, 0, 0, 1} i = 0

{1, 0, 1, 0, 1, 0} i = 1
(15)

Figure 5 shows that using only an external force input and a pre-calculated
knowledge of load inertial parameters (note that the robots are not aware of the
number, locations, or behaviour of other agents co-manipulating the object), the
robot collective can ensure the load follows the guidance force. Video: [5] (part
3).

7 Discussion
A fundamental reason for deploying decoupled operational space control, in this
task of robots performing collective manipulation with limited information, is to
address disturbances imposed by the lack of shared knowledge. Without aware-
ness of the others’ poses or intentions, agents cannot disambiguate between in-
terpretations of sensed forces, and thus in general will apply conflicting torques.
This research demonstrates that (a) given a task context, these kinds of conflicts
between agents can be resolved by using a compliant error-rejection framework;
(b) if the agents are further provided with an estimation of load inertia, this
task context can incorporate out-of-plane motion; and (c) force can be used as a
control signal to enable contextual switching between control dimension subsets.

The use case for such a system is likely to be in collaborative transport or
manipulation in complex, unknown, or dynamic environments. As §6.3 demon-
strates, this kind of spontaneous collaboration can be effectively deployed with
very little foreknowledge or preparation, requiring only one knowledgeable guid-
ing agent. This simplifies the navigational challenges of collaborative transport
considerably, and minimizes the shared knowledge base required. In particular,
using compliant control for both elements of the decoupled controller eliminates
any need for strict global kinematic alignment between agents; hence such sys-
tems should be robust to perturbations such as rough terrain or minor collisions.

To fully realize the goal of collective manipulation without prior knowledge
or communication, further work is needed for letting agents estimate inertial
parameters online, potentially during an interaction [6]. Since direct communi-
cation is not necessary for localised mass estimation [15], it may be feasible, e.g.,
to use an adaptive high-gradient stiffness controller [4] to implement a CM esti-
mation routine within a shallow 6DoF low-stiffness basin common to all agents,
solving the dynamic equations iteratively to allow each agent to calculate an
individual estimate of the approximate CM location. Future work will focus on
investigating such methods.
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