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Abstract. This paper extends the applicability of generative design for space
planning frameworks for ongoing and guided post-occupancy modifications. It
involves the comparison of a graph-based productive-congestion simulation
with empirical data and the use of a metaheuristic search algorithm to calibrate
and fine-tune simulation parameters for greater accuracy. This methodology is
demonstrated through a real-world generative designed case-study and the post-
occupancy collection and processing of movement data through custom com-
puter vision workflows.
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1 Introduction

Generative design (GD) leverages the power of computation to explore large design
spaces and discover novel and high-performing solutions relative to a set of goals and
constraints. This process relies on parametric modeling software to represent large
solution spaces, simulation software to evaluate each generated design, and meta-
heuristic optimization solvers, such as genetic algorithms, to search the design space
for optimal solutions [1]. This paper showcases how to use empirical occupancy data to
automatically tune simulation parameters, minimize assumptions used in the initial
built design iteration, and offer a concrete methodology for planners and designers to
create more accurate results for future changes for similar design problems (Fig. 1).

1.1 Designing for Uncertainty

Typical design processes tend to focus on satisfying immediate or “known” require-
ments. Any misalignment between built architectural features and occupant needs—by
fault of either incorrect assumptions or the inevitable evolution of individual prefer-
ences—are deferred as a separate future design problem. Likewise, a tight focus on
addressing immediate problems without considering future needs risks making
designers “unable to predict the longer-term consequences in use of what we design”
[2]. Broad adoption of these attitudes produces detrimental consequences including
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incompatibility with user needs, low space utilization leading to high-turnover of
tenants, increased operational and maintenance costs, and poor energy efficiency.
“More than any other human artifact, buildings excel at improving with time, if they are
given a chance” [3]. In this spirit, this paper demonstrates a flexible generative design
framework that over time can semi-automatically learn about how space is used and
reduce initial assumptions to make data-informed decisions about future changes.

1.2 Productive Congestion

Productive congestion is a critical occupant-level spatial quality that is gaining interest
within interior architecture and space planning as a measure of the degree of liveliness
and activation of interior spaces [4–6]. Despite the large literature on the benefits of
curated congestion, there are no replicable methods to design spaces that encourage
such phenomena let alone evaluate it. To address this, our group has previously

Fig. 1. Design loop: a framework for tuning generative design models to meet new building
requirements through empirical data and hyperparameter optimization methods.
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demonstrated a general-purpose static simulation technique that quantifies such
behavior and is compatible with generative design workflows [7]. The work also
involved the application of generative design for the design of a mid-scale exhibit hall
for 7000 visitors over a three-day conference and trade-show event [8, 9]. The goal was
to configure a layout of booths and pavilions that maximized the spread and intensity of
high activity zones across the hall and increased the level of exposure of each program
to high traffic areas (Fig. 2). This paper furthers this work by offering a generalizable
framework that calibrates the simulation parameters through observed congestion data
collected from the built layout to improve its fidelity to real-world behavior, thus
improving the overall results of the generative design model.

2 Related Work

Discrepancies between simulated results and real-world phenomena are common issues
in building simulations [10, 11]. Since more of these models are actively used in
decision-making processes, the study of calibration methodologies—the process of

Fig. 2. The optimization dataset derived from applying a framework for generative design for
architectural space planning (top) was used to design the final built exhibit hall layout (right and
bottom). The process involved the simulation of productive congestion to automatically evaluate
the amount of high activity zones on each generated layout.
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adjusting simulation parameters to match target results based upon empirical obser-
vation data [12] —is of growing interest. Calibration methods can be grouped into two
main areas: manual parameter adjustments and semi to fully automatic parameter
tuning strategies [13]. Due to the complexity of our model and the number of input
parameters required to be calibrated we implemented an automated simulation tuning
framework. In this regard, automatic calibration techniques mostly revolve around
deterministic search methods like gradient-based ones and linear regression [14]. While
these may yield effective results in a short amount of time, they tend to be limited by
local optima [12] which is why our method relies on a metaheuristic stochastic search
(GA) that is also able to deal with highly discontinuous design spaces [15]. Recent
work demonstrated the use of evolutionary algorithms (EA) for calibration of crowd
simulation models [16] but while this focused on accurate microscale behavior, our
work privileges predictions of distributions at larger scales of traffic density which are
faster to compute thus more compatible with generative design frameworks.

3 Methodology

This section describes the details of our workflow which involves the incorporation of
the productive congestion simulation into GD for the design of a real-world case study
(Fig. 2), the collection of congestion data via video footage, the processing of such data
to be comparable with our simulation results and an automated calibration of the
simulation parameters to minimize the difference between simulated results and
observed data.

3.1 Simulation Assumptions

As our method to measure productive congestion has been described in detail in past
work from our group [7] we will limit the following description to the key assumptions
and summary of techniques that our model utilizes. Given any 2D floor plan repre-
sented as graph data structure, the simulation generates a network of walkable paths in
the form of a set of nodes and edges and physically routes simulated occupants in space
based on pairs of a source (point of origin) and a sink (destination). As the routes are
computed, each node in the graph stores an aggregate count of the number of times it
has been traversed (traffic). To create more realistic results, the computed traffic at each
node is iteratively diffused across its adjacent nodes with flow-blocking across defined
geometric barriers. This accommodates for the natural variation of human pathfinding
and intensifies congestion in spaces with physically confining boundaries and dilutes it
in more open spaces (Fig. 3).
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For each source and sink node the computed traversals can be adjusted through the
manipulation of normalized weights (Fig. 4d). Each weight represents the level of
desirability of the associated areas and are generally set on the basis of intuition and
past experience.

Fig. 3. Typical shortest path-based congestion results are independent of the quality of space
(a), while our technique takes into consideration amount of people and geometrical context (b)

Fig. 4. Construction of traversal graphs and computation of productive congestion heatmap and
weighting setting comparison.
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To design the exhibit hall the weights were split into programmatic categories and
manually assigned by all stakeholders involved. Values of 1.0 were assigned to the
main pavilions and access and exit doors, which were assumed, from past year events,
to generate high traffic. Similarly, 0.75 was assigned to food and beverage stations and
other areas while 0.5 was assigned to all sponsor booths (see Table 1). Such
assumptions can be reduced through an expanded framework of generative design that
incorporates observed data to improve the accuracy of its results and drive future post-
occupancy modifications.

3.2 Measuring Congestion Through Computer Vision

To validate the metrics used to generate the design, we outfitted the final built design to
monitor usage and traffic flow in the post occupancy phase via video. The video data
was collected and processed through a custom computer vision (CV) pipeline to extract
human movement and generate aggregate counts and distribution heatmaps. Sensing
with video offers many benefits including the density of information that can be
extracted and offering a level of coverage and localization not feasible with manual
counting methods, which, as discussed in [17], can greatly vary. However, use of video
also required considerations to mitigate ethical and privacy concerns. In our case, all
event participants had given prior consent to recording, and our methodology explicitly
avoided any techniques that could be used to track individuals like facial or gait
recognition.

Table 1. List of programs placed in the designed layout along with the manually assigned
weights based on past experience and intuition.

Programs Weights [0.00, 1.00] Programs Weights [0.00, 1.00]

Main pavilion 0 1.00 Store 1.00

Main pavilion 1 1.00 Food and beverage 1.00

Main pavilion 2 1.00 Industry booth 0 0.50

Main pavilion 3 0.75 Industry booth 1 0.50

Main pavilion 4 1.00 Industry booth 2 0.50

Hardware booth 0.25 Industry booth 3 0.50

Info booth 0.50 South access/exit 0.75

Drone booth 1.00 East access/exit 1 1.00

Software booth 0.75 East access/exit 2 1.00

Design Loop: Calibration of a Simulation of Productive Congestion 381

lorenzo.villaggi@autodesk.com



The setup used 16 Raspberry Pi 3 (RPi) with RPi RGB cameras recording 1080p
video positioned at key areas of the exhibit hall (Fig. 5). The RPi camera configuration
was chosen for its low cost and high degree of flexibility from a software and net-
working perspective. The RPis were networked via Ethernet to a central server using
Simple Network Time Protocol (SNTP) to synchronize timestamps. We also imple-
mented a circular frame buffer which used simple change detection algorithms to limit
saved frames to motion-events longer than 1 s.

All frames were batch processed post-event using 3D skeletonization [18] and
homography [19] to create a transformation matrix mapping participant footsteps and
location in 3D space. Skeletonization was captured using the OpenPose library [18],
which generates multi-person keypoint detection and outputs a JSON file containing
skeleton points of a recognized human form and a prediction confidence score
(Fig. 6a). This data is generated on a per-frame basis with no frame-to-frame object
tracking matching a generated skeleton to subsequent frames in a stable manner. For
our purposes, we implemented a custom tracking system on top of the results from
OpenPose.

Our tracking method uses the head of a person as our focal tracking object, as it is
relatively stable in relation to the movement of the person and prominently visible from
our downward facing camera setup. We used a confidence threshold to limit tracking to
only high-confidence detections resulting in variable gaps in frames between detec-
tions. To compensate, we must decide if the head detected in frame n is the same head
detected in prior frame n − i where i > 1. This was accomplished using a distance
threshold function which evaluates a head u in frame n − i and a head v in frame
n. Because there are many heads tracked simultaneously, we record the position of
head v in the frame n as hnv in pixel coordinates. These positions are then used to
compare, over the course of i frames, the positional deviation between heads u and v to

Fig. 5. Cameras setup and field of view coverage
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see if it falls below the distance threshold T and therefore likely the same individual,
using this test function:

hn�i
u � hnv

�
�

�
�

�
�

�
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u
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T is a pixel distance in the image calculated empirically and tuned based on
framerate and camera intrinsics. In our case, T i; hn�1

u
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u

� �

is the average distance measured in pixels between two frames.
From the tracked individuals, we extracted the associated foot keypoints (Fig. 6b).

Standard homographic methods from the OpenCV library [19] and known camera
locations were used to project the 2D pixel positions in each frame to the floorplan.
These projected movement paths were then counted for the three days of the event
allowing for various levels of aggregation and analysis (Figs. 6c and d). To match the
simulated data, the global aggregate sum was calculated across the covered areas.

3.3 Data Processing

To ensure parity across simulated and observed data, raw counts extracted from the
video were upsampled and discretized to match the resolution of the computed sim-
ulation graph using bilinear interpolation. This method was chosen to maintain the
fidelity of source data including its incomplete coverage. The remapped data samples
were then normalized by aggregate counts over the duration of the data recording
period to match the domain of simulated results (Fig. 7).

Fig. 6. Pedestrian path tracking from video recordings of the exhibit hall activity through
computer vision pipelines. (7a) skeletonization; (7b) skeleton paths; (7c) tracking; (7d)
aggregation over time.
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Fig. 7. Productive congestion visualization samples: (a) sample heatmap of productive
congestion overlaid on exhibit hall plan layout. Blue and red dots represent respectively sink
and source points. Their size reflects assigned weights; (b) heatmap of observed congestion data;
(c) Euclidean difference between simulated and observed data; (d) dashboard showing weights
grouped by program: of each rectangle, the width reflects assigned weight value, while the height
reflects program surface area.
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3.4 Calibration

To improve the accuracy of simulation results we setup an optimization framework that
stochastically searches for different combination of weight parameters to minimize the
difference or distance (fitness function) between simulated and observed data. With
many optimization problems, this distance can be measured arithmetically using
Euclidean or other basic distance methods, however our simulation assumes a constant
quantity of gross traffic meaning the global average value of any configuration would
be equal and thus the arithmetic distance between solutions would be negligible.
Additionally, global arithmetic distance penalizes inexact results, and for our purposes,
a simulated peak traffic zone that is only slightly misaligned with real-world obser-
vations is still considered “good”. Some disagreement is expected between real-world
results and simulation, as our graph-based method operates on an approximate model
of movement that enables fast computation but doesn’t capture the full complexity and
inherently problematic nature of human behavior. As such, our optimization requires a
fitness function that evaluates proximity to an ideal rather than precision.

Our method employs Wasserstein distance, a statistical distance method more
commonly referred to as earth mover’s distance (EMD), which evaluates the difference
in probability distributions by measuring the “cost” as a function of quantity and
distance of energy that must be relocated to reach a target distribution [20]. This
relocation is evaluated locally meaning a slight misalignment between observed and
simulated results with otherwise correct intensity distributions would have low impact
on the fitness score. This metric is also compatible with incomplete real-world data as
an input, as the deviation and transport costs are optimally computed between local
distributions.

Our fitness model evaluates the distance between clusters of people from our
simulated model and real-world results, represented by a probability distribution Pr.
Our simulation model is denoted as a function, S L; hð Þ, where h represents all model
parameters and L is the given design layout. The probability distribution of our model
Pr S L; hð Þð Þ can be expressed as the sum of the distribution of all sub-clusters over the
space, and where wi, the distribution of a sub-cluster parameterized by a point, is
measured using simple Gaussian sampling.

Pr S L; hð Þð Þ ¼ w1 þw2 þ . . .þwi þ . . .þwn ð2Þ

In addition to our simulated model flow of people S L; hsð Þ, we can also represent
the observed real flow of people using the same model with unique parameters S L; hoð Þ.
Thus, the objective function can be expressed as:

X ¼ Pr S L; hsð Þð Þ � Pr S L; hoð Þð Þj jj jw ð3Þ

where :j jj jw is the EMD. We also note that X is at its minimum when ho is equal to hs.
Because X is not convex and may lack a single optimal solution, the use of a meta-
heuristic search algorithm is well suited to this problem.
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Our optimization used a variant of the NSGA-II genetic algorithm [21] for single
objective search to minimize the fitness function X by controlling the input weights
assigned to programmatic categories with the following optimization parameters:

– Population size per generation: 52
– Number of generations: 50
– Mutation rate: 0.3
– Crossover rate: 0.95

The tuning of optimization parameters is experiment-based and highly dependent
on the problem to solve [22]. While a comprehensive comparative set of parameter
tuning tests goes beyond the scope of this paper, we performed a few experiments
based on past experience of similar single-objective problems and identified the set of
parameters that returned good enough results for this particular problem.

4 Results

Through optimization, we saw a global improvement and convergence between sim-
ulated and real-world results with a relative reduction of EMD by 50% (Fig. 8). This
indicates that the updated simulation parameters were able to reduce both the distance
between zones of movement intensity and the difference in relative intensity from the
empirical measurements in the areas where they were gathered.

Visualizing the difference allows for a nuanced evaluation of gains from our
original simulation weighting. Improvements are seen in key layout areas, including the
entrance and central focal spaces. However, the areas of data capture coverage tend to
align with these key areas - broader coverage and more extensive sampling in spaces
with a wider range of predicted traffic would allow for better validation. Likewise, the
assumed point-to-point travel of the source metric is incapable of recreating some of the
more diffused activity seen in the real-world data, such as the space across the entrance.
Manipulations to the placement and quantity of sources and sinks and the protocol for
generating paths could potentially provide distributions more aligned with the
observed.

Because our input parameters represent comprehendible values (desirability of a
given program) it is useful to examine the deviation between our initial assumptions for
these weights and the values derived by the optimization process. Here we see devi-
ations roughly correlating with areas of real-world data coverage, with programs in the
tracked spacing maintaining predicted distributions and programs in non-captured areas
seeing more drastic deviations (e.g. the food and beverage stations which saw a drop of
89%). This most likely represents an overfitting of the model, which would require
adjustments to the fitness function to evaluate distance from the initial predicted
weights in areas unseen by empirical data.
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Fig. 8. Scatterplot of optimization data of simulation parameters (top) color-coded by input-
space: consistent color in younger generations reflects optimization convergence; simulation
results used for the design of the layout (bottom left) (mapped in the scatterplot for benchmarking
purposes); solution with minimal EMD and calibrated weights with deviation data (bottom right).

Design Loop: Calibration of a Simulation of Productive Congestion 387

lorenzo.villaggi@autodesk.com



5 Conclusions and Next Steps

Our method demonstrates the viability of using post-occupancy data to validate and
calibrate the behavior of metric models used in a generative design process. Simulation
of unpredictable behavior is itself a design problem, and this approach balances the
intuition of architectural training with the evidence-based rigor of data-driven analysis.
These methods allow constructive critical analysis of design methods and assumptions,
while enabling greater confidence in design decision making powered by data-informed
feedback loops.

This example also highlights the need for further exploration, including the gen-
eration of new designs with the updated metric to validate the difference between
resultant designs from the old model and the new. Likewise, it provides comparative
feedback for refinement of the simulation techniques including where approximate
behavior deviates and matches observed patterns.
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