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The design space of dynamic multibody systems (MBSs), particularly those with flexible components, is
considerably large. Consequently, having a means to efficiently explore this space and find the optimum
solution within a feasible time-frame is crucial. It is well-known that for problems with several design
variables, sensitivity analysis using the adjoint variable method extensively reduces the computational
costs. This paper presents the novel extension of the discrete adjoint variable method to the design opti-
mization of dynamic flexible MBSs. The extension involves deriving the adjoint equations directly from
the discrete, rather than the continuous, equations of motion. This results in a system of algebraic equa-
tions that is computationally less demanding to solve compared to the system of differential algebraic
equations produced by the continuous adjoint variable method. To describe the proposed method, it is
integrated with a numerical time-stepping algorithm based on geometric variational integrators. The
developed technique is then applied to the optimization of MBSs composed of springs, dampers, beams
and rigid bodies, considering both geometrical (e.g., positions of joints) and non-geometrical (e.g.,
mechanical properties of components) design variables. To validate the developed methods and show
their applicability, three numerical examples are provided.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Multibody systems are mechanical assemblies composed of
several interconnected parts and have numerous applications in
automotive, aerospace, robotics and many other industries. Gener-
ally, these systems have a large number of degrees of freedom,
show dynamic behaviors, and their components may undergo both
large overall motion and large deformation, thus making the opti-
mal design of such systems a challenging task.

The optimization of an MBS involves finding the optimum val-
ues of the system’s parameters, also called design variables, that
minimize (or maximize) a desired objective function and satisfy
a set of constraints. Design variables, in general, could be classified
into control parameters and design parameters. The former are the
focus of optimal control problems and their examples include
time-dependent input forces and torques. Design parameters, on
the other hand, are handled in design optimization problems and
are related to mechanical and physical properties of a system
and its components (e.g., material properties, cross-sectional areas,
lengths). In both optimization scenarios, for an assembly with
many coupled flexible and rigid bodies, the parametric design
space is considerably vast. Therefore, an efficient algorithm is
required to search this space and find an optimum design within
a reasonable timescale.

Accordingly, gradient-based optimizers have been shown to
outperform meta-heuristic optimization techniques and have a
better convergence rate (see e.g. [1]). In order to utilize gradient-
based approaches, sensitivity analysis should be performed, which
requires computing the derivative of the objective and constraint
functions with respect to the design variables. In the majority of
problems, these functions depend not only explicitly on the design
variables, but also implicitly on them through the state variables,
which describe the state of an MBS. Hence, to obtain their total
derivatives, one needs to calculate the sensitivity values of the
state variables to the design variables as well. This becomes a
laborious task, particularly in large-scale and time-dependent
problems.

One way of computing the gradients is to calculate them
numerically using the finite difference method. Although this
approach is easy to implement, it provides only an approximation
to the actual gradient values, and the perturbation step of each
design variable is not known a priori. Additionally, to obtain the
sensitivities, one additional simulation per design variable is
required. Consequently, for computationally expensive problems,
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this method is highly inefficient and prohibitively time-consuming
[2,3]. A more practical and accurate approach is to apply analytical
techniques that compute the exact gradients.

The two most widely used methods in the analytical category
are the direct differentiation method and the adjoint variable method.
In the former, first, the motion equations of a given MBS are
differentiated with respect to each design variable. This results in
a system of differential-algebraic equations (DAEs), in which the
gradients of the state variables and the Lagrange multipliers are
unknowns. Then, by solving this system and implementing the
solution values into the sensitivity equations of the objective and
constraint functions, the desired gradients are evaluated [3–9].
Since for each design variable a new set of DAEs needs to be solved,
the computational cost of this approach becomes significant for
complex assemblies with a large number of design variables.

An alternative strategy is to exploit the adjoint variable method
[8,10–14]. In this technique, the explicit computation of the gradi-
ents of state variables and Lagrange multipliers, as required in the
direct differentiation method, is avoided by introducing a set of
auxiliary variables called adjoint variables. To compute the adjoint
variables, the equations of motion are first solved (forward simula-
tion), followed by integrating a system of linear DAEs known as
adjoint equations backward in time (backward simulation). The
main advantage of the adjoint variable method is that the gener-
ated linear system needs to be solved only once at each iteration
of the optimization process, while eliminating entirely the need
for computing the derivatives of state variables and Lagrange mul-
tipliers with respect to the design variables.

In one view, the adjoint variable method can further be split
into two categories: the continuous adjoint variable method
(CAVM) and the discrete adjoint variable method (DAVM). In the
former, the continuous equations of motion (i.e., the equations of
motion prior to discretization) are used to derive the continuous
adjoint equations — a system of linear DAEs. This system should
be then discretized in time and solved to find the adjoint variables.
On the other hand, in the DAVM, the discrete adjoint equations are
directly derived from the discretized equations of motion. This
approach yields the exact gradients of the discrete objective and
constraint functions. More importantly, the equations generated
by the DAVM no longer need an additional level of discretization
in time and form a system of linear algebraic equations, which
are computationally easier to solve compared to the DAEs that
arise via the CAVM.

The DAVM has been previously used in optimal control and
design optimization problems [15,16], however, its application in
large-scale MBSs with coupled flexible and rigid components is
not yet well studied. This paper introduces the novel application
of the DAVM to the design optimization of flexible MBSs. Without
loss of generality, to describe the implementation details and solve
the equation of motion, the proposed sensitivity analysis scheme is
applied to a symplectic-momentum preserving geometric varia-
tional integrator proposed by Leyendecker et al. [17]. The same
method can be applied to other numerical time-stepping solvers.

In the current study, both geometrical and non-geometrical
design variables are taken into account. To the authors’ knowledge,
the inclusion of geometrical design variables in optimizing
dynamic MBSs has not been investigated before. Geometrical
design variables concern the parameters defining the shape of a
multibody configuration for example the global initial positions
of joints and components’ length. Non-geometrical variables
include other mechanical and physical properties of the bodies
such as spring constants, damping coefficients, masses, cross-
sections and Young’s moduli. Considering geometrical parameters
would increase the dimension of the design space and provides
the optimization routine with more flexibility. There are many
applications, for instance designing an MBS whose components
should follow certain trajectories in space, where incorporating
only the non-geometrical parameters would not lead to a solution,
while including the geometrical variables is essential to finding the
desired design.

To demonstrate how to apply the proposed methods, without
loss of generality, the relevant sensitivity equations for assemblies
made of springs, dampers, beams and rigid bodies connected via
spherical (pin) and welded (fixed) joints are derived. The presented
approach can be extended to include other component and joint
types. The remainder of the paper is organized as follows. Section 2
introduces the general problem definition and basics of gradient-
based optimization algorithms. Section 3 presents the equations
of motion and how to solve them using the selected geometrical
variational integrator. In Section 4, the detailed derivation of the
DAVM is provided. In Section 5, first, the equations involved in
describing the dynamics of interconnected springs, dampers,
beams and rigid bodies are discussed. Then, the equations for com-
puting the sensitivities with respect to geometrical design vari-
ables are developed. Finally, in the last section, three numerical
examples are presented.

2. General problem definition

Consider an unconstrained optimization problem for the vector
~a 2 Rn of design variables of a multibody system in the following
form:

min
a!

/ q! a!
� �

;
_q! a!
� �

; k
!

a!
� �

; a!
� �

ð1Þ

In this equation, / is the objective function, q! represents the vector

of state variables, _q! is its time derivative, and k
!

denotes the vector
of Lagrange multipliers associated with the joint (constraint) equa-
tions. These quantities are time-dependent and are the solutions
of the multibody dynamic equations, to be described in Section 3.
As the behavior of an MBS is affected by the choices of the design

variables, q!;
_q! and k

!
are also dependent on a!. It is assumed that

/ is at least a twice-differentiable function of its arguments. More-
over, It is assumed that / has the following generic form

/ ¼ F q!0;
_q!0; q

!
T ;

_q!T ; a
!� �

þ
Z T

0
H q!;

_q!; k
!
; a!

� �
dt ð2Þ

where F is a function defined on the two ends of the simulation
duration, t ¼ 0 and t ¼ T , and H is described over its entire duration.

A gradient-based algorithm for finding a locally minimizing
solution of Eq. (1) proceeds by iterative improvement of the
optimization objective function: if k P 0 denotes the iteration
counter, then one strives to improve the current values of the
design variables a!k by taking an appropriate small step, i.e.,
a!kþ1 :¼ a!k þ d a!k. To determine d a!k;/ is represented as the fol-
lowing Taylor series near a!k

/ q!;
_q!; k

!
; a!k þ d a!k

� �
¼ / q!;

_q!; k
!
; a!k

� �
þ d

d a!/ q!;
_q!; k

!
; a!k

� �
� d a!k þ o

���d a!k
���2� �

with lim��d a!k
��!0

o d a!k
��� ���2� �

d a!k
��� ��� ¼ 0 ð3Þ

where d/=d a! is the sensitivity of / with respect to the design vari-
ables. To improve the value of / to first order, d a!k must be along a
descent direction such that the second term in Eq. (3) is negative.
One possible choice for such a direction is
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d a!k ¼ ��D
a!/ q!;

_q!; k
!
; a!k

� �
ð4Þ

in which D
a!/ ¼ d/

d a! and � > 0 is a small descent step. Putting

Eq. (4) in Eq. (3) leads to

/ q!;
_q!; k

!
; a!k þ d a!k

� �
� / q!;

_q!; k
!
; a!k

� �
� � D

a!/ q!;
_q!; k

!
; a!k

� ���� ���2 ð5Þ

which guarantees the decrease of / at iteration k of the optimiza-
tion process. This procedure can be easily extended to constrained
optimization problems, using for example the Augmented Lagran-
gian method. Thus, in order to move along the descent direction
in Eq. (4), the derivative of / with respect to a! is desired. It is
expressed as

d/

d a!¼ @/

@ a!þ @/

@ q!
@ q!
@ a!þ @/

@
_q!
@
_q!

@ a!þ @/

@ k
!

@ k
!

@ a! ð6Þ

To compute d/

d a!, the values of @ q!
@ a! ;

@
_
q!

@ a! and @ k
!

@ a!, as well as @/

@ a!, for dif-

ferent types of design variables are required. This is the main focus
of the present paper and is addressed in the forthcoming sections.
But first, the following section presents the equations of motions
for an MBS and the method chosen to solve them.
3. Solving the equations of motion

According to Hamilton’s principle (a.k.a. the least action princi-
ple), it is possible to re-formulate Newton’s Law of Motion in such
a way that the trajectories of a dynamic system themselves satisfy
a type of optimization problem. Namely, the trajectory that an MBS
takes to move between two positions in space minimizes a quan-
tity known as the action integral. Therefore, the motion of an
MBS can be characterized by finding the stationary solutions of
its action integral. This leads to a useful method of discretizing
the equations of motion known as geometric variational integration,
which is outlined below.

Suppose q!2 Rm is the vector of all degrees of freedom of an

MBS and _q! is their time derivative. Also, let k
!2 Rl denotes the

vector of Lagrange multipliers associated with l holonomic
constraints (joints) between different bodies in the assembly.
Assuming a conservative system, its continuous action integral for
time t 2 0; T½ � is expressed by

S q!
� �

¼
Z T

0
L q!;

_q!
� �

� k
!� g! q!

� �� �
dt ð7Þ

where L q!;
_q!

� �
and g! q!

� �
are the Lagrangian and constraint

equations, respectively. The Lagrangian function L is defined as
the kinetic energy minus the potential energy of the system

L q!;
_q!

� �
¼ T _q!

� �
� U q!

� �
¼ 1

2
_q!TM _q!� U q!

� �
ð8Þ

in which M is the positive-definite mass matrix of the system, and U
is the total potential energy, due to for example gravity and the
deformation of springs and flexible bodies. Following Hamilton’s
principle, two classes of time-stepping algorithms have come to
exist: (1) computing the stationary values of the continuous action
integral and then discretizing the resultant dynamic equations in
time, or (2) first discretizing the continuous action integral in time
and then deriving the discrete dynamic equations directly from the
discretized action integral [18]. The latter approach forms the basis
of geometric variational integration and is pursued in this paper.
3.1. Geometric variational integrators

Geometric variational integrators belong to the class of
symplectic-momentum preserving techniques. They are applicable
to a wide spectrum of dynamic problems and have been proven
superior to traditional approaches [19,20]. Traditional time-
stepping algorithms (such as explicit Euler, implicit Euler, Runge-
Kutta) suffer from numerical instabilities and artificial dissipation,
which makes them incapable of capturing the true dynamic behav-
ior of a system, particularly in the long-duration problems [19].
This can have significant consequences on the accuracy of forward
(solving the dynamic equations) and backward (solving the adjoint
equations) simulations for the system of interest. In the current
work, a specific type of variational integrators proposed by Leyen-
decker et al. [17] is adopted to solve the equations of motion and
further describe the proposed sensitivity computation scheme.

Following the idea of variational integrators, if the time domain
0; T½ � is split into N intervals as tn; tn þ hn½ � n ¼ 0;1; . . . ;N � 1ð Þ, Eq.
(7) can be rewritten as
Z T

0
L q!;

_q!
� �

� k
!� g! q!

� �� �
dt ¼

XN�1

n¼0

Z tnþ1

tn

L q!;
_q!

� �
� k
!� g! q!

� �� �
dt

� �

ð9Þ
The following quadrature approximations can be applied to the
integral summands:Z tnþ1

tn

L q!;
_q!

� �� �
dt � hnL 1� að Þq!n þ aq!nþ1;

q!nþ1 � q!n

hn

 !

¼ Ld q!n; q
!

nþ1

� �
Z tnþ1

tn

k
!� g! q!

� �� �
dt � hn

2
k
!

n � g! q!n

� �
þ k
!

nþ1 � g! q!nþ1

� �� �

¼ 1
2

k
!

n � g!d q!n

� �
þ k
!

nþ1 � g!d q!nþ1

� �� �
ð10Þ

where a 2 0;1½ �. If a ¼ 0:5, the approximations are second-order
accurate, otherwise they are of linear accuracy. Higher order of
accuracies can be achieved by improving the quadrature rule. Using
Eqs. (9) and (10), the discretized action integral is given by

Sd q!
� �

¼
XN�1

n¼0

Ld q!n; q
!

nþ1

� �
� 1
2

k
!

n � g!d q!n

� �
þ k
!

nþ1 � g!d q!nþ1

� �� �� �

ð11Þ
Taking the variation of this equation, re-indexing it, and setting
dq!0 ¼ dq!N ¼ 0, lead to

dSd q!
� �

¼
XN�1

n¼1

@Ld q!n; q
!

nþ1

� �
@ q!n

þ
@Ld q!n�1; q

!
n

� �
@ q!n

�
@ g!d q!n

� �
@ q!n

2
4

3
5

T

k
!

n

0
B@

1
CA � dq!n

ð12Þ

The stationary values of Eq. (12), along with the constraint equa-
tions, provide the discrete Euler-Lagrange equation

@Ld q!n ;q
!

nþ1

� �
@ q!n

þ
@Ld q!n�1 ;q

!
n

� �
@ q!n

�
@ g!d q!n

� �
@ q!n

2
4

3
5

T

k
!

n ¼ 0
!

g! q!nþ1

� �
¼ 0

!
ð13Þ

Eq. (13) is a system of nonlinear algebraic equations that can be
solved iteratively, using for example the Newton-Raphson method,

to find q!nþ1 and k
!

n for n ¼ 1;2; . . . ;N � 1. Note: in the presence of
non-conservative external forces (e.g. due to dampers or friction), Eq.
(13) is modified to the discrete Lagrange-d’Alembert equation [19]
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@Ld q!n; q
!

nþ1

� �
@ q!n

þ
@Ld q!n�1; q

!
n

� �
@ q!n

�
@ g!d q!n

� �
@ q!n

2
4

3
5

T

k
!

n

þ f
!�

d q!n; q
!

nþ1

� �
þ f
!þ

d q!n�1; q
!

n

� �
¼ 0

!

g! q!nþ1

� �
¼ 0

!

ð14Þ

In order to initiate solving Eqs. (13) and (14), both q!0 and q!1 are
required. In most applications, however, only initial conditions

(q!0 and _q!0) are provided. To form an equation for q!1, the discrete
version of the Legendre transform can be used. The Legendre trans-
form is a way to switch between the Lagrangian formulation of a

dynamic system, which is in the q!;
_q!

� �
space, to its Hamiltonian

formulation in the q!; p!
� �

space, where p! is the system’s momen-

tum. If p!�
n;nþ1 and p!þ

n�1;n are the so-called pre- and post-momenta at
time tn, for a constrained dissipative system, the discrete Legendre
transform reads as [17]

p!�
n;nþ1 ¼ �

@Ld q!n ;q
!

nþ1

� �
@ q!n

þ 1
2

@ g!d q!n

� �
@ q!n

2
4

3
5

T

k
!

n � f
!�

d q!n; q
!

nþ1

� �
;

p!þ
n�1;n ¼

@Ld q!n�1 ;q
!

n

� �
@ q!n

� 1
2

@ g!d q!n

� �
@ q!n

2
4

3
5

T

k
!

n þ f
!þ

d q!n�1; q
!

n

� �

ð15Þ
The numerical schemes in Eqs. (14) and (13) are regarded as
momentum matching, meaning that at every tn

p!n ¼ p!þ
n�1;n ¼ p!�

n;nþ1 ð16Þ

Thus, as p!0 ¼ M _q!0 at t0 and given q!0 and
_q!0 as inputs, solving the

following system of nonlinear equations, with M as the mass

matrix, provides q!1 and k
!

0.

p!0 ¼ �
@Ld q!0 ;q

!
1

� �
@ q!0

þ 1
2

@ g!d q!0

� �
@ q!0

2
4

3
5

T

k
!

0 � f
!�

d q!0; q
!

1

� �
¼ M _q!0;

g! q!1

� �
¼ 0

!

ð17Þ
The solutions computed for the equations of motions can now be
used in sensitivity analysis, which is detailed in the next section.

4. Sensitivity analysis using the discrete adjoint variable
method

As mentioned earlier, suppose the optimization goal is to min-
imize the objective function in Eq. (2). Adopting the idea of varia-
tional integrators explained in the previous section and assuming a
constant time-step size (for simplicity), Eq. (2) can be discretized
using one-point quadrature rule as

/ ¼ F q!0;
_q!0; q

!
T ;

_q!T ; a
!� �

þ
XN�1

n¼0

Z tnþ1

tn

H q!;
_q!; k

!
; a!

� �
dt

¼ F q!0;
_q!0; q

!
N;

q!N � q!N�1

h
; a!

 !

þ
XN�1

n¼0

hH 1� að Þq!n þ aq!nþ1;
q!nþ1 � q!n

h

 !
; k
!

n; a
!

 !

¼ U q!0; q
!

1; . . . c; q
!

N ;
_q!0; k

!
0; k
!

1; . . . c; k
!

N�1; a
!� �

ð18Þ
To find a local minimum of this function using a gradient-based
approach, its derivative with respect to each design variable is
required. For a component ai of a!, this is given by

dU
dai

¼ @U
@ai

þ @U

@
_q!0

" #T _q!0

@ai
þ
XN
n¼0

@U

@ q!n

" #T
q!n

@ai

0
@

1
A

þ
XN�1

n¼0

@U

@ k
!

n

" #T
k
!

n

@ai

0
@

1
A ð19Þ

Thus, to compute Eq. (19), one needs to know the derivative of the
discrete state variables and Lagrange multipliers with respect to

each design variable, namely q!n

@ai
and k

!
n

@ai
. This can be done through

the discrete adjoint variable method (DAVM). In this section, the
detailed derivation of the equations involved in the DAVM and
how to solve them are presented.

Based on Eqs. (14) and (17), the set of motion equations to be
solved are of the form

c!0 q!0; q
!

1; k
!

0;
_q!0; a

!� �
¼ 0

!

g!1 ¼ g! q!1; a
!� �

¼ 0
!

c!n q!n�1; q
!

n; q
!

nþ1; k
!

n; a
!� �

¼ 0
!

for n ¼ 1;2; . . . c;N � 1

g!nþ1 ¼ g! q!nþ1; a
!� �

¼ 0
!

for n ¼ 1;2; . . . c;N � 1

ð20Þ
Also, at t ¼ 0, the following equations stand

g!0 ¼ g! q!0; a
!� �

¼ 0
!

@ g! q!0; a
!� �

@ q!0

_q!0 ¼ 0
! ð21Þ

Differentiating each of these six equations with respect to ai leads to

@ g!0

@ai
þ @ g!0

@ q!0

@ q!0

@ai
¼ 0

!

@

@ai

@ g!0

@ q!0

 !
_q!0 þ @ g!0

@ q!0

@
_q!0

@ai
þ @

@ q!0

@ g!0

@ q!0

 !
@ q!0

@ai
_q!0 ¼ 0

!

@ c!0

@ai
þ @ c!0

@ q!0

@ q!0

@ai
þ @ c!0

@ q!1

@ q!1

@ai
þ @ c!0

@ k
!

0

@ k
!

0

@ai
þ @ c!0

@
_q!0

@
_q!0

@ai
¼ 0

!

@ g!1

@ai
þ @ g!1

@ q!1

@ q!1

@ai
¼ 0

!

@ c!n

@ai
þ @ c!n

@ q!n�1

@ q!n�1

@ai
þ @ c!n

@ q!n

@ q!n

@ai
þ @ c!n

@ai
þ @ c!n

@ q!nþ1

@ q!nþ1

@ai

þ @ c!n

@ k
!

n

@ k
!

n

@ai
¼ 0

!

@ g!nþ1

@ai
þ @ g!nþ1

@ q!nþ1

@ q!nþ1

@ai
¼ 0

!

ð22Þ

Since the geometrical design variables are also considered in this
study, the constraint equations g!n are dependent on the design
variables, as will be seen in the forthcoming sections. Hence, their
derivative with respect to ai is not zero.

Note: Eq. (22) provides a system of algebraic equations with

@
_
q!0
@ai

;
@ q!n

@ai
and @ k

!
n

@ai
as unknowns. Having done the forward simula-

tion, by solving this system and implementing the computed val-
ues in Eq. (19), the sensitivity of the objective function can be
calculated. This way of performing the sensitivity analysis is
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referred to as the discrete direct differentiation method. The main
issue with this technique is that Eq. (22) needs to be solved sepa-
rately for all design variables. Therefore, for complex problems
with a large number of design variables, it becomes computation-
ally too expensive. For such cases, the DAVM can be utilized, which

eliminates the need for computing @ q!n

@ai
and @ k

!
n

@ai
in Eq. (22).

One can introduce adjoint vectors l!n 2 Rm n ¼ 0;1; . . . c;N � 1ð Þ
and g!n 2 Rl n ¼ 1; . . . c;Nð Þ associated with the dynamic and con-
straint equations at each time step (m: number of degrees of free-
dom of the MBS and l: number of holonomic constraints). Since the
expressions in Eq. (22) are all equal to zero, multiplying them by
the transpose of the adjoint vectors and subtracting them from
Eq. (19) does not change the value of dU

dai
, regardless of the values

of l!n and g!n. Thus,

dU
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þ
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" 
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ð23Þ
Re-indexing the terms and putting the similar ones together lead to

dU
dai
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@ai

�
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n¼0
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n
@ c!n

@ai

 !
�
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n¼1
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n
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þ
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ð24Þ

As this equation holds for any values of l!n and g!n, it is possible to
choose these in such a way that bypasses the computation of the
gradients of the state variables and Lagrange multipliers in the sen-
sitivity analysis. That is, one can choose l!n and g!n so that the coef-

ficients of @ q!n

@ai
and @ k

!
n

@ai
in Eq. (24) all become zero. To do so, first,

l!N�1; l
!

N�2; g
!

N and g!N�1 are found from the following two systems
of linear algebraic equations
@ c!N�1

@ q!N

� �T
l!N�1 þ @ g!N

@ q!N

� �T
g!N ¼ @U

@ q!N

@ c!N�1

@ k
!

N�1

" #T
l!N�1 ¼ @U

@ k
!

N�1

8>>>><
>>>>:

@ c!N�2

@ q!N�1

� �T
l!N�2 þ @ g!N�1

@ q!N�1

� �T
g!N�1 ¼ @U

@ q!N�1

� @ c!N�1

@ q!N�1

� �T
l!N�1

@ c!N�2

@ k
!

N�2

" #T
l!N�2 ¼ @U

@ k
!

N�2

8>>>><
>>>>:

ð25Þ

Then, l!n�1 and g!n n ¼ N � 2;N � 3; . . . c;1ð Þ can be computed by
solving the system of linear algebraic equations below

@ c!n�1

@ q!n

� �T
l!n�1 þ @ g!n

@ q!n

� �T
g!n ¼ @U

@ q!n

� @ c!nþ1
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� �T
l!nþ1 � @ c!n

@ q!n

� �T
l!n

@ c!n�1

@ k
!

n�1

" #T
l!n�1 ¼ @U

@ k
!

n�1

8>>>><
>>>>:

ð26Þ
Note: Eqs. (25) and (26) are solved in a backward manner from
n ¼ N to n ¼ 1 with l!n�1 and g!n as unknowns. That is why the pro-
cess of solving the adjoint equations is sometimes called backward
simulation. Unlike Eq. (22) in the discrete direct differentiation
method, systems of equations in Eqs. (25) and (26) need to be
solved only once for each iteration of optimization. Once l!n and

g!n are computed and @ q!0
@ai

and
_
q!0
@ai

are calculated using the first

two expressions in Eq. (22), the sensitivity Eq. (24) reduces to
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4

3
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ð27Þ

This is the final equation for the derivative of the objective function
with respect to design variable ai. The same process can be applied
to compute the gradients of optimization constraint functions.

5. Sensitivity with respect to geometrical design variables

As aforementioned, geometrical design variables are those
affecting the shape of MBS configurations, such as the dimensions
of components and joint positions. Unlike non-geometrical param-
eters whose values influence only one component of an assembly,
geometrical parameters could be related to multiple bodies that
share that variable. For instance, changing the position of a joint
would impact all the components connected to it. For the sake of
brevity and to narrow the premise, this section focuses on MBSs
composed of springs, dampers, beams and rigid bodies interacting
via spherical (pin) and welded (fixed) joints. The same procedure
can be extended to handle more complicated bodies and joints.
In this section, first, a brief overview of rotation-free formulations
for beam and rigid body dynamics, constraint equations between
them and the equations of springs and dampers is provided. Then,
as an example, the sensitivity analysis of a simple rigid-flexible
multibody considering geometrical design variables is described.
The avoidance of rotation parameters leads to a constant mass
matrix for each body. This turns out to be highly beneficial toward
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having a conserving numerical time-stepping solver [21,22], like
the one used in this paper, but also toward simplifying the equa-
tions of motion, thus facilitating the required gradient computa-
tions with respect to geometrical and non-geometrical design
variables.

5.1. Absolute nodal coordinate formulation for beams

Initially proposed by Shabana [23], the absolute nodal coordinate
formulation (ANCF) uses the positions and slopes of nodes in the glo-
bal inertial frame as the generalized coordinates for beams. This
results in a constant mass matrix for beams, and subsequently can-
cels the nonlinear terms of centrifugal and Coriolis inertia forces in
the equations of motion. It also leads to simple expressions for the
constraint equations, which is of a great benefit for defining differ-
ent types of joints and including geometrical design variables in
the optimization routine. The ANCF has been widely implemented
in modeling deformable objects, such as beams, plates and solids,
in dynamic problems. It is capable of describing the rigid body
modes and accurately solving large deformation problems
[21,24–27]. In this paper, the basics of this theory for a two-
noded gradient-deficient Euler–Bernoulli beam element with uni-
form cross-section is provided [28].

Consider a beam element as depicted in Fig. 1. For this element,
the position vector r! of an arbitrary point in the global Cartesian
frame can be written as

r! x; tð Þ ¼ S xð Þq! tð Þ ð28Þ
where x is the local coordinate of that point along the centerline in
the undeformed configuration. In Eq. (28), q! tð Þ is the time-dependent
vector of nodal degrees of freedom and S is the time-independent
shape function matrix expressed via

q! tð Þ ¼ r!T
i

@ r!T
i

@x r!T
j

@ r!T
j

@x

� �T
S xð Þ ¼ s1I3�3 s2I3�3 s3I3�3 s4I3�3½ �
s1 ¼ 1� 3n2 þ 2n3

s2 ¼ l n� 2n2 þ n3
	 


s3 ¼ 3n2 � 2n3

s4 ¼ l n3 � n2
	 


ð29Þ

in which I3�3 is the identity matrix, l is the element’s length in the
undeformed configuration and n ¼ x=l. To solve the equations of
motion described in Section 3, the element’s mass matrix and
Fig. 1. Two-noded Euler-Bernoulli beam element.
potential energy are required. The former reads as (details are pro-
vided in Appendix A)

Melement ¼ qAl
420

156I3�3 22lI3�3 54I3�3 �13lI3�3

22lI3�3 4l2I3�3 13lI3�3 �3l2I3�3

54I3�3 13lI3�3 156I3�3 �22lI3�3

�13lI3�3 �3l2I3�3 �22lI3�3 4l2I3�3

2
666664

3
777775 ð30Þ

where q; V and A are the density, volume and cross-sectional area
of the element, respectively. The potential energy of the element is
due to its elastic deformation and gravity. It is given by

Uelement ¼ Ulongitudinal þ Utransverse þ Ugravity

¼ 1
2

Z
V
EAe2 þ EIj2	 


dV þ
Z
V
�qm!T r!dV ð31Þ

in which E; I and m! are, respectively, Young’s modulus, the second
moment of area and the gravity vector. In Eq. (31), e and j are the
element’s longitudinal strain and spatial curvature formulated as

e ¼ 1
2

@ r!T

@x
@ r!
@x

� 1

 !
; j ¼

@ r!
@x � @2 r!

@x2

����
����

@ r!
@x

����
����
3 ð32Þ

In case of small axial deformation and assuming constant longitudi-
nal strain, both expressions in Eq. (32) can be simplified extensively
as follows

e ¼ d
l
� 1 ¼ 1

l
r!j � r!i

��� ���� 1; j ¼ @2 r!
@x2

�����
����� ð33Þ

To perform the forward simulation, as in Section 3, one needs to
compute the derivative of element’s potential energy, Eq. (31), with
respect to q!, also called the vector of generalized forces. Different
assumptions and formulas have been proposed for this quantity,
some of which could be found in [28,29]. Assuming small axial
deformations and using Eqs. 28, 31 and 33, the generalized elastic
forces take a linear form as

@Uelastic

@ q! ¼ @Ulongitudinal

@ q! þ @Utransverse

@ q!

¼ Klongitudinal q
!þ Ktransverse q

! ð34Þ

Expressions of Klongitudinal and Ktransverse are provided in Appendix A.
The generalized gravity force vector can be computed by
Fig. 2. Rigid body.
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@Ugravity

@ q! ¼�
Z
V
qm!TS
h i

dV
� �

¼� 1
12

qAl 6I3�3 lI3�3 6I3�3 �lI3�3½ �T m!

ð35Þ
5.2. Natural coordinates for rigid bodies

Natural coordinates, also known as basic coordinates or Cartesian
coordinates, achieve the rotation-free expression for dynamic rigid
bodies by introducing a set of redundant degrees of freedom and
additional constraints into the equations of motion [30–33]. Simi-
lar to ANCF for beams, natural coordinates formulation also results
in a constant mass matrix for rigid bodies and extensively simpli-
fies the dynamic and sensitivity equations.

Let r!CM and R denote the global position of the body’s center of
mass (CM) and the local frame attached to it, respectively, as

shown in Fig. 2. If �r
!¼ �x �y �z½ �T is the local position vector of

an arbitrary point P on the body, its global position vector is given
by

r!P ¼ r!CM þ R �r
!¼ r!CM þ R

�x
�y
�z

8><
>:

9>=
>; ð36Þ

Suppose e!1; e
!

2 and e!3 are the unit basis vectors of the local frame.
Then, Eq. (36) can be rewritten as

r!P �x; �y;�z; tð Þ ¼ I3�3 �xI3�3 �yI3�3 �zI3�3½ �
r!CM

e!1

e!2

e!3

8>>><
>>>:

9>>>=
>>>;

¼ S �x; �y;�zð Þq! tð Þ

ð37Þ

where q! is the time-dependent vector of the rigid body’s degrees of
freedom (generalized coordinates). As only 6 degrees of freedom are
Fig. 3. A rigid-spring-beam assembly.

Fig. 4. (a) Pendulum at t ¼ 0. (b) Defle
enough to fully configure a rigid body in the 3D space and q! has 12
elements, a set of additional constraints, called internal constraints,
are required. They can be stated as

g!internal q!
� �

¼

e!1 � e!1 � 1
e!2 � e!2 � 1
e!3 � e!3 � 1
e!1 � e!2

e!1 � e!3

e!2 � e!3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 0
!

6 ð38Þ

Internal constraints, in fact, enforce the orthonormality of the rigid
body’s local coordinate system. If the local frame’s axes are aligned
with the body’s principal axes, incorporating the procedure
described in Appendix B, the rigid body’s mass matrix takes the fol-
lowing diagonal form

Mrigid ¼

mI3�3 03�3 03�3 03�3

03�3
1
2 I2 þ I3 � I1ð ÞI3�3 03�3 03�3

03�3 03�3
1
2 I1 þ I3 � I2ð ÞI3�3 03�3

03�3 03�3 03�3
1
2 I1 þ I2 � I3ð ÞI3�3

2
6664

3
7775

ð39Þ
in which, m and Ii i ¼ 1;2;3ð Þ are the body’s mass and principal
moments of inertia, respectively. Since there is no time-term in
the mass matrix equation, it remains constant during the forward
simulation. To solve the equations described in Section 3, the
derivative of body’s potential energy, which is only due to gravity,
with respect to q! is needed. This parameter is called the generalized
gravity force vector and reads as

@Ugravity

@ q! ¼�
Z
V
qm!TS
h i

dV
� �

¼�m mx my mz 0 0 0 0 0 0 0 0 0½ �T

ð40Þ

where m!¼ mx my mz½ �T is the gravity vector,

5.3. Constraint equations using ANCF and natural coordinates

A key benefit of utilizing these two rotation-free theories is the
simplification they make on the constraint equations. For example,
a spherical joint between a point A on a rigid body and an end
point B on a beam is expressed as

g!spherical ¼ r!A � r!B ¼ Srigid
��
A q
!

rigid � SbeamjB q!beam

¼ Srigid
��
A �SbeamjB

�  q!rigid

q!beam

( )
¼ 0

!
3

ð41Þ

and if instead, this connection is welded, Eq. (41) is augmented by
these three more equations
cted pendulum at time instance t.
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g!welded ¼ RT
rigid

���
tcurrent

@ r!B

@x

�����
tcurrent

� RT
rigid

���
t0

@ r!B

@x

�����
t0

¼ 0
!

3 ð42Þ

Other types of constraints can be defined in the same fashion
[22,34]. Using ANCF and natural coordinates, the constraint Jaco-
bian matrix can be analytically evaluated in a straightforward
manner.
5.4. Spring and damper equations

Assume a spring and a damper, between a point C of a rigid
body and an end point D of a beam. If k is the spring constant
Fig. 5. Difference between the sensitivity values with res
and c denotes the damping coefficient, the generalized spring and
damper force vectors are expressed via
@Uspring

@ q! ¼ k
ltcurrent � l0
ltcurrent

STrigidjCSrigidjC �STrigidjCSbeamjD
�STbeamjDSrigidjC STbeamjDSbeamjD

" #
q!rigid

q!beam

( )

f
!

damper ¼ �c
STrigidjCSrigidjC �STrigidjCSbeamjD

�STbeamjDSrigidjC STbeamjDSbeamjD

" # _q!rigid

_q!beam

8<
:

9=
;

ð43Þ
where ltcurrent and l0 are the current and initial lengths of the spring,
respectively. The derivation of Eq. (43) is provided in Appendix C.
pect to h; q and E from [8] and the proposed DAVM.
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5.5. Example: sensitivity analysis for a simple rigid-spring-beam
assembly

To demonstrate the techniques developed so far, the sensitivity
analysis of a simple rigid-spring-beam multibody is presented. The
same computations can be employed for more complex assem-
blies. Suppose the aim is to minimize the squared norm of the dis-
placement of Node B for the mechanism depicted in Fig. 3. The
objective function in this case is

/ ¼
Z T

0
d
!

B

��� ���2dt ð44Þ

where d
!

B represents the time-dependent displacement of Node B.
The vector of design variables contains three geometrical variables:
the initial global position of Node D along X, Y and Z axes. Body 1 is
a rigid bar and Body 2 is a beam discretized by one element with
Fig. 6. Displacement of Node

Fig. 7. Evolution of objective fun
length l and constant cross section A. The assembly is connected
to the ground via two spherical joints at Points A and D. If XB;YB

and ZB denote the initial global position of Node B at t ¼ 0; d
!

B reads as

d
!

B ¼ SBody1jB q!Body1 tð Þ �
XB

YB

ZB

8><
>:

9>=
>; ð45Þ

Following Eq. (18), Eq. (44) can be transformed to

U q!0Body1 ; q
!

1Body1 ; . . . ; q
!

NBody1

� �

¼
XN�1

n¼0

h d
!

B 1� að Þq!nBody1 þ aq! nþ1ð ÞBody1

� ���� ���2� � ð46Þ

Based on the notation used in Eq. (20) and pursuing the equations
derived in Sections 3–5, with a ¼ 0:5, the set of motion equations
for this assembly is
B for the two time-steps.

ction for the two time-steps.
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for n ¼ 1;2; . . . c;N � 1

ð47Þ

where
Fig. 8. Evolution of X coordinate of

Fig. 9. Evolution of Y coordinate of
q!n ¼
q!nBody1

q!nBody2

( )
; M ¼ MBody1 0

0 MBody2

� �

g!n ¼ g! q!n

� �
¼ SBody1jA 0

0 SBody2jD

� �
q!n �

XA

YA

ZA

XD

YD

ZD

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 0
!

@U

@ q!n

¼ @Ugravity

@ q!n

þ @Uspring

@ q!n

þ @Uelastic

@ q!n

ð48Þ
These equations, along with the adjoint equations (Eqs. (25) and
(26)), as well as Eqs. (28)–(65) can be utilized to find adjoint
variables l!n and g!n.To compute the total derivative based on
Node D for the two time-steps.

Node D for the two time-steps.
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Eq. (27), @U
@ai

; @ c
!

n
@ai

and @ g!n

@ai
are also required. If XD; YD and ZD are the

initial global position of Node D at t ¼ 0, since there is no explicit
dependency in U on the given design variables, @U

@XD
¼ @U

@YD
¼ @U

@ZD
¼ 0.

As for the constraint equations, there are two spherical joints in this
example, only one of which is a function of XD;YD and ZD. Using Eq.
(48)

@ g!n

@XD
¼ �

0
0
0
1
0
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

@ g!n

@YD
¼ �

0
0
0
0
1
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

@ g!n

@ZD
¼ �

0
0
0
0
0
1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð49Þ
Fig. 10. Displacement of Node B in the

Fig. 11. Evolution of objective function u
In the equations of c!0 and c!n, Eq. (47), only the terms related to
Body 2 are explicitly dependent on XD;YD and ZD. They are

� MBody2

According to Eq. (30)
@MBody2

@ai
¼ @MBody2

@l
@l
@ai

ð50Þ

� @UgravityBody2=@ q
!

n

Denoting m! as the gravity vector and following Eq. (35)
initial an

sing DA
@

@ai

@UgravityBody2

@ q!n

" #
¼ � @

@l

Z
V
qm!TS
h i

dV
� �

@l
@ai

ð51Þ
d optimum configurations.

VM and FD for Dt ¼ 0:001 s.
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� @UlongitudinalBody2=@ q
!

n and @UtransverseBody2=@ q
!

n

Assuming small longitudinal deformation and utilizing
Eq. (34)

@

@ai

@UlongitudinalBody2

@ q!n

" #
¼ @Klongitudinal

@l
@l
@ai

@

@ai

@UlongitudinalBody2

@ q!n

" #
¼ @Ktransverse

@l
@l
@ai

ð52Þ

In Eqs. (50)–(52), l is the beam’s length in the undeformed
configuration, which is calculated by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD � XCð Þ2 þ YD � YCð Þ2 þ ZD � ZCð Þ2

q
ð53Þ

and its derivatives are

@l
@XD

¼ XD � XC

l
;

@l
@YD

¼ YD � YC

l
;

@l
@ZD

¼ ZD � ZC

l
ð54Þ

Having computed all these terms and substituting them into
Eq. (27), the sensitivity of the given objective function is thus found.
Fig. 12. The car with double-wishbone suspension system.

Fig. 13. A suspension
For cases with a higher number of components and other types of
geometrical design variables, derivatives are obtainable in a similar
manner.
6. Numerical examples

Three numerical test cases are provided in this section. The first
example is to validate the proposed sensitivity analysis technique
based on the study reported in [8]. The other two are to compare
its performance with the finite difference method (FD) and assay
its applicability to the cases containing geometrical and non-
geometrical design variables. In all examples, a Newton-Raphson
scheme is used to solve the linear and nonlinear equations of for-
ward and backward simulations. Once the required gradients are
computed, the NLopt library [35], which is an open-source nonlin-
ear optimization library, is utilized to find the optimum solutions.
To handle the optimization constraints, the Augmented Lagrangian
method is exploited. In all examples, a is set to 0.5 in the forward
and backward simulations. The optimization scheme is stopped
when the objective function improvement is less than 10�6 for five
consecutive iterations or the maximum number of iterations, set to
60, is reached.
6.1. Sensitivity analysis of a flexible pendulum

Consider the planar flexible pendulum shown in Fig. 4. It is
made of a material with the density q ¼ 4000 kg=m3, Young’s
modulus E ¼ 107 N=m2 and Poisson’s ratio 0.3. The length of the
beam is 1.2 m, discretized by 5 equi-length elements, and the
width (h) of its square cross-section is 0:05 m. The duration of
the problem is 4 s and the beam is initially at rest horizontally
along the global X axes.

Suppose dyt is the deflection of the tip at time t, and the goal is
to compute the sensitivity of this parameter at different time
instances with respect to h; q and E. dyt is measured along the y
axis of the local coordinate system whose origin is at Node A and
its x axis is tangent to the beam’s centerline at that node. Fig. 5
shows the difference between the values reported in [8] and those
computed using the developed DAVM in this paper. The results are
almost identical, and the small differences are due to the different
time-stepping methods for solving the forward and backward sim-
ulation equations.
system module.
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6.2. Optimization of a rigid-spring-beam assembly

For the second example, the two-dimensional version of the
assembly discussed in Section 5 and shown in Fig. 3 is considered.
The system is connected to the ground via two spherical joints at
Nodes A and D. Body 1 is a rigid cylinder connecting Nodes A
and B. Its mass and cross-sectional diameter are 1.6 kg and
Fig. 14. Node IDs associated

Table 1
Initial values and range of design variables for suspension system example.

Design variables (ai) Initial values

X1;Y1; Z1ð Þ �1:270;0:210;0:150ð Þ m
X2;Y2; Z2ð Þ �0:960;0:210;0:150ð Þ m
X3;Y3; Z3ð Þ �1:270;0:180;0ð Þ m
X4;Y4; Z4ð Þ �0:960;0:180;0ð Þ m
X5;Y5; Z5ð Þ 0:210;0:140;0:250ð Þ m
X6;Y6; Z6ð Þ 0:520;0:140;0:250ð Þ m
X7;Y7; Z7ð Þ 0:210;0:100;0ð Þ m
X8;Y8; Z8ð Þ 0:520;0:100;0ð Þ m
X9;Y9; Z9ð Þ 0:210;�0:140;0:250ð Þ m
X10;Y10 ; Z10ð Þ 0:520;�0:140;0:250ð Þ m
X11;Y11; Z11ð Þ 0:210;�0:100;0ð Þ m
X12;Y12; Z12ð Þ 0:520;�0:100;0ð Þ m
X13;Y13; Z13ð Þ �1:270;�0:210;0:150ð Þ m
X14;Y14; Z14ð Þ �0:960;�0:210;0:150ð Þ m
X15;Y15; Z15ð Þ �1:270;�0:180;0ð Þ m
X16;Y16; Z16ð Þ �0:960;�0:180;0ð Þ m
Z17 0.3 m
Z18 0.4 m
Z19 0.4 m
Z20 0.3 m
k1 10000 N/m
k2 10000 N/m
k3 10000 N/m
k4 10000 N/m
c1 50 N.s/m
c2 500 N.s/m
c3 500 N.s/m
c4 50 N.s/m
0.01 m, respectively, and its center of mass is located in the mid-
point between the two ends. Body 2 is a flexible beamwith Young’s
modulus of 70 GPa, Poisson’s ratio of 0.3 and density of
3700 kg=m3. Its cross-section is a solid square with 0.01 m width.
A linear spring connects Nodes B and C. The spring constant is
100 N=m3 and its initial undeformed length is equal to the distance
between Nodes B and C at time zero.
with design variables.

Lower bounds (lbi) Upper bounds (ubi)

�1:350;0:100;0:100ð Þ �1:100;0:350;0:300ð Þ
�1:100;0:100;0:100ð Þ �0:800;0:350;0:300ð Þ
�1:350;0:100;�0:100ð Þ �1:100;0:350;0:100ð Þ
�1:100;0:100;�0:100ð Þ �0:800;0:350;0:100ð Þ
0:100;0:100;0:100ð Þ 0:350;0:300;0:300ð Þ
0:400;0:100;0:100ð Þ 0:650;0:300;0:300ð Þ
0:100;0:100;�0:100ð Þ 0:350;0:300;0:100ð Þ
0:400;0:100;�0:100ð Þ 0:650;0:300;0:100ð Þ
0:100;�0:300;0:100ð Þ 0:350;�0:100;0:300ð Þ
0:400;�0:300;0:100ð Þ 0:650;�0:100;0:300ð Þ
0:100;�0:300;�0:100ð Þ 0:350;�0:100;0:100ð Þ
0:400;�0:300;�0:100ð Þ 0:650;�0:100;0:100ð Þ
�1:350;�0:350;0:100ð Þ �1:100;�0:100;0:300ð Þ
�1:100;�0:350;0:100ð Þ �0:800;�0:100;0:300ð Þ
�1:350;�0:350;�0:100ð Þ �1:100;�0:100;0:100ð Þ
�1:100;�0:350;�0:100ð Þ �0:800;�0:100;0:100ð Þ
0.15 0.6
0.15 0.6
0.15 0.6
0.15 0.6
100 30000
100 30000
100 30000
100 30000
20 1000
20 1000
20 1000
20 1000
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In this example, the duration is 1 s, and the problem is run by
two different time-step sizes of 0.001 s and 0.0005 s. To drive the
mechanism an initial angular velocity of �5 rad/s about the posi-
tive Z axis is applied to Body 2. The objective function is the
squared norm of Node B’s displacement over the entire simulation
duration. A lower bound constraint is imposed on the beam’s
length to prevent producing a beam with zero length. This opti-
mization problem can be formulated as

min
XD ;YD

R 1
0 d

!
B

��� ���2dt
subject to

lBody2 P 0:001m;

�10m 6 XD; YD 6 10m

ð55Þ

Fig. 6 shows the displacement of Node B in time for the initial
configuration for the two given time-step sizes. As can be seen,
Table 2
Front and rear wheels excitation.

Front wheels dz ¼ 0:050 sin 2ptð Þ
Rear wheels dz ¼ 0:075 sin 4ptð Þ

Table 3
Physical and material properties for suspension system example.

Parameters Values

mass of chassis 300 kg
mass of wheels 20 kg
Young’s modulus of beams 200 GPa
Poisson’s ratio of beams 0.3
outer radius of beams’ cross-section 0.015 m
inner radius of beams’ cross-section 0.01 m
density of beams 7800 kg/m3

location of chassis’s center of mass 0:243;0;0:365ð Þ m
location of front-left wheel’s center of mass �1:110;�0:680;0:075ð Þ m
location of front-right wheel’s center of mass �1:110;0:680;0:075ð Þ m
location of rear-left wheel’s center of mass 0:370;�0:560;0:125ð Þ m
location of rear-right wheel’s center of mass 0:370;0:560;0:125ð Þ m

Fig. 15. Evolution of objective function f
the plots for the two time-steps coincide and so the forward sim-
ulation phase is insensitive to these two time-step sizes.

Figs. 7–9 present the evolution of the objective function and
design variables for both time-step sizes. Even though the opti-
mization procedure proceeds slightly differently for the two
time-steps, the final optimum solutions are almost exactly identi-
cal. These figures confirm that not only the forward simulation
phase, but also the backward simulation and consequently the sen-
sitivity values and optimization results are independent of the
time-step size. This is, however, not the case in the approximation
methods, such as the equivalent static loads (ESL). In ESL, the sen-
sitivity values are computed for a sequence of equivalent linear
static models which have the same response fields as those in
the actual dynamic problem at a selected number of time
instances. Depending on which time-steps are taken into account
and for how many of them the equivalent model is constructed,
the optimum solutions could be entirely different (e.g., the numer-
ical examples in [36]). It has been even shown that ESL does not in
general lead to optimal designs [37], whereas the proposed sensi-
tivity analysis technique as explained in Section 2 guarantees mov-
ing along the descent direction (or ascent direction in
maximization problems) and subsequently improving the defined
objective function.

Fig. 10 shows the displacement of Node B in the initial and opti-
mum configurations. According to this figure, the displacement of
Node B in the optimum solution is considerably smaller than that
in the initial solution for all time steps, therefore leading to a sig-
nificantly better performance in terms of the defined criterion in
Eq. (55).

To further investigate the performance of the proposed sensitiv-
ity analysis technique, this problem is run using FD as well. Fig. 11
depicts the optimization evolution for the developed DAVM and FD
with 1% perturbation value. Even though both approaches con-
verge to the same optimum solution, their computation time is
considerably different. On the same computer, the DAVM executes
about 4.5 times faster than FD. This is mainly due to the fact that in
FD to compute the sensitivities for each design variable, an addi-
tional round of simulation is required. The difference is even more
significant for more complex examples, which makes FD almost
impractical in those cases.
or the suspension system example.
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6.3. Optimization of an automotive double-wishbone suspension
system

To examine the developedmethods on a large-scale engineering
case study, they are applied to optimize the double-wishbone sus-
pension system of the car depicted in Fig. 12. There are four sus-
pension system modules, as portrayed in Fig. 13, each consists of
two wish-bone like structures and a shock-absorber. The wish-
bones are composed of two hollow circular flexible beams which
are welded together from one end and connected to the wheels
from another end through spherical joints. The shock-absorbers
are modeled by a spring and a damper, connected to the wheels
Fig. 16. Displacement of chassis’s center of mass in the

Fig. 17. Maximum axial stress of beams in the optim
and the chassis. The rest of the bodies are considered as rigid bod-
ies. No symmetry is imposed on the design in order to give the
optimization scheme the freedom to find the optimum values of
design variables independently for each of the four suspension sys-
tem modules.

The objective function is the squared magnitude of displace-
ment of the chassis’s center of mass over time. There are 52 geo-
metrical and 8 non-geometrical design variables in this problem.
The geometrical variables are the position of the connection points
between the beams and chassis (X; Y and Z coordinates of each
point) and those between the shock-absorbers and chassis along
the global Z axis (see Fig. 14). The non-geometrical variables are
non-optimum (initial) and optimum configurations.

um solution (a) Front beams. (b) Rear beams.



Table 4
Optimum values of design variables for suspension system example

Design variables Optimum values (DAVM) Optimum values (FD)

X1;Y1; Z1ð Þ �1:27028;0:20972;0:14977ð Þ m �1:27051;0:20937;0:14930ð Þ m
X2;Y2; Z2ð Þ �0:96033;0:21016;0:15049ð Þ m �0:96044;0:21009;0:15107ð Þ m
X3;Y3; Z3ð Þ �1:27009;0:18006;0:00561ð Þ m �1:27005;0:17924;0:01282ð Þ m
X4;Y4; Z4ð Þ �0:96021;0:18013;0:00234ð Þ m �0:96011;0:17940;0:00849ð Þ m
X5;Y5; Z5ð Þ 0:21030;0:13594;0:26894ð Þ m 0:21081;0:13529;0:27875ð Þ m
X6;Y6; Z6ð Þ 0:51827;0:14297;0:23080ð Þ m 0:51602;0:14415;0:21930ð Þ m
X7;Y7; Z7ð Þ 0:20898;0:11675;�0:03229ð Þ m 0:20936;0:11558;�0:02645ð Þ m
X8;Y8; Z8ð Þ 0:51810;0:12266;�0:04791ð Þ m 0:51797;0:12282;�0:04917ð Þ m
X9;Y9; Z9ð Þ 0:210301;�0:13596;0:26894ð Þ m 0:21081;�0:13529;0:27874ð Þ m
X10;Y10 ; Z10ð Þ 0:51827;�0:14299;0:23080ð Þ m 0:51602;�0:14415;0:21930ð Þ m
X11;Y11; Z11ð Þ 0:20898;�0:11675;�0:03229ð Þ m 0:20935;�0:11558;�0:02644ð Þ m
X12;Y12; Z12ð Þ 0:51810;�0:12265;�0:04791ð Þ m 0:51797;�0:12282;�0:04917ð Þ m
X13;Y13; Z13ð Þ �1:27028;�0:20972;0:14977ð Þ m �1:27051;�0:20938;0:14930ð Þ m
X14;Y14; Z14ð Þ �0:96033;�0:21016;0:15049ð Þ m �0:96044;�0:21009;0:15107ð Þ m
X15;Y15; Z15ð Þ �1:27009;�0:18006;0:00561ð Þ m �1:27005;�0:17924;0:01282ð Þ m
X16;Y16; Z16ð Þ �0:96021;�0:18014;0:00234ð Þ m �0:96011;�0:17941;0:00850ð Þ m
Z17 0.18536 m 0.1500 m
Z18 0.28891 m 0.27918 m
Z19 0.28891 m 0.27918 m
Z20 0.18536 m 0.1500 m
k1 7552.080 N/m 3780.350 N/m
k2 21048.100 N/m 21058.600 N/m
k3 21048.100 N/m 21058.600 N/m
k4 7552.080 N/m 3780.350 N/m
c1 102.625 N.s/m 122.734 N.s/m
c2 457.101 N.s/m 364.194 N.s/m
c3 457.101 N.s/m 364.194 N.s/m
c4 102.625 N.s/m 122.734 N.s/m
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spring constants and damping coefficients of each shock-absorber.
The lower and upper bounds and initial values of each parameter
are reported in Table 1.

To mimic the driving condition on a rugged terrain, the front
and rear wheels are subject to two different harmonic excitations
along the global Z axis as described in Table 2. For this problem,
the final time T and the time-step size are 3 s and 0.001 s, respec-
tively. Other parameters are summarized in Table 3.

The optimization problem in this case is written as

min
ai2R60

R 3
0 d

!
CM

��� ���2dt
subject to

lbi 6 ai 6 ubi i ¼ 1; . . . ;60ð Þ;
�400 MPa 6 rbeamj

6 400 MPa j ¼ 1; . . . ;16ð Þ;
lbeamj

P 0:001m j ¼ 1; . . . ;16ð Þ
ð56Þ

Similar to the previous example, for the sensitivity analysis, FD with
1% perturbation value is employed as well. Fig. 15 shows the evolu-
tion of the objective function using the proposed DAVM and FD.
Both methods converge to an optimum design, however, the one
found by the DAVM has a better objective function value. This could
be due to approximating the sensitivity values in FD, as opposed to
having the exact values using the DAVM. Errors in computing the
gradients drive the optimization procedure along either a wrong
direction (i.e., deteriorating the performance) or the one that does
not improve the performance the most (i.e., slowing down the con-
vergence). In this example, both methods eventually lead to the
same solution, if they are run for 60 iterations. In terms of the com-
putation time, on the same computer, the DAVM runs about 40
times faster than FD for 60 optimization iterations.

Fig. 16 is the plot of total displacement of the chassis’s center of
mass for the initial and optimum designs utilizing the DAVM. It
well confirms that the optimum solution outperforms the initial
design in terms of the defined performance criterion.

Fig. 17 shows the variation of beams’ maximum axial stress for
the optimum solution. Since the model is symmetric with respect
to XZ plane, only the values for one half of the car are plotted. It
is clear that all stress constraints are satisfied. Also, as the center
of mass of the chassis is closer to the rear of the car, beams belong-
ing to the rear suspension system module (Beams 5, 6, 7, 8) are
subject to larger forces and subsequently have higher stress values.

Optimum values of the objective function and design variables
using the proposed DAVM and FD are reported in Table 4. Although
no symmetry constraint is imposed on the front and rear suspen-
sion modules, the optimum values suggest a symmetric solution
for each pair, as expected.

7. Conclusion

The current paper makes the following contributions in the area
of design optimization of dynamic flexible MBSs. First, it presents
the novel application of the DAVM for computing the sensitivities
in design optimization of flexible dynamic multibody systems. In
order to derive the adjoint equations, the discrete, instead of
continuous, dynamic equations are used directly. This leads to a
system of linear algebraic equations, which is in general less
computationally expensive to solve compared to the system of
differential algebraic equations produced by the CAVM. It also
yields the exact values of gradients of discrete objective and
constraint functions, thus ensuring the move along the actual des-
cent or ascent directions in the optimization problems. Although
the relevant adjoint equations are generated using a specific type
of geometric variational integrators for the forward simulation,
the proposed sensitivity analysis technique can be integrated, with
minor modifications, with other types of numerical time-stepping
methods as well.

Another contribution is to demonstrate how to handle geomet-
rical, as well as non-geometrical, design variables. From the design
perspective, geometrical variables such as initial joint positions
and linkage lengths are challenging yet significant part of the
design embodiment process. The inclusion of the geometrical vari-
ables increases the design space dimensionality, and subsequently
assists the designer in finding the optimum solution. A key
consideration in dealing with geometrical design variables is the
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feasibility of the generated solutions. To prevent creating infeasible
designs, a proper set of constraints should be determined for the
optimization routine. For example, in the design of a rigid four-
bar linkage where the crank is needed to make a full revolution,
relevant dimensional constraints (according to Grashof’s rules)
must be devised to satisfy this requirement.

Lastly, this paper shows how rigid and flexible bodies (e.g.,
beams) can be effectively incorporated by utilizing natural coordi-
nates and ANCF. The use of rotation-free formulations results in
constant mass matrices for the bodies, which extensively simplifies
the equations involved in both forward and backward simulations.
In addition, it facilitates differentiating the equations with respect
to geometrical and non-geometrical design variables, hence serv-
ing as an essential component for the contributions described
above. It is worth noting that the proposed sensitivity analysis
technique guarantees that the optimization routine finds an opti-
mum solution and moves toward improving the defined perfor-
mance criteria, as proved in Section 2 and shown by the three
numerical examples. It is well-known that if the initial solution
is far away from the global optimum, it is possible that the opti-
mization scheme falls into a local optimum. This is an intrinsic
characteristic of all gradient-based optimizers and has been
addressed extensively in the mathematics and engineering litera-
ture [38,39]. A possible remedy to this issue is to start the opti-
mization procedure from different initial designs, thus increasing
the chance of finding the global optimum.

As a closing remark, the authors would like to emphasize that
with the growing interests in generative design (i.e., design
automation) in engineering applications, it is imperative to
develop simulation and numeral techniques that can be effective
in searching high-dimensional design spaces. The current work
has highlighted some of the challenges in this endeavor and con-
tributed an effective solution in the domain of dynamic multibody
systems.

Appendix A. Beam’s mass and stiffness matrices

Differentiating Eq. (29) with respect to time results in the global
velocity vector below for a beam element

_r! xð Þ ¼ S xð Þ _q! tð Þ ð57Þ
Using this and the kinetic energy equation, the element’s mass
matrix can be obtained as

Telement ¼ 1
2

Z
V

q _r!T _r!
h i� �

dV ¼ 1
2

_q!T
Z
V

q STS
h i� �

dV
� �

_q!

¼ 1
2

_q!TMelement
_q!

Melement ¼ qAl
420

156I3�3 22lI3�3 54I3�3 �13lI3�3

22lI3�3 4l2I3�3 13lI3�3 �3l2I3�3

54I3�3 13lI3�3 156I3�3 �22lI3�3

�13lI3�3 �3l2I3�3 �22lI3�3 4l2I3�3

2
6664

3
7775

ð58Þ

Klongitudinal and Ktransverse for the element are

Klongitudinal ¼ EA
l e

6
5 I3�3

l
10 I3�3 � 6

5 I3�3
l
10 I3�3

l
10 I3�3

2l2

15 I3�3 � l
10 I3�3 � l2

30 I3�3

� 6
5 I3�3 � l

10 I3�3
6
5 I3�3 � l

10 I3�3

l
10 I3�3 � l2

30 I3�3 � l
10 I3�3

2l2

30 I3�3

2
666664

3
777775

Ktransverse ¼ EA
l3
e

12I3�3 6lI3�3 �12I3�3 6lI3�3

6lI3�3 4l2I3�3 �6lI3�3 2l2I3�3

�12I3�3 �6lI3�3 12I3�3 �6lI3�3

6lI3�3 2l2I3�3 �6lI3�3 4l2I3�3

2
6664

3
7775

ð59Þ
Appendix B. Rigid body’s mass matrix

Using the kinetic energy equation,

Trigid ¼ 1
2

Z
V

q _r!T _r!
h i� �

dV ¼ 1
2

_q!T
Z
V

q STS
h i� �

dV
� �

¼ 1
2

_q!TMrigid
_q! ð60Þ

and S in Eq. (37), the body’s mass matrix becomes

Mrigid ¼
Z
V
q

I3�3 �xI3�3 �yI3�3 �zI3�3

�xI3�3 �x2I3�3 �x�yI3�3 �x�zI3�3

�yI3�3 �x�yI3�3 �y2I3�3 �y�zI3�3

�zI3�3 �x�zI3�3 �y�zI3�3 �z2I3�3

2
6664

3
7775dV ð61Þ

If the origin of the body’s local frame is located at its center of mass
and the local frame’s axes coincide with the body’s principal axes,
the mass matrix takes a diagonal form.

Appendix C. Spring and damper’s generalized force vectors

The potential energy of the spring depicted in Fig. 3 is defined
by

Uspring ¼ 1
2
k ltcurrent � l0ð Þ2 ð62Þ

in which l0 and ltcurrent are, respectively, the spring’s lengths at zero
and current time-step. Considering Eqs. (28) and (37), Eq. (62) can
be rewritten as

Uspring ¼ 1
2 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r!C � r!D

� �T
r!C � r!D

� �r
� l0

 !2

¼ 1
2 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q
!

T
STrigidjCSrigidjC �STrigidjCSbeamjD

�STbeamjDSrigidjC STbeamjDSbeamjD

" #
�q
!

vuut � l0

0
@

1
A

2

ð63Þ

where �q
!¼ q!T

rigid q!T
beam

h iT
. The generalized spring force vector,

thus, becomes

@Uspring

@ �q
! ¼ k

ltcurrent � l0
ltcurrent

ST
rigidjCSrigidjC �STrigidjCSbeamjD

�STbeamjDSrigidjC STbeamjDSbeamjD

" #
q!rigid

q!beam

( )

ð64Þ
Following a similar procedure, the vector of generalized damper
forces is stated via

f
!

damper ¼ �c
STrigidjCSrigidjC �STrigidjCSbeamjD

�STbeamjDSrigidjC STbeamjDSbeamjD

" # _q!rigid

_q!beam

8<
:

9=
; ð65Þ
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