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Abstract: We present a novel technique called Dynamic Experience Replay
(DER) that allows Reinforcement Learning (RL) algorithms to use experience re-
play samples not only from human demonstrations but also successful transitions
generated by RL agents during training and therefore improve training efficiency.
It can be combined with an arbitrary off-policy RL algorithm, such as DDPG [1]
or DQN [2], and their distributed versions.

We build upon Ape-X DDPG [3] and demonstrate our approach on robotic tight-
fitting joint assembly tasks, based on force/torque and Cartesian pose observa-
tions. In particular, we run experiments on two different tasks: peg-in-hole and
lap-joint. In each case, we compare different replay buffer structures and how
DER affects them. Our ablation studies show that Dynamic Experience Replay is
a crucial ingredient that either largely shortens the training time in these challeng-
ing environments or solves the tasks that the vanilla Ape-X DDPG cannot solve.
We also show that our policies learned purely in simulation can be deployed suc-
cessfully on the real robot. The video presenting our experiments is available at
https://sites.google.com/site/dynamicexperiencereplay
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1 Introduction

Industrial robots have been heavily used in manufacturing and other industries, however, as they
rely on pre-defined trajectories, they require precise calibration and fail to adapt to uncertainties.
Adaptability to imprecision, varying conditions, and less structured environments is key to the future
of automation. Reinforcement Learning (RL) has recently led to a range of successes in solving
sequential decision-making problems, including learning control policies for robotic tasks. The
control policies are learned through agents interacting with their surrounding environments and hold
promises for generalizing to new scenarios in reaction to real-time observations [4, 5].

We focus on robotic assembly tasks that involve contact forces, because such tasks are widespread
in industrial applications and yet challenging for robots to do. When the assembly pieces are in
contact with one another, pose observations (direct from motion capture or indirect from perception
learning models) alone are often insufficient. We explicitly consider force/torque observations for
policy learning. During training, we randomize the initial condition within a pre-defined range and
show flexibility of the learned policy to varying conditions.

Most of the recent success in RL was achieved using model-free methods [6, 2, 1, 7, 8]. They
tend to achieve optimal performance, are generally applicable, and are easy to implement, but it is
achieved at the cost of being data intensive. Leveraging human demonstrations [9] as well as various
experience replay [10, 11, 12] has shown to improve data efficiency.

We present a novel technique called Dynamic Experience Replay (DER) that allows RL algorithms
to use experience replay samples not only from human demonstrations but also successful transi-
tions generated by RL agents during training and therefore improve training efficiency. It can be
combined with an arbitrary off-policy RL algorithm, such as DDPG or DQN, and their distributed
versions. DER can be seen as a technique of over-sampling the under-represented class (success-
ful trajectories in our case) from an imbalanced dataset, which has been studied and addressed in
supervised learning [13, 14].
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We build upon Ape-X DDPG and demonstrate our approach on robotic tight-fitting joint assem-
bly tasks, in particular, peg-in-hole and lap-joint tasks. In each case, we compare different replay
buffer structures and how DER affects them. Our ablation studies show that Dynamic Experience
Replay is a crucial ingredient that largely shortens the training time in these challenging environ-
ments or solves the tasks that the vanilla Ape-X DDPG cannot solve. We also show that our policies
learned purely in simulation can be deployed successfully on an industrial robotic arm performing
the physical tasks.

The remainder of this paper is structured as follows. The problem statement and related work are
stated in Sec. 2, followed by a detailed explanation of the proposed Dynamic Experience Replay in
Sec. 3. Experiment setup, results, and deployment on a real robot are presented in Sec. 4. Sec. 5
concludes the paper and proposes future work.

2 Problem Statement and Related Work

2.1 Problem Statement

The RL problem at hand can be described as learn an optimal policy πθ(at|st) for choosing an action
at given the current observation st in order to minimize the expected total loss:

min
πθ

Eτ∼πθ (l(τ)) (1)

where θ is the parameterization of policy π, trajectory τ = {s0, a0, s1, a1, ..., sT , aT }, πθ(τ) =

p(s0)
∏T

1 p(st|st−1, at−1)πθ(at|st), and l is the loss function of the trajectory τ .

Equation 1 can be solved if a dynamics model p(xt|xt−1, at−1) is provided, however, the dynamics
model in contact-rich tasks is difficult to obtain. Alternatively, the equation can be solved by model-
free RL algorithms to avoid using dynamics. DDPG is a model-free off-policy RL algorithm for
continuous action spaces. In DDPG, an actor policy π : S → A is created to explore the space
and store the collected transition (sj , aj , sj+1, rj) in a replay buffer R. Meanwhile, a critic policy
Q : S ×A→ R is created to approximate the actor’s action-value function Qπ .

We would like to learn an optimal policy, which takes Cartesian pose and force/torque observations
as input and outputs Cartesian velocity.

2.2 RL for High Precision Assembly

RL has been studied actively in the area of high precision assembly as it can reduce human involve-
ment and increase the robustness to uncertainties. Inout el al. [15] used a Q-learning based method
with LSTM [16] for Q-function approximation to solve low-tolerance peg-in-hole tasks. Luo el
at. [17] extended a model-based approach MDGPS [18] with haptic feedback for learning the in-
sertion of a peg into a deformable hole. Fan el at. [19] combined DDPG [1] and GPS [6] to take
advantage of both model-free and model-based RL [4] to solve high-precision Lego insertion tasks.
Luo el at. [20] combines iLQG [21] with force/torque information by incorporating an operational
space controller to solve a group of high-precision assembly tasks. In our work, we use torque/force
and pose in Cartesian space as observations and 6 DOF Cartesian velocities as actions. This method
bypasses the robot dynamics, which are usually inaccurate in simulation.

2.3 Leveraging Experience Replay in RL

Experience replay [10] has been used to improve training efficiency in many RL algorithms, par-
ticularly for model-free RL, as it’s less sample efficient than model-based RL. The technique has
become popular after it was incorporated in the DQN [2] agent playing Atari games. Prioritized
experience replay [11] is a further improvement to prioritize transitions so agents can learn from
the most ”relevant” experiences. Hindsight experience replay [12] stored every transition in the re-
play buffer not only with the original goal but also with a subset of other goals to acquire a more
generalized policy. DDPG from Demonstrations [9] modified DDPG to permanently store a set of
human demonstrations in the replay buffer to solve a group of insertion tasks. We extend DDPG
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(1) No Human Demos (2) One Shot in All Buffers

(3) All Shots in All Buffers (4) Each Buffer Taking One Shot

A set of human demonstrations, each 
of which may have a different size.

A group of replay buffers with the 
same buffer size.

Figure 1: The four types of replay buffer structure for our experiments: (1) No human demonstra-
tions in any buffer; (2) Same one-shot human demonstration in all buffers; (3) All human demon-
strations in all buffers; (4) Each buffer with a different one-shot demonstration.

from Demonstrations to a distributed framework and propose a set of experience replay structures
in the context of distributed RL. Details are discussed in Sec. 3.2.

2.4 Distributed RL

Distributed RL can greatly increase training efficiency of model-free RL. Ape-X [3] disconnects
exploration from learning by having multiple actors interact with their own environments and select
actions from a shared neural network. D4PG [22], with the Ape-X framework, uses a distributional
critic update to achieve a more stable learning signal. There are also a growing number of examples
applying the distributed architecture to popular RL algorithms, such as Distributed PPO [23] and
Distributed BA3C [24]. Since our action space is continuous, we build our algorithm based on
RLlib’s [25] implementation of Ape-X DDPG.

3 Method

As model-free RL algorithms require excessive data, one or multiple shots of human demonstrations
are sometimes introduced in the replay buffer R for complex manipulation tasks [9, 26]. However,
human demonstrations are not always helpful if the observation space during human demonstration
does not match that during training. For example, for the high-precision lap-joint assembly task,
we do not have haptic feedback during demonstration in simulation and only visual inspection is
used, while during training, force/torque observations are required. Therefore, we propose a novel
technique that augments human demonstrations with successful transitions generated by RL agents
to improve training efficiency.

3.1 Setup

Observations: The observation space is 13-dimensional. The policy is given as input the position
(x, y, z) and orientation (qx, qy, qz, qw) of the timber piece attached to the robot end-effector, and
the torque/force reading (fx, fy, fz, tx, ty, tz) from the sensor, which is mounted on the end of the
robot arm. We do not use visual input to simplify the problem.

Actions: The action space is 6-dimensional. The policy outputs the desired linear velocity
(vx, vy, vz) and angular velocity (wx, wy, wz) of the timber piece attached to the robot end-effector.
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Successful 
Transitions

Demonstration 
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{                          } 

 

Save every  
success transition

Periodically sampled  
from the transitions pool
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W0, W1, . . . , Wm

Figure 2: The Dynamic Experience Replay framework: multiple workers, each with its own in-
stance of environment, and multiple replay buffers, each with capacity C for demonstrations. Hu-
man demonstration(s) are stored in the demonstration zones before training starts. During training,
all successful transitions that are generated by workers are saved in a pool, which is sampled peri-
odically by each replay buffer and stored in the demonstration zone.

Human demonstrations: For each task, depending on the replay buffer structure (Sec. 3.2), zero,
one or six human demonstrations are recorded in simulation, using a game controller to drive the
robot end-effector until the joint is successfully assembled. Each demonstration includes all transi-
tions from one successful episode. Each transition is of the form et = (st, at, st+1, rt).

Rewards: We use a simple linear reward function based on the distance between the goal pose and
the current pose of the timber piece attached to the robot arm for both tasks. Additionally we use a
large positive reward (+1000 for the peg-in-hole and +100 for the lap-joint) if the object is within a
small distance of the goal pose:

r =

{
−|g − x|, |g − x| > ε
−|g − x|+R, |g − x| ≤ ε

where x is the current pose of the object, g is the goal pose, ε is a distance threshold, and R is the
large positive reward. We use negative distance as our reward function to discourage the behavior of
loitering around the goal because the negative distance also contains time penalty.

3.2 Replay Structures in Distributed RL

Off-policy RL algorithms perform experience replay by sampling minibatches from a pool of stored
samples, which allows the use of arbitrary data like human demonstrations. Based on prioritized
experience replay and Ape-X DDPG, we suggest four different replay buffer structures that can take
advantage of demonstrations in distributed RL, as shown in Fig. 1.

Each buffer structure consists of a fixed number of replay buffers that load zero, one, or multiple
human demonstrations before training starts. Without Dynamic Experience Replay, each buffer
permanently keeps all the demonstrations with top priorities during training. The following section
discusses how the buffer structures work with Dynamic Experience Replay.

3.3 Dynamic Experience Replay

The idea behind Dynamic Experience Replay (DER) is to augment human demonstrations using
successful trajectories generated by RL agents during training, especially in cases where human
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demonstrations are not very helpful. We define demonstrations as either human demonstrations or
the successful trajectories generated by RL agents. If DER is activated, regardless of the buffer
structures mentioned above, each buffer allocates capacity C specifically for demonstrations. We
refer to this as the demonstration zone. During training, all the successful episodes generated by
RL agents are stored in a pool. Periodically, each replay buffer randomly samples one successful
episode from the pool and stores it in the demonstration zone. When the demonstration zone is
full, the oldest transitions are discarded. DER’s framework in a distributed architecture is shown in
Fig. 2.

As in Ape-X, the DER algorithm consists of two concurrent parts, which are workers and a trainer.
For each worker, after collecting the transitions of one episode, it randomly chooses a replay buffer
and sends over the transitions. The trainer, in parallel, randomly selects a replay buffer and samples
a batch of transitions for network update. The trainer also updates the priority of transitions in the
selected buffer at the end of the training cycle. See Alg. 1 for a formal description of the algorithm.

Algorithm 1: Dynamic Experience Replay
Given:

• a distributed off-policy RL algorithm A, . e.g. APE-X DDPG, APE-X DQN
• an experience replay structure S 1.
• one-shot or a group of human demonstrations D (optional)

Initialize A . Initialize neural networks
Initialize replay buffers B . Initialize a group of replay buffers
Load D to B based on S . Load human demos to the replay buffers based on the replay structure
Initialize T . Initialize a pool to save success transitions from agents

For each worker:
for episode = 1, M do

θ0← Trainer.parameters() . Update the latest network parameters for the trainer
s0← Environment.reset() . Get initial state from its own environment
for t = 1, T do

at−1← πθt−1
(st−1) . Choose an action from the current policy

(rt−1, st)← Environment.step(at−1) . Apply the action to the environment
Transitions.Add([st, at−1, rt−1, st−1]) . Add data to a temp buffer

Bn.Add(Transitions) . Send the transitions to a randomly selected replay buffer
if episodet succeeds then

. Save success transitions
T.Add(Transitions)

Periodically(θt← Trainer.Parameters()) . Update to the latest network parameters

For the trainer:
θ0← InitializeNetwork()
for o = 1, O do

. Update the parameters O times
τ ← Bn.Sample() . Sample a batch of transitions from a randomly selected buffer
lo← ComputeLoss(τ ; θo) . Calculate loss using an off-policy algorithm, like DDPG
θo+1← UpdateParameters(lo; θo)
p← ComputePriorities() . Calculate priorities of the transitions in buffers2
Bn.SetPriority(p) . Update priorities to the selected buffer
Periodically(Bi.Update(Tj)) . Replace previous demos with a success transition from the pool

1. The four different experience replay structures are discussed in Sec 3.2
2. We use absolute TD error for the calculation.

A hyper-parameter to experiment with DER is which replay buffer structure to use. In the next
section, we compare the four types of replay buffer structure discussed in Sec. 3.2 and how DER
affects them.
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(b)(a)

Figure 3: Two joint assembly tasks for algorithm evaluation: (a) chamfered peg-in-hole, (b) lap-
joint. For both joints, the CAD model used in simulation is used to fabricate the real-world pieces.

4 Experiments

This section is organized as follows. In Sec. 4.1 we introduce distributed RL environments we
use for the experiments as well as our training setup and procedure. In Sec. 4.2 we compare the
performance of different replay buffer structures with and without DER. In Sec. 4.3 we describe the
deployment on the physical robot.

The video presenting our experiments is available at https://sites.google.com/site/
dynamicexperiencereplay.

4.1 Environments

We modeled our assembly tasks in the PyBullet [27] simulation engine. Specifically, we customized
two tasks, chamfered peg-in-hole and lap-joint, which correspond to the real-world setup, as shown
in Fig. 3.

For the peg-in-hole task, we used a KUKA LRB iiwa robotic arm in simulation and attached a
torque/force sensor between the end of the arm and a peg, as shown in Fig. 3(a). In order to be robot
agnostic, we limit both the observations and actions in the Cartesian space. This way the trained
model can be deployed on any arbitrary robotic arm. To demonstrate the point, we created a robot-
less mode for training in simulation for the lap-joint task, as shown in Fig. 3(b). The robot-less setup
helps us bypass needing a robot model in simulation, as most of them are inaccurate.

For each task, we initialized 6 replay buffers and collected 6 human demonstrations. Each demon-
stration consists of a sequence of transitions of different lengths. Depending on which replay buffer
structure is activated, the human demonstration data are used differently, as described in Fig. 1.
Training is performed using the Ape-X DDPG algorithm and we adapted it from RLlib’s implemen-
tation.

Initial states: For the peg-in-hole tasks, the initial angle along the z-axis of the peg is randomized
from 0 to 360 degree and other parts are fixed. For the lap-joint tasks, we randomized the initial
angle along the z-axis and x-y position of the timber on the ground within a small range. The details
of the initial randomnesses are documented in Fig. 4 and Fig. 5.

4.2 Results

In order to evaluate how DER affects the performance we evaluate Ape-X DDPG with and without
DER on both two tasks. For each task, we conducted eight types of experiments, which are of
four different replay-buffer structures with and without DER. Each experiment was performed on an
Amazon AWS c5n.9xlarge instance.

Fig. 4 shows that DER significantly improves the performance of the peg-in-hole task in most of
the buffer structures, including No Human Demos, One Shot in All Buffers, and All Shots in All
Buffers. For the latter two buffer structures, the average successful rates of DER are greatly higher
than vanilla Ape-X DDPG. For the No-Human-Demos buffer structure, although both algorithms
have similar average successful rates by the end of the training, DER is nearly two times as fast
at achieving the success rate as vanilla Ape-X DDPG. For the Each-Buffer-Taking-One-Shot buffer
structure, with DER and without have similar performance.
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Figure 4: Success rate comparison (left) and reward comparison (right) for the peg-in-hole experi-
ments, in which the initial angle of the peg along the z-axis is randomized within [0, 360◦]. Each
plot compares the performances of a replay buffer structure with and without DER. Each iteration
consists of 50 to 80 episodes and is approximately 200,000 timesteps. The dotted lines show the
mean of each iteration across 3 trainings with different random seeds and the shaded areas show the
95% confidence bound. Each training experiment is terminated at 200 iterations.

The lap-joint task is more challenging because the timber pieces have straight corners (no chamfer)
and tight tolerance (1mm). Hence, as seen in Fig. 5, the average success rate of each iteration across
different training runs is slightly lower than the peg-in-hole task. Fig. 5 shows that DER has better
performances than vanilla Ape-X DDPG with two of the buffer structures, No Human Demos and
All Shots in All Buffers, while the performances of with DER with the other two buffer structures
are similar to without DER. It is unclear why DER does not improve the performance with the
Each-Buffer-Taking-One-Shot structure in either task. Further studies need to be conducted.

4.3 Deployment on a physical robot

After training purely in simulation, we deployed the learned policy of the lap-joint task on a KUKA
KR60 industrial robot arm, as shown in Fig. 3(b). Our hardware setup includes an ATI Delta 6-axis
force/torque sensor, two Schunk parallel-jaw grippers, and two pre-fabricated timber pieces with
a half notch on each. As discussed in Sec. 4.1, the observations are force/torque values obtained
from the force/torque sensor and pose information of the top timber piece obtained from the robot
controller. The actions, linear and angular velocity of the top timber piece, are sent to the robot
controller from the policy. The No-Human-Demos buffer structure was used for training the pol-
icy, which was successfully deployed on the real robot 3 out of 3 times. We have included the
deployment in the video.
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Figure 5: Success rate comparison (left) and reward comparison (right) for the lap-joint experiments,
in which the initial angle of the ground timber piece along the z-axis is randomized within [−2◦,
0] and the initial position [-2mm, 2mm] in both x and y. Each graph compares the performances
of a replay buffer structure with and without DER. Each iteration consists of 50 to 80 episodes
and is approximately 200,000 timesteps. The dotted lines show the mean of each iteration across 3
trainings with different random seeds and the shaded areas show the 95% confidence bound. Each
training experiment is terminated at 500 iterations.

5 Discussion and Future Work

This paper proposed a novel technique called Dynamic Experience Replay (DER), which improves
training efficiency of an off-policy RL algorithm. The technique uses successful episodes generated
by RL agents as demonstrations in replay buffers to augment human demonstrations. DER can be
seen as a technique of over-sampling the under-represented class from imbalanced data in super-
vised learning. Our technique can be considered as an add-on feature to an arbitrary off-policy RL
algorithm and we experimentally demonstrated that with Ape-X DDPG.

We showed that DER in both the peg-in-hole and the lap-joint tasks improved training efficiency in
comparison to the vanilla Ape-X DDPG algorithm. For occasions where the vanilla RL algorithm
failed to solve the task within the given timeframe, DER could either achieve the training goal or
largely improve the success rate. We also showed that the learned policy for the lap-joint task can
be successfully deployed on the real robot.

In the future, we would like to evaluate DER on a group of model-free off-policy RL algorithms, such
as PPO, and on other assembly tasks. We would also further study DER in terms of hyperparameters,
such as the sampling rate and the number of replay buffers.
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A Hyperparameter Details

We used Adam [28] as the optimizer for both the actor and the critic networks with a learning rate of
10−3. Instead of using two learning rates, we used two different loss coefficients, 0.1 for the actor
and 1.0 for the critic. The target network update frequency is 50,000 and the buffer size is 2,000,000.
We allocated 1% of the buffer size for storing demonstrations, which is 20,000. We used prioritized
experience reply and the prioritized replay alpha is 0.5. The sample batch size is 50, the train batch
size is 512, and the batch mode is truncate episodes. The minimum per iteration time is 20 seconds.
We set soft target updates τ to 1 as we used target network update frequency for network update.
We used mean standard filter as the observation filter.

For all the peg-in-hole tasks, both the actor and the critic networks have 2 hidden layers with 64
and 64 units. We assigned 5 workers and each of them occupied one logical CPU core. For all the
lap-joint tasks, both the actor and the critic networks have 2 hidden layers with 256 and 256 units.
We assigned 30 workers and each of them occupied one logical CPU core as well.

For the rest of the hyperparameters, we inherited directly from RLlib’s default setup of Ape-X
DDPG.
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