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ABSTRACT 
This paper demonstrates an application of Generative Design 
to an urban scale through the design of a real-world 
residential neighborhood development project in Alkmaar, 
Netherlands. Problems in urban design can benefit greatly 
from the Generative Design framework due to their 
complexity and the presence of many stakeholders with 
various and potentially conflicting demands. We 
demonstrate this potential complexity by optimizing for two 
important goals: the profitability of the project for the 
developer and the potential for energy generation of solar 
panels placed on the roofs of the buildings. This paper points 
to further research into the application of the Generative 
Design framework to solve design problems at an urban 
scale. 
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ACM Classification Keywords 
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1 INTRODUCTION 
Generative Design allows designers to tap into the power of 
computation to explore large design spaces and derive design 
solutions which are both novel and high-performing relative 
to a chosen set of goals. This process relies on a set of 
technologies including parametric design software for 
modeling the space of all possible solutions, simulation 
software for deriving metrics to evaluate each potential 
design, and optimization solvers such as the Genetic 
Algorithm (GA) which can automatically search through the 
design space to find the most optimal designs. In recent 
years, this type of workflow has become widely used to solve 
design problems in a variety of domains such as engineering, 
industrial design, and architecture.  

Urban design problems tend to be very complex, involving a 
multitude of stakeholders, each with their own complex and 

competing goals for the project. These complex goals are 
difficult to resolve through a traditional design process, 
forcing designers to rely on intuition and prior experience 
which can limit potentials for novel design solutions. The 
Generative Design methodology can help urban designers 
navigate complex design spaces and a multitude of 
competing goals across different stakeholder domains. Such 
applications, however, have not been widely explored. 

This paper describes a novel application of the Generative 
Design methodology at an urban scale through the design of 
a residential neighborhood of 7,000 sqm in Alkmaar, 
Netherlands. To show the utility of this workflow, we 
consider two important and competing goals, each 
representing the desires of different stakeholders in the 
project. The first is the cost and revenue of the development 
project, which is important for the developer. The second is 
the potential energy generation of solar panels attached to the 
roofs of each building. This is important not only for 
minimizing the environmental impact of the development 
but also for the future homeowners who will benefit 
financially from the energy being generated. Through this 
example, we demonstrate how the Generative Design 
process can help reveal the potential tradeoffs between 
competing design goals and help urban designers discover 
designs which solve these goals in novel ways. 
2 LITERATURE REVIEW 
While the application of evolutionary algorithms for 
optimization of design spaces is well known within the 
manufacturing industry [1], they are under-explored in the 
architectural and urban design domains.  

Prior work by the authors [2] explored the application of this 
workflow to the interior layout of an office space. Calixto 
and Celani [3] also described over 15 years of work 
exploring applications of evolutionary computing for spatial 
layouts. However, these studies were mostly theoretical and 
did not show the feasibility of applying such a process to a 
real-world design project. Furthermore, none of these studies 
were applied at an urban scale nor dealt with profitability or 
energy generation requirements. 



 
Figure 1. Description of design space showing five input parameters, definition of a single design’s geometry, evaluation of design through 

simulation, and two output metrics.

Several authors have explored applications of optimization 
for urban-scale layouts. Elezjurtaj and Franck [4] showed an 
application of genetic algorithms for town planning, but 
limited their fitness function to formal and topological 
features. Koma et al. [5] used an interactive genetic 
algorithm approach to optimize urban landscape features, but 
applied their study to an abstract fictitious city block. Luo 
and He [6] used a rule-based model for generating city 
layouts, but their approach was only generative and lacked a 
system for evaluating the resulting designs according to 
specific performance criteria.  
Building energy modeling has also been widely applied at 
the building level [7], but its application to an urban scale is 
still under-explored. Reinhart and Davila [8] presented the 
opportunities and advantages of UBEM (Urban Building 
Energy Modeling) while also discussing the challenges and 
obstacles that limit its implementation at an urban scale. Our 
study relies on a computationally lightweight solar energy 
calculation which is scalable to urban neighborhoods and 
compatible with an automated Generative Design workflow. 
To address the complexity of typical urban design problems, 
we also integrate cost and profit as goals within our model. 
Such financial objectives are typically modelled in the real-
estate development industry but are rarely combined with 
other objectives in a unified model such as the one described 
in this paper. 
3 METHODOLOGY 

3.1 Design space model 
The first step of the Generative Design process is to create a 
design space model which can generate various design 
solutions subject to the constraints of the problem. In this 

case the design problem consisted of laying out a residential 
neighborhood on an existing 7,000 sqm lot in the town of 
Alkmaar, Netherlands. A series of workshop sessions held 
together with our client (the developer of the lot) aimed at 
understanding the high-level goals of the project and 
gathering the specific constraints and requirements that the 
final layout would need to satisfy. In addition to profitability, 
one of the developer’s main goals was to create a 
neighborhood which was both sustainable and functional for 
the end-user. Several constraints and requirements were 
gathered and have been grouped into two main categories: 
site constraints and program requirements. Site constraints 
define those restrictions that are derived from local building 
code and existing topographical features, while program 
requirements synthesize the developer’s programmatic goals 
for the project.   

The site constraints included:  

• A predefined site boundary that delineates the Generative 
Design zone 

• Fixed unit orientations orthogonal to the existing streets 
adjacent to the site 

• A maximum building height of 5 floors in the south and 3 
floors in the north 

• A minimum of one access road to the West and to the 
South side of the lot 

• Parking lots need to be at least 5m away from road 
intersections 

• Only same house unit types can be adjacent to each other 
and can aggregate only laterally 



 
Figure 2. Description of parametric model for generating each design option 

 

The program requirements included: 

• The layout should have at least 3 single houses TYPE A 

• The layout should have at least 4 single houses TYPE B 

• The layout should have at least 2 single houses TYPE C 

• The layout should have a minimum of 3100 sqm of 
apartment units 

Based on the constraints and requirements described by the 
client, a parametric model was created which can generate a 
wide variety of valid design options based on a small set of 
input parameters (fig. 2). While the site constraints were 
directly integrated into the model (each design solution 
satisfies all given constraints) the program requirements 
were represented as an objective for optimization. This 
allows the discovery of design solutions that, although not 
fully meeting certain targets, might offer unexpected layout 
strategies that prioritize other objectives. 

The model is based on an initial subdivision grid which 
adapts to the edges of a given lot boundary (2a). The edges 
of the grid are used to identify streets that run in both 
directions across the site (2b). The streets divide the lot into 
zones, which are tested against internal model constraints 
such as minimum region aspect ratios and surface areas. 
Those that do not meet such requirements are either split 
(generating new streets) or joined together (removing the 
separating street). Each resulting zone is populated with 
green public areas, house units, apartment buildings and 
pedestrian paths (2c-e). Each road is also populated with 
parking spaces running along one of its edges.   

The model is parameterized by 5 continuous floats with 
domain [0.0, 1.0]. Considering the initial subdivision grid as 
a matrix of streets organized in columns and rows, the first 
input parameter controls the selection of one avenue that runs 
North-South, while the remaining ones control the selection 
of 4 streets that run East-West. 

3.2 Design goals 
To evaluate the performance of each design option relative 
to the goals of the project, the design space model needs to 
include one or more metrics which can be used as objective 
targets during optimization. Through discussions with the 
client, we developed seven individual goals which were used 
for the final optimization. For the purposes of this paper, 
however, we focus on two of the goals which were found to 
be most important: the profitability of the project for the 
developer, and the potential solar energy that can be captured 
by the roofs of the residential buildings (fig. 3). These goals 
represent the competing desires of two major stakeholders in 
the project - the developer who wants to maximize profits, 
and the future homeowners who will benefit from the solar 
energy collected by the buildings. Although both goals are 
critical to the success of the project, they are potentially 
conflicting, for example if certain building configurations 
which maximize profit are not in the ideal solar orientation. 
By combining them within a single design space model and 
optimizing for both objectives at once, we can better 
understand the tradeoff between these competing goals and 
find the optimal designs which solve this tradeoff in the best 
way possible. 

To calculate the profitability of the project (fig. 3a) we used 
financial data provided by the developer that lists all 
construction cost and selling value for each type of 
residential unit and neighborhood infrastructure. Profit is the 
difference between the total selling price of the units and the 
total cost of the project which are calculated according to the 
following equations: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Total selling price = total house price + total apartment 
price 

Total project cost = land cost + construction cost + 
development cost + selling and rent cost + profit and risk 
factors



 
Figure 3. Description of two metrics, development profitability (a) and potential for solar gain (b). 

 

The resulting score is an estimate of the profitability of each 
design solution and is maximized during optimization. 

To calculate the potential for solar energy collection (fig. 3b) 
each roof surface is tested for occlusions against 48 sun ray 
vectors (based on 15 minute increments on equinox and 
solstice dates). The calculation of solar energy is based on 
the equation below: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

Potential solar collection:  number of unoccluded sun rays  

Solar energy availability:  number of available sampled sun 
rays  

 

The resulting solar energy score is the average utilization of 
the potential solar energy by the roofs of all buildings on site 
and is maximized during optimization. 

By looking at several possible designs, we can begin to see 
the relationship between the two goals and the potential 
tradeoff between them (fig. 4). The design in the lower right 
optimizes for solar energy by placing the single housing unit 
in an east-west orientation. However, it does not maximize 
profit because the site is under-utilized. The design in the 
upper left optimizes profit by placing a large number of units 
on site but perform poorly on solar energy because much of 
the sunlight of the long row of housing is blocked by the 
large apartment building next to it. The design on the lower 
left performs poorly in both goals because it only has two 

small buildings, with the solar exposure of the single house 
almost completely blocked by the apartment building south 
of it. The design on the upper right does well in both goals. 
It has a good amount and mix of housing types while 
orienting the houses to take maximum advantage of the solar 
angles. This high-level analysis reveals potential conflicts 
between the two goals, as well as opportunities for finding 
high-performing designs which optimize the tradeoff 
between them. 

 

 
Figure 4. Comparison of designs at performance extremes. 



 
Figure 5. Box plots showing response of each output goal to variations of the input parameters

 

 

 

3.3 Design space analysis 
Just because a design space model is well defined does not 
mean that it will result in a good optimization. In a previous 
paper [9] we described a set of metrics for evaluating a 
design space according to two tradeoffs: bias vs. variance 
and complexity vs. continuity. For analyzing these properties 
within a given design space we proposed a visualization 
method which we have also implemented for this project (fig. 
6). As described in the previous paper, this analysis should 
be done before optimization to ensure that the optimization 
process will be productive and will yield good results.  

To produce this visualization, we sample the design space 
evenly along the most critical parameters of the model. In 
this case we analyze the single avenue parameter and two of 
the street parameters. Then, we create pair plots which 
visualize the value of the two output metrics (developer 
profit and captured solar energy) for different parameter 
settings as colors or height fields. These plots allow us to 
study the response or sensitivity of each parameter to each 
metric, helping us understand the range of the design space 
as well as its internal structure. 

This analysis shows that the design space is not overly biased 
because it can generate a variety of design solutions with a 
range of housing types and street topologies. At the same 
time, it is not too variant because each design represents a 
viable solution which respects the constraints of the design 
problem. At a local level, the plots show a structure and 
continuity in the relationship between input parameters and 
output goals, suggesting the model is continuous enough to 
be efficiently explored by an optimization algorithm. At the 
same time, there is enough variation and complexity in the 
response surface to ensure that the optimization process will 
be productive and discover novel designs beyond those that 
could be found by intuition alone.  

To get a better look at the tradeoff between the two output 
metrics we can plot both of them relative to a single input 
parameter (the location of the avenue) and aggregate the 
effects of varying the other parameters using box plots (fig. 
5). Looking at these box plots we can see that for certain 

settings of the avenue parameter there is more potential for 
variation in the outputs than for others (shorter whiskers vs. 
longer whiskers). If we look at the average values, however, 
we can see that values of the input parameter which tend to 
result in higher levels of solar radiation (for example 0.40 
and 0.67) also tend to result in lower levels of profitability. 
This shows that there is a potential tradeoff between the two 
goals. However, due to the variability caused by the other 
inputs parameters and the complexity of the design space, the 
relationship between the goals is more complex than what 
can be visualized and understood through such a simple plot. 
This suggests the value of optimization for further exploring 
the design space and discovering designs that achieve the 
best compromise between the two goals.  
3.4 Design optimization 

To generate the final design solution, we used a Genetic 
Algorithm based on the NSGA-II algorithm [10] to find 
designs within the design space which maximize the values 
of the two objectives. The optimization trial consisted of 200 
generations with 200 designs in each generation. The initial 
population of designs was seeded with the 200 top 
performing designs from those generated for the design 
space analysis described in the previous section. 

4 RESULTS 
Figure 7 shows the results of the optimization, with each 
generated design represented as a single dot in the scatter plot 
according to the two objectives. Designs closer to the upper 
right corner are the best performing, with all the designs 
along the pareto boundary representing the best tradeoffs 
between the two objectives. Looking at the best performing 
designs, we can see that most used linear arrangements of 
single houses and apartment buildings with very few long 
roads cutting across the site. Intuitively, this allows for a 
maximum packing of units while minimizing the cost of road 
infrastructure.  

From the full set of designs, three were chosen which 
represent three different strategies for laying out the lot. 
After review with the client the most preferred strategy was 
selected and further refined to create the final design



 
Figure 6. Design space visualization with plot x and y axes representing input parameters and z-axis and color representing averaged 

values of output metrics. 

 



 
Figure 7. Plot showing tradeoff between the two objectives (color indicates generation with earlier designs in blue and later designs in red). 

Three chosen high performing designs are shown in the middle and final design after refinement on the right. 

 

solution. This design represents the best of both human 
intuition and computer-driven design exploration, and results 
in a neighborhood design which is both novel and high 
performing. 
5 CONCLUSION 
This paper described the implementation of a Generative 
Design workflow at an urban scale through the design of a 
residential neighborhood in Alkmaar, Netherlands. To 
measure the success of each design we chose two important 
and potentially conflicting goals: the maximization of the 
developer’s profit and the maximization of solar energy 
collected by the building’s roofs. This project shows how the 
Generative Design process can generate good design 
strategies while also revealing higher-level insights about the 
potential conflicts and tradeoffs between the goals of the 
project. Ultimately, these higher-level findings can be used 
to further refine the generated strategies, leading to a better 
and more informed final design. 

Although the results of this project have been encouraging, 
the application of Generative Design to the urban scale 
requires further research and testing. Future opportunities 
include the integration of additional design metrics that are 
critical for planning at an urban scale such as user comfort, 
safety, and traffic. These metrics can expose even more of 
the complexity of urban design to the Generative Design 
process, leading to design solutions which are both highly 
functional and go beyond the intuition of human designers 
alone.  
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