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Abstract

Physical products are often complex assemblies combin-
ing a multitude of 3D parts modeled in computer-aided de-
sign (CAD) software. CAD designers build up these assem-
blies by aligning individual parts to one another using con-
straints called joints. In this paper we introduce JoinABLe,
a learning-based method that assembles parts together to
form joints. JoinABLe uses the weak supervision available
in standard parametric CAD files without the help of object
class labels or human guidance. Our results show that by
making network predictions over a graph representation of
solid models we can outperform multiple baseline methods
with an accuracy (79.53%) that approaches human perfor-
mance (80%). Finally, to support future research we release
the Fusion 360 Gallery assembly dataset, containing as-
semblies with rich information on joints, contact surfaces,
holes, and the underlying assembly graph structure.

1. Introduction

The physical products that surround us every day are
often complex assemblies combining a multitude of parts
modeled using computer-aided design (CAD) software.
Well-designed assemblies are critical to ensure that prod-
ucts are cost-efficient, reliable, and easy to physically as-
semble. CAD designers build up assemblies by aligning
pairs of parts together using constraints called joints. These
joints determine the relative pose and allowed degrees of
freedom (DOF) of parts in an assembly [43]. For example,
a bolt can be constrained to a hole, then a nut constrained
to the bolt, and so on until an entire assembly is designed.
Assemblies may contain thousands of parts, represented as
solid models in the boundary representation (B-Rep) for-
mat [33, 61], and are used for everything from furniture, to
vehicles, to electronic devices. Defining individual global
positions for each part without using joints quickly becomes
cumbersome and prone to error. Joints enable designers to
make quick parametric changes to a design while preserving
existing part relationships and maintaining design intent.
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Figure 1. CAD assemblies contain valuable joint information de-
scribing how parts are locally constrained and positioned together.
We use this weak supervision to learn a bottom-up approach to
assembly. JoinABLe combines an encoder and joint axis predic-
tion network together with a neurally guided joint pose search to
assemble pairs of parts without class labels or human guidance.

However, fully defining joints in assemblies is time-
consuming – roughly one third of time in CAD is spent do-
ing assembly work [27]. As a result many assemblies have
missing or partly defined joints. A learning-based approach
capable of predicting joints could ease the burden of joint
definition and enable other applications such as CAD as-
sembly synthesis [56], robotic assembly [34], optimization
of dynamic assemblies [72], part motion prediction [58],
assembly-aware similarity search [5] and many more. Al-
though joints for real world assemblies are configured in
a bottom-up fashion, recent work largely takes a top-down
approach to assembly related tasks [19, 23, 38]. Top-down
approaches learn a global arrangement of parts from set ob-
ject and part classes in carefully annotated data. An open
challenge remains to learn to assemble parts without rely-



ing on the strong object and part class priors provided in
heavily annotated datasets. In this work we ask the follow-
ing question, illustrated in Figure 1: Given a pair of parts,
can we automatically assemble them without prior knowl-
edge of the global design, class labels, or additional hu-
man input? Solving this problem is a fundamental building
block for leveraging learning-based methods with assem-
blies. Our long-term motivation is to enable the next gener-
ation of assembly aware tools that can increase the reuse of
existing components and streamline robotic assembly and
disassembly – important steps in reducing the negative im-
pact of physical products [8, 29, 35, 41, 45].

To begin to address this challenge we introduce
JoinABLe (Joint Assembly Bottom-up Learning), our
bottom-up approach to assembly that learns how parts con-
nect locally to form parametric CAD joints. JoinABLe uses
the weak supervision available in parametric CAD files,
containing only partial joint labels, to automatically assem-
ble pairs of parts. We make the following contributions:

• We propose a novel learning-based method to automat-
ically assemble pairs of parts using the weak super-
vision available in parametric CAD files. We do this
without the help of object or part class labels, human
annotation, or user guidance for the first time.
• We create and release the Fusion 360 Gallery assem-

bly dataset, containing CAD assemblies with rich in-
formation on joints, contact surfaces, holes, and the
underlying assembly graph structure.
• We provide experimental results on both joint axis and

joint pose prediction tasks, a human baseline study,
and comparisons with multiple other methods.

Our results show that by making network predictions
over a graph representation of solid models, we can out-
perform multiple baseline methods while using fewer net-
work parameters. We demonstrate that our approach per-
forms well with difficult cases where heuristic algorithms
can struggle and achieves an accuracy (79.53%) that ap-
proaches human performance (80%) on the joint axis pre-
diction task.

2. Related Work

Assemblies have been a critical part of design and engi-
neering for centuries. Since the digitization of CAD in the
1980s, a number of research areas have been explored.

Shape Combination As early as 2004 the power of de-
signing assemblies by combining and reusing existing parts
was demonstrated in Modeling by Example [13]. Since then
a body of work has focused on finding compatible parts to
combine together into assemblies [9, 22, 24, 66, 73]. The
ability to parametrically assemble parts into novel designs
has numerous applications in the media and entertainment

industry, where digital worlds can be populated with novel
content. Other lines of work have focused on assemblies
that can be physically fabricated [12,32,40,51,52,55,59,60]
or conversion to/from assembly instructions [1, 52]. Our
work differs in that we automate the pair-wise assembly of
real-world CAD parts using a learning based method with-
out class labels or human guidance.

Structure Aware Deep Generative Models 3D shape
synthesis has rapidly advanced with the use of structure
aware deep generative models [10, 14, 15, 28, 36, 46, 50, 64,
69] that incorporate some notion of assembly structure to
describe how the parts of a shape form a whole. Rather than
synthesize the parts themselves, we focus instead on assem-
bling existing parts in the industry-standard B-Rep format.

CAD Informed Robotic Assembly Prior knowledge of
CAD assemblies has been leveraged for robotic assembly
planning [16, 17] and sequencing [11, 26] to constrain the
search process and validate assembly sequences. Although
not addressed in this work, we envision our approach can
aid in improving the sampling efficiency of reinforcement
learning based robotic assembly [57] by inferring joint in-
formation when it is absent or not fully specified.

Learning to Assemble Learning-based assembly meth-
ods from the literature largely follow a top-down approach
that predicts the absolute pose of a set of parts to form
an assembly [23, 38, 56, 70]. Predicting the absolute pose,
however, can lead to noisy results where parts fail to com-
pletely align. To deal with this issue several recent works
have leveraged supervision from local contact points be-
tween parts [18, 19]. We believe a bottom-up approach is
a critical part of solving the assembly problem. Rather than
rely on contact points, our work uses the joint information
found in parametric CAD files as weak supervision. This
allows the output of our method to be reconstructed as fully
editable parametric CAD files.

Critical to prior work is training on synthetic assem-
blies [47, 65] that belong to set object classes, e.g. chairs,
drawers, etc., and are manually segmented, annotated with
part class labels, and oriented in a consistent manner. How-
ever, semantic segmentation is often incompatible with real-
world CAD assemblies that segment parts by manufacturing
process [43]. Moreover, while training on set object classes
greatly improves within-class performance, generalization
to unseen categories is an ongoing area of research [18].
Rather than rely on heavily annotated datasets with strong
class priors, our work leverages the weak supervision read-
ily available in standard parametric CAD files, and is trained
without object classes.

Concurrent to our work, AutoMate [27] leverages similar
joint information for use with a learning based recommen-
dation system. Here the user selects an area on each part
as guidance, and using those selections, AutoMate recom-
mends to the user multiple joint solutions confined to the
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Figure 2. JoinABLe is used to assemble a pair of parts in the B-Rep format (a). We use supervision from parametric CAD files containing
user selected B-Rep faces and edges that define joints (cyan). We also identify ‘equivalent’ faces and edges (pink) sharing the same joint
axis for use during evaluation. Graphs for each part G1, G2 are constructed from adjacent B-Rep faces and edges (b), then joint connectivity
predictions are made over a graph Gj containing dense connections between all graph vertices. Gj is shown as an n ×m matrix (c) to
visualize the prediction space. Finally, the parts are aligned along the predicted joint axes (d), ready for a subsequent search stage.

user-selected input area. Similar to AutoMate, our method
enables editable joints to be created in CAD, but we do so
in an automated way that does not require user guidance
and is not limited to a predefined area. We believe provid-
ing an automated solution is critical to enabling advanced
assembly applications for CAD and robotics.

Part Mobility Understanding how assembled parts
might move, i.e. part mobility, is an important problem
in both CAD and robotics where the goal is to articulate
a given part, such as a hinged door, without knowing the
part mobility in advance. Most relevant to our work are
systems that automatically predict the relative joint config-
urations between pairs of parts [37, 58, 68]. Here the input
is a point cloud and the output joint axis parameters that de-
fine how the parts move in relation to one another. Again,
these works rely on strong class priors and heavily anno-
tated synthetic assembly data. We compare our method with
adaptions of several part mobility baselines in Section 5.

3. Method
We now present our method, JoinABLe, for automati-

cally assembling pairs of parts with joints.

3.1. CAD Joints

Assembly parts are typically represented in the B-Rep
format, containing a watertight collection of trimmed para-
metric surfaces connected together by a well-structured
graph [61]. Each face contains a parametric surface, and
is bounded by edges that define the trimmed extent of the
surface using parametric curves such as lines, arcs, and cir-

cles. The B-Rep format is used in all mechanical CAD tools
and the selection of B-Rep entities, i.e. faces and edges, is a
critical but time-consuming manual task required to set up
joints. Our method proposes to learn from these user selec-
tions to automate the process of joint creation.

The best practice for CAD assembly is to define rela-
tive relationships between pairs of parts, to form joints, also
known as mates. Joints define the degrees of freedom be-
tween the two parts, the parameters for a rest state pose, and
the overall motion limits. CAD users select B-Rep entities
on each part (highlighted in cyan in Figure 2a) to define a
per-part joint axis consisting of an origin point and a direc-
tion vector. The joint axes are determined by the type of
geometry selection, for a circle the center point becomes
the origin point and the normal becomes the direction vec-
tor. These two parts can then be aligned along their axes
into an assembled state (Figure 2d).

3.2. Joint Prediction Problem Statement

Given a pair of parts (Figure 2a), we aim to create a
parametric joint between them, such that the two parts are
constrained relative to one another with the same joint axis
and pose as defined by the ground truth (Figure 2d). Here
the joint axis is defined by two joint origin points and joint
direction vectors relative to each part, and the pose is de-
fined by a single rigid transformation in absolute coordi-
nates. We refer to the tasks of predicting these values as
joint axis prediction and joint pose prediction, respectively.
We consider only pairs of parts that form rigid joints, and
leave full multi-part assembly and non-rigid joints to future



work. We assume that object or part class labels and any
form of human guidance are unavailable. We train only us-
ing the weak supervision provided by standard parametric
CAD files without any manual human annotation such as
canonical alignment.

3.3. Input Representation

Our method takes a pair of parts in the B-Rep format
(Figure 2a), building upon a line of recent work [25, 31, 62,
67] that utilizes the topology and geometry available within
B-Rep CAD data. This approach enables us to make pre-
dictions over the exact entities used to define joints, rather
than an intermediate representation such as a mesh or point
cloud. Importantly, it allows us to frame the problem as
a categorical one, by making predictions over the discrete
set of B-Rep entities that contain ground truth information
about the joint axis. Joints are commonly defined between
both B-Rep face and edge entities, e.g. a cylinder (face) can
be constrained to another cylinder (face) or a circle (edge).
To accommodate this, for each part we build a graph repre-
sentation, G(V,E), from the B-Rep topology where graph
vertices V are either B-Rep faces or edges, and graph edges
E are defined by adjacency (Figure 2b).

For graph vertex features we use information about indi-
vidual B-Rep faces and edges readily available in the B-Rep
data structure. For B-Rep faces, we use a one-hot vector for
the surface type (plane, cylinder, etc.) and a flag indicating
if the surface is reversed with respect to the face. For B-
Rep edges, we use a one-hot vector for the curve type (line,
circle, etc.), the length of the edge, and a Boolean flag indi-
cating if the curve is reversed with respect to the edge. We
evaluate the performance of these input features and others
in Section A.2 of the supplementary material.

Finally, given the two graphs G1, G2 that we wish to as-
semble, with n and m vertices respectively, we form a third
‘joint connectivity graph’ Gj that densely connects the ver-
tices between G1 and G2. Gj has n ×m edges and allows
us to formulate a link prediction problem [39], by identify-
ing the connections between G1 and G2 that form a joint.
Gj can be easily visualized as an n×m matrix (Figure 2c).

3.4. Weak Supervision from CAD Joints

A pair of parts in the B-Rep format have a finite num-
ber of faces and edges that can be paired to form a joint,
specifically the n×m edges in Gj . Each ground truth joint
results in a single positive label in the n × m prediction
space and all remaining combinations are negative labels.
For complex parts, such as mechanical gears that may con-
tain thousands of discrete B-Rep entities, this results in an
extreme imbalance between positive and negative labels.

The problem is further compounded by having only
weak supervision available in standard parametric CAD
files. This is due to several reasons: firstly, specifying joints

between parts is time consuming and is often skipped by
CAD designers; secondly, each CAD assembly is designed
for a specific purpose, rather than to create an exhaustive set
of assembly configurations. This weak supervision results
in a positive and unlabeled (PU) learning problem [4] where
the joints are known positive labels, but the remaining neg-
ative labels could be positive (i.e. an unseen but plausible
joint) or negative (i.e. an implausible joint). To address the
data imbalance and PU learning problem, we organize and
augment our data using the following three techniques.

Joint Consolidation To increase the number of pos-
itive labels, we consolidate joints between identical pairs
of parts into joint sets. Figure 4, right shows an example
joint set where the same two parts are connected in multi-
ple different ways. This approach allows us to present the
network with a single data sample, i.e. a joint set, that con-
tains all known joints between a pair of parts. Importantly,
joint consolidation avoids presenting the network with mul-
tiple contradictory data samples, where a negative label in
one sample may be a positive label in another sample. We
provide additional implementation details about joint con-
solidation in Section A.1 of the supplementary material.

Joint Equivalents To further counter the extreme data
imbalance, we identify and label ‘equivalent’ entities that
share the same joint axis as the ground truth. For example,
if a circle is the labeled entity (highlighted in cyan in Fig-
ure 2a), its neighbouring faces, such as the cylinder high-
lighted in pink, will be labeled as equivalent. These entities
represent the same user-selected joint axis and only differ
by the origin point that locates the joint axis in 3D space.
As we consider a predicted joint axis to be correct if it is co-
linear with the ground truth joint axis, we include equivalent
labels during evaluation. We perform an ablation study in
Section A.2 of the supplementary material to evaluate the
contribution of equivalent labels.

Unambiguous Evaluation Sets A challenge with PU
Learning is establishing a ‘clean’ test set to accurately mea-
sure network performance. Parts that have multiple plau-
sible joints, such as a plate with multiple holes for fasten-
ers, are problematic if only partial joint labels exist, leading
to ambiguity at test time. We make a best effort to avoid
positive unlabelled samples in the test and validation set by
excluding geometrically similar, but unlabeled, ‘sibling’ en-
tities, e.g. the faces and edges of an unlabeled hole with the
same size as a labelled hole. We identify sibling entities by
matching the entity type, area or length, and number of con-
nected graph edges to the labeled entities. In Section A.2 of
the supplementary material we study the effect of evaluat-
ing with sibling entities on a withheld test set that matches
the original data distribution.
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Figure 3. JoinABLe architecture. Given two B-Rep parts in our graph representation, the vertex features from B-Rep faces (green) and
edges (orange) pass through separate multi-layer perceptrons (MLP) before being concatenated together and passed through a message
passing network (MPN). This yields local vertex embeddings representing each B-Rep entity in the two parts. Our joint axis prediction
branch then performs edge convolution between the two graphs to estimate the presence of joints over all possible pairs of connections.
Finally, the joint parameters are discovered via search, with respect to the predicted joint axis, to complete the assembly.

3.5. JoinABLe Architecture

Our overall architecture is shown in Figure 3 and consists
of an encoder module that outputs per-vertex embeddings
for each B-Rep face and edge in our graph representation of
the input parts. Using these embeddings we can predict a
joint axis and then search for joint pose parameters.

3.5.1 Encoder

Our encoder neural network fenc is a Siamese-style network
with shared weights for the two parts. It firstly creates graph
vertex embeddings by passing the vertex features x1 and x2

from the two graphs, through two separate multi-layer per-
ceptrons (MLP). One MLP is used for vertices represent-
ing B-Rep faces and another for those representing B-Rep
edges; the resulting vertex embeddings are then concate-
nated together. We next perform message passing within
each part’s graph using a two-layer Graph Attention Net-
work v2 (GATv2) [6] to obtain the per-vertex embeddings
h1 and h2 for both the graphs.

h1 = fenc(x1, G1), h2 = fenc(x2, G2). (1)

The idea here is to extract local features within each part
that consider each B-Rep entity and its neighborhood.

3.5.2 Joint Axis Prediction

When creating a joint, a key piece of design intent is the def-
inition of a joint axis by which two parts can be aligned and
constrained to one another. The joint axis forms the basis
for the degrees of freedom to be defined and enables down-
stream tasks such as assembly, part mobility, and animation.
We formulate joint axis prediction as a link prediction prob-
lem, where the goal is to correctly identify a connection be-
tween G1 and G2 that aligns the two parts along a ground
truth joint axis. This is done by aggregating information

between parts using an edge convolution along the edges of
Gj . The node features x1 and x2 from graphs G1 and G2,
are passed through our shared encoder network fenc to get
384-dimensional embeddings h1 and h2 (Eq. 1). Then for
each edge (u, v) in the graph Gj which densely connects
G1 and G2, we predict a logit indicating the presence of a
joint:

huv = φ(hu ⊕ hv), (2)

where φ : R768 7→ R is a 3-layer MLP, ⊕ is the concatena-
tion operator and hu and hv are gathered from h1 and h2

based on the source and target vertices for each edge in Gj .
We train the network with a loss function that has two

terms. The first term LCE is the cross-entropy between the
edge predictions huv and the ground truth edge labels juv ∈
{0, 1} normalized into a probability distribution ĵuv .

ĥuv = softmaxall(huv),

LCE = CE
(̂
juv, ĥuv

)
.

(3)

Here the subscript in the softmax operation indicates that
it is applied over all edges in Gj , and CE(p,q) =
−
∑

i pi logqi. This loss encourages true joints to have
higher values while simultaneously suppressing non-joints.
We observe this is sub-optimal due to the sparsity of pos-
itive labels, where LCE is summed over a large number of
terms. To better focus the loss term so that the joints are
better contrasted against more likely non-joints, we use a
symmetric cross entropy loss LSym as the second term in
the loss function.

ĥrow = softmaxrow(h2D), ĥcol = softmaxcol(h2D),

LSym = CE(̂j2D, ĥrow) + CE(̂j2D, ĥcol).
(4)

Here the subscript of the softmax indicates that it is taken
over a single axis, and the 2D subscript instead of uv in-
dicates that the predictions and ground truth labels on the
edges of Gj are reshaped into n×m matrices.



3.5.3 Joint Pose Search

The B-Rep entities predicted by our network allow us to
query the ground truth B-Rep data to obtain a joint axis
prediction for each part. Once these axes are aligned to-
gether, three secondary parameters define a rigid joint and
can be used for joint pose prediction. An offset distance
along the joint axis, rotation about the joint axis, and a flip
parameter to reverse the joint axis direction. We find these
parameters using a neurally guided search that allows us
to enumerate over the top-k joint axis predictions and di-
rectly consider interaction between both parts. To evaluate
a candidate joint configuration, we propose a cost function
Cjoint = Coverlap + λCcontact that considers two general crite-
ria for well defined joints: overlap volume and contact area
between parts, formulated as:

Coverlap =
V– 1∩2

min (V– 1, V– 2)
, Ccontact =

A1∩2

min (A1, A2)
. (5)

Here, V– 1 and V– 2 are the volume of the two parts, and
V– 1∩2 represents their overlap volume. Similarly, A1 and
A2 are the surface area of the two parts, and their contact
area is A1∩2. Intuitively, for the two parts to align closely
to each other, minimizing the cost function should encour-
age a larger contact area while penalizing the overlap vol-
ume to prevent penetration. Therefore, we let λ = −10
if Coverlap < 0.1. Otherwise, we set λ = 0 to increase the
overlap penalty. Given this cost function, we search for the
optimal joint pose using the Nelder-Mead algorithm [48] as
a standard derivative-free optimization.

4. Dataset
To evaluate the performance of our method we create the

Fusion 360 Gallery assembly dataset, derived from designs
created in Autodesk Fusion 360 and submitted to the pub-
licly available Autodesk Online Gallery [3]. The dataset
consists of two inter-related sets of data, Assembly Data,
containing 8,251 assemblies with 154,468 separate parts,
and Joint Data containing 32,148 joints defined between
23,029 different parts. The data and supporting code are
publicly available on GitHub1 with a license allowing non-
commercial research. We now describe the joint data used
in our experiments and provide information on the overall
dataset in Section A.1 of the supplementary material.

Figure 4, left shows an overview of the joint data in our
dataset. We consider a data sample to be a joint set, such as
shown in Figure 4, right, containing a pair of parts with one
or more joints defined between them. The user-selected B-
Rep faces and edges form the ground truth labels together
with the joint axis and pose information of each joint. We
provide an approximate 70/10/10/10% data split, for the

1https://github.com/AutodeskAILab/Fusion360GalleryDataset

Figure 4. An overview of joint data from the Fusion 360 Gallery
assembly dataset (left). Each sample consists of a unique pair of
parts with one or more joints defining how they are locally con-
strained and positioned together (right).

training, validation, test, and original distribution test sets
respectively. The validation and test sets do not include
samples with potentially ambiguous sibling entities, while
the original distribution test set does.

5. Experiments
In this section we perform experiments to qualitatively

and quantitatively evaluate our method on two tasks: joint
axis prediction and joint pose prediction. We examine how
our method compares with a human CAD expert and other
methods from the literature. A key criteria for evaluat-
ing performance is to gauge how the network performs in
scenarios that traditional algorithms find challenging. One
such scenario involves designs that do not contain connec-
tions between cylindrical shafts and holes, such as a bolt
and a hole similar to Figure 2a. Commercial products ex-
ist which infer joints of this type by searching for fasteners
and holes with similar radii [54]. In our dataset we see that
82% of data samples contain holes and 47.5% of joints con-
strain circular or cylindrical entities on one part to a hole on
the opposing part. In our experiments we report results that
gauge the ability of our approach to correctly infer joints,
both in the simple Hole case and the more complex No Hole
case. Details of experiment procedures are provided in Sec-
tion A.2 of the supplementary material.

5.1. Human CAD Expert Baseline

Understanding how a human CAD expert performs in a
similar setting is important to gauge the efficacy of each
method. We conduct a study to establish a human base-
line by recruiting a CAD expert, who works on commercial
CAD design, and ask them to assemble pairs of parts from

https://github.com/AutodeskAILab/Fusion360GalleryDataset


All Hole No Hole Param.
Acc.% ↑ Acc.% ↑ Acc.% ↑ # ↓

Ours 79.53 80.15 76.59 1.3M
B-Dense 10.59 10.36 10.59 3.2M
B-Discrete 4.28 4.18 4.79 4.0M
B-Grid 65.21 65.09 65.81 3.1M
B-Heuristic 71.39 72.74 64.97 -
B-Random 21.55 21.92 23.29 -

Human 80.00 - - -

Table 1. Joint axis prediction accuracy results are shown for all
data samples in the test set (All), the subset of data samples with
holes (Hole) and without holes (No Hole). The number of network
parameters is also shown (Param.). Finally, results from a human
CAD expert on 100 test samples are shown.

our dataset with a known ground truth joint. We use 100
data samples picked randomly from a distribution exclud-
ing the potentially ambiguous sibling entities. We randomly
rotate and translate each part and conduct the study using
Fusion 360. We compare the joint axis created by the CAD
expert with the ground truth. We find that the CAD expert
results match the ground truth 80% of the time. This shows
that determining how two isolated parts should be assem-
bled is challenging for CAD experts without the valuable
context provided by the object assembly. We provide addi-
tional details in Section A.2 of the supplementary material.

5.2. Joint Axis Prediction

Although there are no previous works that address the
exact same setting as ours, we adapt several related methods
to compare with our approach.

Point Cloud Baselines We adapt two point cloud based
methods designed to predict a joint axis for part mobility.
For each baseline we use a common architecture, based on
a PointNet++ [49] encoder, and adapt the decoder strategy
and loss functions from related work. B-Dense follows Li
et al. [37] to densely regress a joint origin projection vec-
tor, projection distance, and joint direction for each point
in the point cloud. B-Discrete follows Shape2Motion [58]
and uses a hybrid of discrete classification and regression to
predict the joint origin point and direction vector.

B-Rep Baselines We compare our method against sev-
eral baseline methods that take B-Rep graphs as input. B-
Grid follows UV-Net [25] and uses grid features (points,
normals, trimming mask, and tangents) sampled on B-Rep
faces and edges together with a CNN encoder. We use the
same graph topology, prediction head, and loss as our net-
work. B-Heuristic uses a rule-based approach that oper-
ates on B-Rep graphs and assigns a score to each B-Rep
entity. Higher scores are assigned to entities that are simi-
lar, based on the entity type, area, and length information,
and that match the training data distribution of entity type

All Hole No Hole Param.
CD ↓ CD ↓ CD↓ # ↓

Ours + Search 0.0580 0.0570 0.0628 1.3M
Ours 0.0627 0.0624 0.0657 1.3M
B-Pose 0.0700 0.0693 0.0730 2.3M

Table 2. Joint pose prediction results using average chamfer dis-
tance (CD) where lower is better. We show results for all sam-
ples in the test set (All), and the subset of data samples with holes
(Hole) and without holes (No Hole). The number of network pa-
rameters is also shown (Param.)

pairings. For cylinders and circles, the radius of the entity is
also employed. A higher score is given to entity pairs where
the radii match to within 5%. B-Random makes random
predictions over all B-Rep entities and represents the lower
bound for B-Rep performance.

Table 1 shows results for the joint axis prediction task on
the test set. We report the accuracy of regression based ap-
proaches by considering a joint axis prediction to be a ‘hit’
if it is collinear within a distance and angular threshold of
5%. For classification based approaches we report the top-
1 accuracy. We also report accuracy for the subset of data
samples that have holes (Hole) and those that do not (No
Hole). Recall that traditional algorithms are good at work-
ing with the special case of matching fasteners to holes. We
observe that the performance gap between our approach and
the next highest performing B-Heuristic approach is 8.14%,
however this widens to 11.62% for the important No Hole
subset where traditional algorithms are known to struggle.
We find that the B-Rep based approaches outperform those
based on point clouds while also using fewer parameters.
Although point cloud approaches perform well with axis
aligned parts from the same object class [58], our results
show that real world data is significantly more challenging.
Finally we note that our approach is within 0.5% of the per-
formance of a human CAD expert. We provide additional
details in Section A.2 of the supplementary material.

5.3. Joint Pose Prediction

For the joint pose prediction task we again adapt a base-
line method from the literature to our setting. B-Pose fol-
lows Huang et al. [23] to regress a translation point and ro-
tation quaternion using a combination of L2 and chamfer
distance (CD) loss terms. Although a parametric joint is not
created, B-Pose represents a common approach used with
top-down assembly. We evaluate the performance of our
method in two different configurations. Ours uses the joint
axes derived from network predictions to align the two parts
together without an offset, rotation, or flip. Ours + Search
additionally performs joint pose search over the top 50 pre-
dictions to find suitable offset, rotation, and flip parameters.

Table 2 shows results for the joint pose prediction task.
We record the minimum CD calculated between the ≥ 1
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Figure 5. Qualitative comparison of joint pose prediction results comparing our method, with and without search, with the B-Pose baseline.

ground truth joints from the joint set and the predicted as-
sembly. We then report the average CD across all samples
in the test set. We find that using our network predictions
alone (Ours) can better match the ground truth when com-
pared with the B-Pose baseline. Introducing search (Ours +
Search) can help resolve areas of overlap (Figure 5e) and in
some cases resolve incorrect axis predictions (Figure 5b,g).
It is important to note that the ground truth data only con-
tains a finite set of discrete states (e.g. door open, door
closed) rather than continuous states (e.g. door opening)
that may also be valid. For example, our predictions for the
belt buckle in Figure 5d do not match the ground truth state
but appear plausible. As such, CD should be considered an
approximate metric for comparing the relative performance
of each method. We provide further qualitative results in
Section A.2 of the supplementary material.

6. Discussion

Future Applications Our joint axis prediction net-
work and search approach can serve as fundamental build-
ing blocks for a number of applications. One such applica-
tion is the automated assembly of multiple parts in a design.
As a preliminary demonstration we assemble a multi-part

Step 1 Step 2 Step 3 Step 4 Final Assembly

Figure 6. Multi-part assembly demonstration. Parts are aligned
sequentially from a given assembly sequence using our joint axis
prediction network and pose search.

design given only the individual parts and the sequence of
part pairs derived from our assembly dataset. We amend
our search strategy to minimize the overlap volume between
the new part and the partially assembled design at each as-
sembly step and maximize the contact area between them
using a similar cost function. Figure 6 shows an example
sequence of parts that are assembled correctly in a bottom-
up fashion. We provide further details in Section A.3 of the
supplementary material.

Limitations A bottom-up approach to assembly may
be limited when scaling to large assemblies where global
composition is important. Reliance on B-Rep CAD data is
another limitation of the current work. Although data avail-
ability is improving [27, 30, 63], our method has not been
tested beyond mechanical CAD data. Finally, our network
does not leverage geometric loss terms that may help with
avoiding undesirable overlap between parts and generalize
to predicting other joint parameters.

7. Conclusion
Our long-term motivation is to enable assembly-aware

design tools, capable of suggesting and automatically plac-
ing parts. Such a system could enable greater reuse of ex-
isting physical components in new designs and potentially
reduce the cost and environmental impact associated with
manufacturing and associated supply chains [29]. Under-
standing how parts are assembled is also critical for robotic
assembly and disassembly. CAD-informed robotic disas-
sembly systems may enhance our ability to reuse and recy-
cle components [8, 35, 41, 45]. In this work we have begun
the first steps to address these challenges by learning the
bottom-up assembly of parametric CAD joints. Our results
show the promise of learning-based methods to approach
the performance of human CAD experts, and with the publi-
cation of our dataset we hope to further aid future research.
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A. Supplementary Material
A.1. Dataset

The Fusion 360 Gallery assembly dataset consists of
two inter-related sets of data with assembly data and joint
data. The data and supporting code are publicly available on
GitHub2 with a license allowing non-commercial research.
We now outline related datasets, data processing steps, doc-
umentation, and statistics about the dataset.

A.1.1 Related Datasets

The ABC dataset [30] provides 1 million CAD assemblies
in the B-Rep format, containing valuable analytic repre-
sentations of surfaces and curves. However, each assem-
bly contains individual part files positioned in global space
without the critical joint information describing how parts
are connected and constrained together. Other datasets pro-
viding designs in B-Rep format only include part geometry
and lack assembly data entirely [25, 31, 62, 63].

Recently a number of datasets have extended existing
3D shape datasets, such as ShapeNet [7] and PartNet [47],
with additional human annotated labels for part mobil-
ity [21, 58, 65, 68]. The resulting synthetic assemblies have
joint type and range of motion information included. Our
dataset differs from these datasests in several ways:

1. We provide CAD assemblies that are more represen-
tative of real world design, including detailed design
such as fasteners.

2. Joint connectivity and component hierarchy are de-
fined by the designers themselves rather than human
annotators.

3. Joints between parts are defined by discrete designer-
selected entities, such as B-Rep faces and edges, mak-
ing them well suited to learning tasks.

4. We provide B-Rep and mesh representations together
with extensive metadata.

We believe it is critical to leverage and learn from the rich
sources of information available inside of existing CAD
models. Rather than rely on extensive human annota-
tion, our dataset exploits the knowledge of domain experts
on how shapes are defined and assembled using industrial
CAD modeling software.

Concurrent to our work, AutoMate [27] announced a
similar dataset to ours with a larger number of overall de-
signs. Based on the description of the dataset in [27], we
note several advantages that may be helpful for users of our
dataset:

1. We preserve the sub-assembly hierarchy for all assem-
blies, allowing for the creation of multiple hierarchi-

2https://github.com/AutodeskAILab/Fusion360GalleryDataset

cal representations via contacts, joints, or the designer-
defined assembly tree.

2. We provide assembly metadata listing the contact sur-
faces, hole types, materials, and various user specified
tags for each design.

3. We consolidate joints across the dataset, meaning that
for two given parts in our joint data we list all known
ground truth joints between them. This avoids pre-
senting the network with contradictory labels during
training, where multiple different versions of a pos-
itively labelled joint configuration could exist across
data samples.

4. We provide a ‘clean’ test and validation set for joint
prediction by removing potential positive unlabeled
samples.

Ultimately we believe both datasets will be helpful to cross-
validate using designs created in different CAD software
and increase the robustness of learning-based methods. Fu-
ture updates to the AutoMate dataset may include a number
of the capabilities listed above.

A.1.2 Data Processing

We create the Fusion 360 Gallery assembly dataset from
approximately 20,000 designs in the native Fusion 360 .f3d
CAD file format. We use the Fusion 360 Python API3 to
parse the native .f3d files into JSON format text files con-
taining the main CAD parameter information, and geome-
try files in both B-Rep and mesh format. We use separate
pipelines to process the assembly and joint data. After the
data has been extracted we rebuild each design and compare
it with the original to ensure data validity. Failure cases and
any duplicate designs, are not included in the dataset. For
the assembly data, we consider a design a duplicate when
there is an exact match in all of the following: body count,
occurrence count, component count, joint count, contacts
count, hole count, surface area to one decimal point, and
volume to one decimal point. This process allows us to re-
move duplicate designs from the dataset that have been up-
loaded multiple times. Using this process we identify and
remove approximately 840 designs from the assembly data.
For the joint data, we handle duplicates using the process of
joint consolidation described in Section A.1.4.

A.1.3 Assembly Data

In mechanical CAD software, assemblies are collections of
parts, represented as 3D shapes, that together represent an
overall design, or object. In our assembly data we filter out
designs that contain only a single part, leaving us with 8,251
assemblies containing a total of 154,468 separate parts. A

3https://help.autodesk.com/view/fusion360/ENU/

https://github.com/AutodeskAILab/Fusion360GalleryDataset
https://help.autodesk.com/view/fusion360/ENU/?guid=GUID-7B5A90C8-E94C-48DA-B16B-430729B734DC


Figure 7. An overview of assemblies in the Fusion 360 Gallery assembly dataset.
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Figure 8. The percentage of assemblies containing contacts, holes,
occurrences (instances of components), and joints.

random sampling of these assemblies is shown in Figure 7.
Individual parts can be grouped together into components
that represent reusable parts of a design, for example a sin-
gle screw or a sub-assembly containing multiple compo-
nents. Components can be positioned in global coordinates
or constrained to one another using joints. Contacts exist
when faces of parts in the assembly touch, within a toler-
ance, with the faces of other parts. Our assembly data is
provided in a JSON text format containing the top-level data
elements listed in Table 3. The structure and representation
of the data follows the Fusion 360 API. We use universally
unique identifiers (UUID) to cross reference elements with
the JSON data. In the following paragraphs we describe the
top-level elements in the data with more detail. Figure 8
lists the percentage of assemblies containing several of the
top-level data elements described in Table 3.

Root The root of the assembly refers to the root node from
which the hierarchical assembly graph can be constructed,
as shown in Figure 9, right. The root links to the component
UUID that the designer specified to be at the top of the tree,
and it also links to any bodies that might be contained by
the root.

Components Components are the building blocks that
make up assemblies. Each component contains one or more
bodies, a name, a part number and is assigned a UUID. Fur-
ther information on components can be found in the Fusion
360 API documentation for the Component class.

Bodies Bodies are the geometric elements, represented as
B-Reps, that make up components. The geometric data of
each body is included in the dataset as described in Sec-
tion A.1.3. Each body is assigned a UUID, and contains a
name, physical properties, appearance, material, as well as
the file names of the corresponding B-Rep, mesh, and im-
age files. The physical properties of the body include the
center of mass, area, volume, density, and mass. The ap-
pearance of the body refers to the material used for visual
appearance, such as rendering, and contains the UUID and
name of the user-assigned appearance. The material of the

Element Description

Root The root component of the design as defined
by the designer.

Components Components containing bodies or other com-
ponents to form sub-assemblies.

Bodies The underlying 3D shape geometry in the B-
Rep format.

Occurrences Instances of components, referencing the par-
ent component with instance properties such
as location, orientation, and visibility.

Tree The designer-defined hierarchy of occur-
rences in the design. Often used to organize
sub-assembles into a meaningfully hierarchy.

Joints Constraints defining the relative pose and de-
grees of freedom (DOF) between a pair of oc-
currences.

Contacts Faces that are in contact between different
bodies.

Properties Statistical information and metadata about the
overall assembly.

Holes A list of hole features with information about
the type of hole, size, direction, and location.

Table 3. Descriptions of the top-level elements provided in our
assembly data.

body, on the other hand, refers to the physical material from
which the physical properties of the body are derived, such
as the weight and density, and contains the UUID and name
of the material. Figure 10 shows the number of bodies in
an assembly as a distribution across the dataset. Further in-
formation on bodies can be found in the Fusion 360 API
documentation for the BRepBody class.

Occurrences Occurrences are instances of components
that can have independent parameters applied, such as visi-
bility, location, and orientation, while maintaining the same
geometry as their parent component. An occurrence is to
component, as Object is to Class in object oriented pro-
gramming. Occurrences are given a UUID and link to a par-
ent component. The flag is grounded indicates whether
the user locked the position of the occurrence, prevent-
ing further movements from happening via mouse-dragging
in the Fusion 360 UI. The flag is visible indicates
whether the occurrence was displayed or not in the UI. Each
occurrence also has information about the physical proper-
ties (aggregating the center of mass, area, volume, density,
and mass of all included components and bodies), as well as
the transformation matrix necessary to orient the occurrence

https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/Component.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/BRepBody.htm
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Figure 9. An example assembly (left) represented as a parts graph (middle) built from contact information, and as a hierarchical assembly
graph (right) built from the designer-defined assembly tree.
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Figure 10. The number of bodies (separate 3D shapes) in an as-
sembly, shown as a distribution across the assembly data.
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Figure 11. The number of occurrences (instances of a component)
in an assembly, shown as a distribution across the assembly data
excluding assemblies without occurrences.

within the global space. Figure 11 shows the number of oc-
currences in an assembly as a distribution across the dataset.
Further information on occurrences can be found in the Fu-
sion 360 API documentation for the Occurrence class.
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Figure 12. Assembly tree depth shown as a distribution across the
assembly data.

Tree The dataset contains information about the hierarchy
of occurrences defined by the designer, as shown in Fig-
ure 9 (right). The tree contains this hierarchy information
by linking to occurrence UUIDs. Figure 12 shows the dis-
tribution of assembly tree depth, as defined by how many
occurrences of components are nested in hierarchical layers
below the root level.

Joints In CAD, joints specify movement between parts
by constraining the degrees of freedom (DOF) of one part
with respect to another. Specifically, joints are defined be-
tween occurrences. Joints are given a UUID, and contain
the following information: name, type, parent component,
occurrence one (the first occurrence that is part of the joint),
occurrence two (the second occurrence being mated to the
first), geometry or origin one (containing information about
the designer-selected B-Rep entity and joint axis on body
one), geometry or origin two (containing information about
the designer-selected B-Rep entity and joint axis on body
two), timeline index (indicating the order in which the joint
was added relative to other joints or occurrences), offset

https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/Occurrences.htm
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Figure 13. An overview of the joint types in the Fusion 360
Gallery assembly dataset and their degrees of freedom (DOF).

(distance separating geometry one from geometry two), an-
gle (angle between geometry one and geometry two), and
the flag is flipped (indicating the positive or negative
direction of the joint). As shown in Figure 13, Fusion 360
has seven different types of joints, each with associated joint
motion information defining the DOF, motion limits, and
rest state. We list below the different types of joints and the
associated Fusion 360 API class.

• RigidJointType: RigidJointMotion

• RevoluteJointType: RevoluteJointMotion

• SliderJointType: SliderJointMotion

• CylindricalJointType: CylindricalJointMotion

• PinSlotJointType: PinSlotJointMotion

• PlanarJointType: PlanarJointMotion

• BallJointType: BallJointMotion

Figure 14 shows the number of joints in an assembly as a
distribution across the dataset, excluding assemblies with-
out joints. Further information on joints can be found
in the Fusion 360 API documentation for the Joint and
AsBuiltJoint classes.

Contacts Contacts are present when two bodies share co-
incident faces or are within a tolerance of 0.1 mm. An ex-
ample of a contact is shown in Figure 15. Each contact
present in the assembly is defined in the JSON with a pair
of entities, indicating which faces are in contact. Each entity
includes information about the body it belongs to, the occur-
rence it belongs to, the type of surface in contact (cylindri-
cal, planar, etc.), the bounding box surrounding the entity,
and an index that can be used to uniquely identify the face.
Figure 16 shows the number of contacts in an assembly as
a distribution across the dataset.

Properties We provide assembly-level metadata about
the design under the properties element in the JSON. Ta-
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Figure 14. The number of joints in an assembly, shown as a dis-
tribution across the assembly data excluding assemblies without
joints.

Figure 15. Two bodies (top) and their respective contacts high-
lighted in red (bottom).

ble 4 provides a summary of this metadata, including ge-
ometric information about the whole assembly, physical
properties of the geometry, online statistics derived from
the public web page hosted on the Autodesk Online Gallery
[3] at the time the data was downloaded, and some user-
selected categorical tags that provide more information
about the context of the assembly.

Holes In CAD models, holes are common design features
that often serve a specific purpose. Parts are commonly held
together with bolts and screws, which either pass through or
end in holes in the parts. As holes are an important design
feature, we use an industrial CAD feature recognition tool
to identify holes in each assembly for inclusion in the JSON
data. Each hole lists information about the body it is in, di-

https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/RigidJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/RevoluteJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/SliderJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/CylindricalJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/PinSlotJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/PlanarJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/BallJointMotion.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/Joint.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/AsBuiltJoint.htm
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Figure 16. The number of contacts (B-Rep faces that are in contact
with another body) in an assembly, shown as a distribution across
the assembly data excluding assemblies without any contacts.

Category Property

Geometric Vertex count
Edge count
Face count
Loop count
Shell count
Body count
Surface type count (plane, torus, cylinder,
NURBS, cone, sphere, etc.)
Vertex valence instance count

Physical Bounding box
Area
Volume
Density
Mass
Center of mass
Principal axes
Moments of inertia

Online Likes count
Comments count
Views count

Tags Products used tag
Category tag (automotive, art, electronics,
engineering, game, machine design, interior
design, medical, product design, robotics,
sport, tools, toys, etc.)
Industry tag (architecture, engineering &
construction; civil infrastructure; media &
entertainment; product design & manufac-
turing; other industries).

Table 4. Each assembly includes the metadata listed in this table.

ameter, length, direction, and faces and edges that belong to
the hole. Holes are also labeled with a hole type denoting
the shape at the hole entrance, e.g. counterbore, counter-
sunk, and at the end of the hole, e.g. through-hole, blind
hole. Figure 17 shows the number of holes in an assembly
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Figure 17. The number of holes in an assembly, shown as a distri-
bution across the assembly data excluding assemblies without any
holes.

as a distribution across the dataset.

Assembly Data Geometry Format We provide geometry
in several data formats, described below.

Boundary Representation. B-Rep data consists of faces,
edges, loops, coedges and vertices [61]. A face is a con-
nected region of the model’s surface. An edge defines the
curve where two faces meet and a vertex defines the point
where edges meet. Faces have an underlying parametric
surface which is divided into visible and hidden regions by
a series of boundary loops. A set of connected faces forms
a body. B-Rep data is provided as .smt files representing
the ground truth geometry and .step as an alternate neutral
B-Rep file format. The .smt file format is the native format
used by Autodesk Shape Manager, the CAD kernel within
Fusion 360, and has the advantage of minimizing conver-
sion errors.

Mesh. Mesh data is provided in .obj format representing
a triangulated version of the B-Rep. Triangles belonging to
each B-Rep faces are denoted in the .obj file as groups, for
example, g face 1, indicates the next series of triangles
in the file belong to the B-Rep face with index 1. B-Rep
edges are converted to poly lines and added to the .obj file.
The B-Rep edge and half-edge index is also denoted, for
example, g halfedge 7 edge 3. Using these group
indices it is possible to map directly from B-Rep faces and
edges to mesh triangles and poly lines. Note that meshes
provided in the dataset are not guaranteed to be manifold.

Other representations, such as point clouds or voxels, can
be generated from the mesh or B-Rep data using existing
data conversion routines and are not included in the dataset.
For convenience we include a thumbnail .png image file to-
gether with each body and one for the overall assembly. Ge-
ometry files are named according to the UUID of the body
in the assembly, with the overall assembly files given the
name ‘assembly’ with the appropriate file extension.
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Figure 18. The distribution in the joint data of B-Rep entity types,
from both surfaces and curves, selected by designers when creat-
ing a joint.

Assembly Data Split The assembly data is divided into a
train-test split found in the file ‘train test.json’, and a train-
test-cross split found in the file ‘train test cross.json’.

The main train-test split is created by randomly sampling
80% of the data into train, and 20% into test.

The train-test-cross split, on the other hand, is a cross
dataset split with the joint data. For this split, data is cho-
sen such that there is no overlap between the train assem-
bly data and the test joint data, and no overlap between the
test assembly data and the train joint data. This train-test-
cross split allows for a model to be trained using train joint
data and tested with test assembly data. It’s important to
note that the train-test-cross split does not represent a nor-
mal distribution of the assembly data, and be may be biased.
Nonetheless, the train-test-cross split is included to support
applications leveraging both the assembly and joint data.

Assembly Graph Representations Using the contact,
joint, or designer-defined assembly tree, various graph rep-
resentations can be formed. For example, contact surface
information and joint data can be used to construct a parts
graph [12] where graph vertices represent parts and graph
edges denote user-defined relative motion and constrained
DOFs between part pairs (Figure 9, center). Similarly, the
part hierarchy information found in the design tree can be
used to form a hierarchical assembly graph [53] where the
vertices of the graph are components and the graph edges
denote parent-child relationships (Figure 9, right).

Assembly Data Use Cases We envision numerous use
cases our dataset could enable. For example, project-level
metadata such as the user-defined category and industry
tags, could serve as a proxy for design requirements and
support research around design synthesis from design re-
quirements [71]. Similarly, project level meta-data about
the popularity of the assemblies in the Autodesk Online
Gallery (view counts, like counts, and comment counts)
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Figure 19. The distribution in the joint data of B-Rep entity types,
shown as a pair, selected by designers when creating a joint be-
tween two bodies.

could support research around customer requirement analy-
sis [44]. Per-body material metadata could support material
prediction tasks [2]. This data could also support model-
reuse workflows as well as global or part-level similarity
retrieval tasks [42].

Assembly Data Limitations Due to the complexity of
some large assemblies, we encounter data processing fail-
ures that force us to exclude some assemblies and elements
of assemblies. In cases where the exported assembly can-
not be rebuilt to match the original assembly, we are forced
to discard the assembly but use the joints individually as
described in Section A.1.4. When processing of contact or
joint information fails, but the exported assembly matches
the original, we retain the assembly and mark the contact
or joint information as null to indicate a processing er-
ror. We find that processing failures occur for contacts with
13% of assemblies and for joints with 2%. A general limi-
tation of the assembly data is that only 20% of designs have
joints defined. We attribute this to the extra work required
to manually define joints, which JoinABLe seeks to address
by offering improved automation of joint setup.

A.1.4 Joint Data

Our joint data consists of pairs of parts with multiple joints
defined between them, as described in Section 4 and illus-
trated in Figure 4. We provide the joint data separate from
the assembly data as an accessible standalone dataset for
the joint prediction task and to increase data quantity by in-
cluding valid joints that were excluded from the assembly
data due to unrelated data processing issues. Our joint data
consists of 19,156 joint sets, containing 32,148 joints be-
tween 23,029 different parts. We provide an approximate
70/10/10/10% data split, for the train, validation, test, and
original distribution test sets respectively.
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Figure 20. The distribution of B-Rep surface types for all contacts
in the joint data.
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Figure 21. The distribution of B-Rep surface type pairs, in contact
with one another in the joint data.

Joint Data Labels The designer-selected B-Rep faces
and edges form the ground truth labels and are stored as
indices that map to B-Rep entities, or alternatively trian-
gle and poly line groups in the mesh representation we pro-
vide. Figure 18 shows the overall distribution of entity types
(from both surfaces and curves) that are selected by de-
signers to create joints. Circle and cylinder types are most
prevalent due to their use with fasteners. Figure 19 fur-
ther shows the relationship between pairs of joint entities
by their entity type.

We also provide contact labels that indicate which B-Rep
faces are coincident or within a tolerance of 0.1mm, when
a joint is in an assembled state. Figure 20 shows the overall
distribution of surface entity types that are in found to be in
contact. Figure 21 further shows the relationship between
pairs of surfaces that are found to be in contact. Finally we
provide hole labels as found in the assembly data.

Joint Data Geometry Format We provide geometry in
the same B-Rep and mesh data formats as the assembly
data. In addition we provide a graph representation of the
B-Rep topology and features used in our experiments. Here
each graph vertex represents a B-Rep face or edge, with the
graph edges defined by adjacency. We include the input
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Figure 22. The number of vertices in each graph created from the
faces and edges in a B-Rep body forming a joint. Shown as a
distribution to indicate the complexity of designs in the joint data.

features described in Section A.2.3 as well as the UV-grid
features (points, normals, trimming mask, tangents) used
by the B-Grid baseline method. We extract the input fea-
tures using the Fusion 360 API. We store the graph data
as a JSON file in the NetworkX4 node-link data format for
easy integration with common graph neural network frame-
works. Figure 22 shows the distribution of graph vertices
in our graph representation of each part. This provides an
approximate indication of the complexity of designs in the
joint data.

Joint Consolidation We now provide additional details
about the process of joint consolidation described in Sec-
tion 3.4. We perform joint consolidation across all joints in
the dataset. We begin by creating a unique hash for each
pair of parts based on the B-Rep topology and geometric
properties. For each B-Rep face and edge in a part we add
the volume, moments of inertia, surface type, curve type,
area, and length to the hash. Floating point values are trun-
cated to 3 decimal place for moments of inertia and 1 dec-
imal place for all other values. For surface and curve type
we use the string values directly. This approach ensures
matches between parts have identical topology, a key re-
quirement to ensure the ground truth entities are mapped
correctly. We then concatenate the hash for each pair of
parts and group all joints with the same combined hash to-
gether to form joint sets. Figure 23 shows the number of
joints in each joint set after joint consolidation has been per-
formed. Roughly 70% of joint sets have a single joint, while
the remaining 30% have more than one joint.

Joint Data Limitations To better scope the joint data and
joint prediction task, we exclude some advanced joint con-
figurations. We include only joints where a user has se-

4https://networkx.org

https://networkx.org
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Figure 23. The distribution of joints in each joint set across the
joint data.

lected a single B-Rep entity on each part. In Fusion 360 it
is possible to select multiple entities, for example the user
may select a plane face, then a corner of the plane to further
refine the position of the joint axis. Although we exclude
these samples from the joint data to narrow the scope of the
joint prediction task, we include them in the assembly data
where they represent 9% of all joints.

A.1.5 Supporting Code

Together with the dataset we provide supporting code for
working with the data in Python. To work with B-Rep data,
we provide several Fusion 360 add-ins that can rebuild the
assembly and joint data as a parametric CAD model from
the JSON data provided in the dataset. The rebuilt CAD
models have a component hierarchy and parametric joints
fully defined. Fusion 360 is available free for students and
educators. To work with the mesh data we provide example
code to assembly and visualize the .obj files using common
open source Python libraries. Finally we provide an assem-
bly graph class to construct NetworkX graphs, such as those
show in Figure 9, from the assembly data.

A.2. Experiments

In this section we provide additional details of the ex-
periments in Section 5 and report additional experiment re-
sults to examine which input features the network uses to
make predictions, the effect of introducing label augmenta-
tion, and performance on a test set with potential positive
unlabelled samples.

A.2.1 Training

All experiments are run for 100 epochs with the final train-
ing weights used at test time. The reported values are the
average over 5 runs with different random seeds and error
bars indicate the standard deviation. All networks are im-
plemented in PyTorch.

Figure 24. Effect on joint axis prediction top-1 accuracy by remov-
ing specific input features from the network. Results are shown
for all data samples in the validation set (All), as well as the subset
with holes (Hole) and without holes (No Hole).

Our method uses the PyTorch Geometric5 implementa-
tion of GAT v2 [6] to perform message passing. Due to
memory limitations, during training of our method we skip
training samples where the graph representations of both
parts have more than 950 graph vertices combined. All
experiments with our method are trained with a per-GPU
batch size of 2 across 4 NVIDIA V100 GPUs, dropout dis-
abled, batch norm disabled, learning rate of 0.0001 with the
Adam optimizer, and a learning rate scheduler that reduces
on plateau.

A.2.2 Evaluation

We evaluate on all data samples in the test and uniform dis-
tribution test set (described in Section A.2.6). To ensure
large graphs can be evaluated without GPU memory limita-
tions, we perform evaluation on the CPU.

As described in Section 5 we report results for data sam-
ples both with and without holes. We consider a data sample
to have holes when a hole exists in either of the two parts
from a joint set. We take this approach to ensure that for the
more challenging ‘no hole’ case, the network is forced to
make a prediction for parts without any form of hole, either
connected with a joint or otherwise. In our test set we find
that 83% of data samples have holes and 17% do not.

For quantitative results we evaluate the five trained mod-
els for each condition and report the mean result. We follow
this procedure for the joint pose prediction task and perform
search with the five different trained models. For qualitative
results we pick the model with the highest quantitative re-
sult to use when generating figures. When multiple ground
truth results exist, we show the closest ground truth result
to those predicted.

5https://github.com/pyg-team/pytorch geometric

https://github.com/pyg-team/pytorch_geometric
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Figure 25. Label augmentation ablation study. Left: Types of label augmentation used, the percentage of training data samples with
each label type, and the overall label balance. Right: Effect on joint axis prediction top-1 accuracy by training with different labels and
evaluating with/without Equivalent labels.

A.2.3 Input Feature Ablation Study

As described in Section 3.3, we use information about indi-
vidual B-Rep faces and edges readily available in the B-Rep
data structure for input features. In this experiment we per-
form an ablation study to identify which input features have
the greatest impact on joint axis prediction performance.
For B-Rep faces we evaluate a one-hot vector for the sur-
face type (plane, cylinder, etc.), the area of the face, and a
flag indicating if the surface is reversed with respect to the
face. For B-Rep edges, we evaluate a one-hot vector for the
curve type (line, circle, etc.), the length of the edge, a flag
indicating if the curve is reversed with respect to the edge,
the dihedral angle at the edge, and a one-hot vector for the
edge convexity (convex, concave, etc.).

We train each model by sequentially removing input fea-
tures and report the top-1 accuracy results on the validation
set in Figure 24 for All samples and the Hole and No Hole
subsets. We also include results using All Features for com-
parison purposes. We firstly observe that performance on
the Hole samples is consistently higher than on the No Hole
samples. We find that the length feature is the most critical
for performance followed by entity type. This result aligns
with the common use of cylinders at the interface between
parts, with the network able to access both the B-Rep sur-
face type and the length of neighboring B-Rep edges in the
graph. As the length of the circular edge around the end
of a bolt or lip of a hole is proportional to the hole radius,
edge length can be effectively used as a way to identify bolts
and holes of similar sizes. Conversely we find that the area
feature does not act as a proxy in the same way and nega-
tively affects performance. In our experiments in Section 5
of the main paper we remove the lowest performing fea-
tures: area, dihedral angle, and convexity.

A.2.4 Label Augmentation Study

Our training data has both an extreme label imbalance
(99.9% negative) and positive unlabelled samples on the
order of 3× the number of labelled samples. To counter
these factors we explore the role of label augmentation with
a study that adds three different types of augmented labels

to the ground truth labels. Figure 25, left, illustrates each
type of label augmentation and provides statistics on how
common these labels are in our training data. Equivalent la-
bels, as described in Section 3.4, share the same joint axis as
the ground truth Joint labels. Sibling labels are used on en-
tities that are geometrically similar to the designer-selected
Joint entities. These cover cases, such as the one illustrated
on the left of Figure 25, where unlabeled holes exist in a
part that have the same diameter as labeled ones. Sibling
Equivalent labels are the equivalent entities that share the
same joint axis. Finally, Non-Joint labels are the negative
labels.

Figure 25, right, shows the effect of adding different
training label augmentations with the joint axis prediction
task. We show results for evaluation with and without
Equivalent labels on the validation set. A large increase
in accuracy is observed when Equivalent labels are used for
evaluation, due to the overall increase in positive labels. As
we consider a joint axis prediction to be correct if it is co-
linear with the ground truth joint axis in either direction,
adding Equivalent labels during evaluation allows us to bet-
ter judge network performance. We find that none of the
label augmentation strategies increase performance, and in
fact the addition of Equivalent labels at training time has a
negative effect. We attribute this to the large increase in la-
bel quantity (137×) and diversity making the task of fitting
a model more complex compared to the Joint labels alone.
Despite the extreme data imbalance our method is able to
perform when trained on only the joint entities defined in
the original ground truth data.

A.2.5 Human CAD Expert Baseline

We now provide further details of the human CAD ex-
pert study described in Section 5.1. We perform the study
with 100 samples randomly selected from distributions with
and without potential positive unlabeled samples containing
Sibling entities. The same CAD expert is used for each set
and asked to infer a joint configuration from two randomly
rotated and translated parts based on what they believe is
correct. No further guidance or details about the ground
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Figure 26. Example designs presented to a CAD expert during our
human baseline study.

truth solution or the original assembly is provided. Exam-
ple designs presented to the CAD expert are shown in Fig-
ure 26.

A limitation of the current study is an imbalance between
Hole and No Hole data samples. From the 100 samples
used in each study, random sampling produces 12 and 13
No Hole samples in each set, with the remainder Hole sam-
ples. To more accurately measure human performance in
designs without holes, a larger sample size would be bene-
ficial. Due to this limited sample size we do not report the
break down for Hole and No Hole accuracy in Table 1 and
6, but detail it here for completeness. For the test set, 77/88
(82.95%) Hole and 7/12 (58.33%) No Hole data samples
match the ground truth. For the uniform distribution test
set, described in Section A.2.6, 66/87 (75.86%) Hole and
1/13 (7.69%) No Hole data samples match the ground truth.
Although a limited sample size, the low performance on No
Hole samples matches our general observation that joints
are more difficult to infer when a definitive fastening mech-
anism is not apparent. This can be observed in Figure 26
where the Hole examples (a, b, d, e) generally have a more
apparent solution than the No Hole examples (c, f).

A.2.6 Joint Axis Prediction

We now provide further details of the joint axis prediction
experiment described in Section 5.2.

Joint Origin and Direction We derive the joint axis
based on the type of B-Rep entity predicted by the net-
work. Table 5 lists the different B-Rep entity types and the
source of the joint axis origin point and direction vector.
For NURBS surfaces and curves, no standard way of deriv-
ing the joint origin and direction is used. As it is extremely
rare to encounter joints defined using NURBS, we simply
discard them when training with B-Rep based methods.

B-Rep Entity Type Origin Direction

Plane Surface Centroid Normal
Cylinder Surface Origin Axis
Cone Surface Origin Axis
Sphere Surface Origin Z
Torus Surface Origin Axis
Elliptical Cylinder Surface Origin Axis
Elliptical Cone Surface Origin Axis
NURBS Surface - -

Line Curve Start Point Line Direction
Arc Curve Center Normal
Circle Curve Center Normal
Ellipse Curve Center Normal
Elliptical Arc Curve Center Normal
NURBS Curve - -

Table 5. The joint origin and direction information used to define
a joint axis, are derived from B-Rep entities as described above.

Baseline Implementation We now describe further im-
plementation details for the baseline methods described in
Section 5.2. For the point cloud baselines we use area-
based sampling on a mesh of each part using the Trimesh
library6. We create 1024 points, for a total of 2048 points
combined. We normalize each part to the unit range of −1
to 1 and center it at the origin. We use a common encoder
architecture for the B-Dense and B-Discrete baselines, il-
lustrated in Figure 27. Key here is adapting the architec-
ture to our setting where two parts are used as input rather
than one. We want to ensure that the embeddings contain
features from both parts, so meaningful predictions can be
made. The network takes as input two separate point clouds
and creates both a shape embedding and a point-wise em-
bedding from two separate PointNet++ [49] encoders, using
the PyTorch implementation7. The shape embedding, rep-
resenting the global shape of each part, is passed through a
fully-connected layer then repeated and concatenated to the
point-wise embedding of the opposing part. At this stage we
have embeddings for each part containing combined shape
and point-wise features. These embeddings are then passed
through a shared 3-layer MLP encoder using ReLU activa-
tion and dropout.

Specific details of the decoder and loss functions are de-
scribed below. Common to both point cloud baselines, and
unique to our setting, is the need to calculate the loss over
≥ 1 ground truth joint axes. As any ground truth joint axis
is considered correct, we calculate the loss from the single
network prediction against each ground truth joint axis and
take the minimum. During evaluation we follow the same
approach and consider a joint axis prediction a ‘hit’ if it is
collinear with any ground truth joint axis in either direction.

6https://trimsh.org
7https://github.com/yanx27/Pointnet Pointnet2 pytorch

https://trimsh.org
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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Figure 27. Encoder network architecture used for the B-Dense and
B-Discrete baseline methods.

To evaluate collinearity we use a distance threshold of 0.1,
equating to 5% of the unit range of −1 to 1, and an angular
threshold of 10◦, equating to approximately 5% of the 180◦

range, as we consider either axis direction to be correct.

B-Dense Implementation The B-Dense baseline follows
Li et al. [37], which densely regresses association and joint
parameters for each point in the point cloud. The associa-
tion parameters is a per-point variable estimated by the net-
work which predicts if a given point is near a given joint.
The ground truth association is calculated for a point if
the point is below a certain Eucidean distance threshold
to the joint direction axis. We follow Li et al. [37] and
use the cross entropy loss to compare the predicted asso-
ciation with the ground truth association for every point.
The joint parameter is a 7D vector predicted by the network
for each point, where the first 3 dimensions represent the
joint direction unit vector and the last 4 dimensions the pivot
point. We compare the predicted joint direction unit vector
with the ground truth joint direction unit vector using mean
squared error loss for only the points associated with that
joint. The pivot point is calculated by predicting a projec-
tion unit vector and the distance from a given point to the
joint axis. Similar to predicting the joint direction, for each
associated point we regress the projection unit vector and
the scalar distance with the ground truth parameters respec-
tively. Note during test time, similar to Li et al. [37] a voting
scheme is applied across the associated points to regress the
pivot point and joint direction axis.

We train the B-Dense baseline with a per-GPU batch size
of 7 across 8 NVIDIA V100 GPUs, dropout of 0.1, batch
norm enabled, learning rate of 0.0003 with the Adam opti-
mizer, and a learning rate scheduler that reduces on plateau.
The threshold parameter for the ground truth association is
set to 0.2.

B-Discrete Implementation The B-Discrete baseline fol-
lows Shape2Motion [58] and uses a hybrid of discrete clas-
sification and regression to predict the joint origin point and
direction vector. For the joint origin point prediction, the
network is trained to select points in the input point cloud

All Hole No Hole Param.
Acc.% ↑ Acc.% ↑ Acc.% ↑ # ↓

Ours 62.22 63.47 56.91 1.3M
B-Dense 6.00 5.24 10.00 3.2M
B-Discrete 2.71 2.86 2.09 4.0M
B-Grid 50.34 51.19 46.72 3.1M
B-Heuristic 57.99 60.54 47.11 -
B-Random 15.85 16.08 15.59 -

Human 69.00 - - -

Table 6. Joint axis prediction accuracy results are shown for all
data samples in the uniform distribution test set (All), the subset of
data samples with holes (Hole) and without holes (No Hole). The
number of network parameters is also shown (Param.). Finally,
results from a human CAD expert on 100 test samples are shown.

closest to the ground-truth. For that, a binary indicator vec-
tor is used, and a cross-entropy is employed for optimiza-
tion. In addition, a displacement vector is used to estimate
the displacement between anchor points and ground-truth
origin points. The displacement is optimized with an L2
loss. For the direction vector estimation, we discretize each
dimension of the direction vector into 14 classes. The B-
Discrete model estimates a class probability and a residual
for each dimension to correct the error through discretiza-
tion. The orientation loss comprises the cross-entropy loss
for the classification and the L2 for the residual error. The
overall loss is a summation of joint origin and orientation
losses. When adapting this baseline, we refer to the authors’
original implementation8.

We train the B-Discrete baseline with a per-GPU batch
size of 16 across 4 NVIDIA Quadro RTX 6000 GPUs,
dropout of 0.1, batch norm enabled, learning rate of 0.0003
with the Adam optimizer, and a learning rate scheduler that
reduces on plateau.

B-Grid Implementation The B-Grid baseline follows the
grid sampling approach of UV-Net [25] and uses a CNN-
based encoder9 to generate vertex embeddings before mes-
sage passing is performed. The remainder of the network is
identical to our method, including the joint axis prediction
branch and loss function. During training we randomly ro-
tate the input parts by 45◦ increments about the x, y, and z
axes to improve generalization. Due to memory limitations,
we skip training samples where the graph representations
of both parts have more than 950 graph vertices combined.
We train the B-Grid baseline with a per-GPU batch size of
2 across 4 NVIDIA V100 GPUs, dropout disabled, batch
norm enabled, learning rate of 0.0001 with the Adam opti-
mizer, and a learning rate scheduler that reduces on plateau.

8https://github.com/wangxiaogang866/Shape2Motion
9https://github.com/AutodeskAILab/UV-Net

https://github.com/wangxiaogang866/Shape2Motion
https://github.com/AutodeskAILab/UV-Net


Other Point Cloud Approaches In addition to the point
cloud baselines reported in Table 1, we attempted several
other approaches that failed to produce results. We find
that direct regression of the joint origin point and direc-
tion vector, similar to RPM-Net [68], struggles to align with
the ground truth axes until the loss approaches zero. We
find that classification of the joint origin and direction, by
predicting each over a quantized space, only slightly im-
proves compared to a regression-based approach. We also
attempted data augmentation using random rotation of each
point cloud but found it reduces overall accuracy. We at-
tribute this to the point cloud based networks achieving
higher accuracy by over-fitting on a subset of the data.

Evaluation on a Uniform Distribution In addition to the
‘clean’ test set, we retain an additional test set that matches
the original data distribution and contains potential positive
unlabeled samples. Figure 26, left shows an example of a
positive unlabeled data sample where two holes exist for
the bolt to be inserted, but only one is labeled. Although
the uniform distribution test set cannot be used to reliably
judge accuracy on the joint axis prediction task, we include
the results in Table 6 for completeness and to demonstrate
the effect of positive unlabeled samples during evaluation.
We note that the overall accuracy drops for all methods, but
the relative position of each method stays the same. The
results underline the importance of removing potential pos-
itive unlabeled data samples for accurate evaluation.

Top-k Accuracy In Figure 28 we show the top-k accuracy
results to supplement the top-1 results for joint axis predic-
tion reported in Table1. We plot the top-k accuracy for all
relevant methods. We observe that both learning-based and
heuristic methods saturate at k ≈ 50. We note that the B-
Grid baseline outperforms B-Heuristic when k > 2. We
attribute this to the UV-grid representation of the geome-
try as well as the local aggregation of features. B-Heuristic
and Ours both have access to more precise input features,
such as lengths, areas, and entity types, compared to B-
Grid which uses discretely sampled UV-grids to represent
the surface and curve shapes. Increasing the sampling rate
of curves and surfaces by using finer UV-grids, beyond the
10× 10 sampling used in the original paper [25], may yield
better performance at the cost of memory and compute. B-
Heuristic makes predictions on a per-entity level rather than
aggregating features from a neighborhood, like B-Grid and
our method does, and is unable to take the local shape into
account. By choosing the right features for this task and
employing a message-passing network, our method outper-
forms both B-Grid and B-Heuristic in any top-k setting.

Qualitative Results In Figure 29 and 30 we show quali-
tative results for the joint axis prediction task described in
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Figure 28. Joint axis prediction top-k accuracy.

Section 5.2. We show each part used to form a joint indi-
vidually in separate rows. Horizontal dividing lines are used
to separate pairs of parts from different joint sets. The dif-
ferent predictions from each method are shown in columns.
For all methods we visualize the joint axis with a yellow
arrow. For the ground truth we show the designer-selected
B-Rep entities in cyan, and the equivalent entities in pink.
For B-Rep based predictions, we show the predicted B-Rep
entities in cyan. We observe that by making predictions
over the B-Rep entities directly the derived joint axis results
naturally align to geometry. On the other hand, both point
cloud methods, B-Dense and B-Discrete, suffer from noisy
alignment with the geometry due to the use of regression.

A.2.7 Joint Pose Prediction

We now provide further details of the joint pose prediction
experiment described in Section 5.3.

Joint Pose Search Implementation Our joint pose
search procedure takes as input the top-k joint axis predic-
tions from our network, together with a pair of parts, and
outputs a selected joint axis prediction, offset, rotation, and
flip parameter that can be used to assemble the parts. Our
search procedure iterates over the top-k joint axis predic-
tions and applies the Nelder-Mead algorithm [48] to opti-
mize the offset and rotation parameters based on the cost
function described in Section 3.5.3. We optimize the con-
tinuous offset and rotation parameters with and without the
discrete flip parameter enabled, for a total of k×2 optimiza-
tion runs for each data sample. We set the initial simplex pa-
rameters to zero offset and rotation. For parts that have rota-
tional symmetry about the predicted joint axis, we optimize
only for the offset parameter and set the rotation parameter
to zero. Finally, we take the optimal set of parameters along
with the corresponding joint axis prediction that minimizes
the cost function. Using these predictions we recover the fi-



Ground Truth B-Dense B-Discrete B-Grid B-Heuristic B-RandomOurs

Figure 29. Qualitative results on the joint axis prediction task. Each of the two parts used to define a joint are shown individually in
separate rows, with the different predictions from each method shown in columns. For all methods we visualize the joint axis with a yellow
arrow. For the ground truth we show the designer-selected B-Rep entities in cyan, and the equivalent entities in pink. For B-Rep based
predictions, we show the predicted B-Rep entities in cyan.



Ground Truth B-Dense B-Discrete B-Grid B-Heuristic B-RandomOurs

Figure 30. Qualitative results on the joint axis prediction task. Each of the two parts used to define a joint are shown individually in
separate rows, with the different predictions from each method shown in columns. For all methods we visualize the joint axis with a yellow
arrow. For the ground truth we show the designer-selected B-Rep entities in cyan, and the equivalent entities in pink. For B-Rep based
predictions, we show the predicted B-Rep entities in cyan.
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Figure 31. Encoder architecture for the B-Pose baseline method.

nal joint pose as a rigid body transform that aligns part one
to part two. For each data sample, running search takes on
average 2.58 seconds, excluding inference time, on a server
with an Intel Xeon Platinum 3.41 GHz CPU.

To compute the overlap area A1∩2 in the cost function
(Equation 5), we sample a dense set of points on the surface
of part 1 and calculate the proportion pA of points that are
also on the surface of part 2 within a small tolerance. To
perform this calculation we use a pre-computed signed dis-
tance field generated from part 2. Then, A1∩2 is computed
as A1∩2 = pAA1. Similarly, we compute the overlap vol-
ume V– 1∩2 by sampling points inside the volume of part 1
and calculating the proportion pV– of points inside of part
2 (i.e. points that have a negative distance to part 2). As a
result, V– 1∩2 is computed as V– 1∩2 = pV– V– 1.

B-Pose Implementation The B-Pose baseline follows
Huang et al. [23] to regress a translation point and rotation
quaternion using a combination of L2 and CD loss terms.
We adapt the related code from the authors PyTorch im-
plementation10 to our setting. We sample points with area-
based sampling on a mesh of each part using the Trimesh
library. We create 1024 points, for a total of 2048 points
combined. We normalize each part to the unit range of
−1 to 1 and center it at the origin. We use a similar en-
coder architecture to that used with the joint axis prediction
baselines, illustrated in Figure 31. Key here is adapting the
architecture to our setting where we predict a single rigid
body transform, in the form of a translation point and rota-
tion quaternion, to assembly a pair of parts. We want to en-
sure that the embeddings contain features from both parts,
so meaningful predictions can be made. The network takes
as input two separate point clouds and creates a shape em-
bedding for each with a PointNet++ [49] encoder, using the
PyTorch implementation11. The shape embedding for both
parts are concatenated together to form a combined embed-
ding. This embedding is then passed through a 3-layer MLP
encoder using ReLU activation and dropout.

10https://github.com/hyperplane-lab/Generative-3D-Part-Assembly
11https://github.com/yanx27/Pointnet Pointnet2 pytorch

Regression of the translation point and rotation quater-
nion follows the original paper. We adapt the loss functions
to calculate the loss over ≥ 1 ground truth pose configu-
rations. As any ground truth pose is considered correct, we
calculate the loss from the single network prediction against
each ground truth joint pose and take the minimum. We
train the B-Pose baseline with a per-GPU batch size of 8
across 4 NVIDIA V100 GPUs, dropout of 0.1, batch norm
disabled, learning rate of 0.0003 with the Adam optimizer,
and a learning rate scheduler that reduces on plateau.

Evaluation During evaluation we compare over multiple
ground truth poses and take the joint pose prediction with
the lowest CD. To ensure accurate evaluation results we re-
sample all parts with 4096 points, apply the predicted trans-
form to move the parts into an assembled state, and finally
calculate CD.

Qualitative Results In Figure 32 we show additional
qualitative results for the joint pose prediction task. The
ground truth and each method is shown on its own row, with
different assembled joints shown in columns.

A.3. Future Work

In this section we discuss future applications and exten-
sions of our method.

A.3.1 Future Applications

We now provide further details of the multi-part assembly
demonstration described in Section 6. As input we use as-
sembly data from our dataset and select samples from a test
set that our network has not been trained on. Using the joint
and contact information provided with the assembly data
we form a parts graph that connects the parts together (Fig-
ure 33, top). Based on this graph we manually derive an
assembly sequence of parts to be placed.

We begin the assembly process by presenting the first
pair of parts (Figure 33, Step 1) to our pre-trained network
and perform joint pose search using the network predic-
tions. Our search procedure follows that described in Sec-
tion 3.5.3. We next follow an iterative procedure where we
assemble the first pair of parts to form the current state of
the assembly and repeat joint pose search between the cur-
rent assembly and the next part in the sequence that has yet
to be placed (Figure 33, Step 2-3). We adapt the overlap
volume and contact area in the cost function to be defined
between the current state of the assembly and the part to
be assembled. We repeat this procedure until all parts have
been placed.

Our basic extension of joint pose search to the multi-part
setting has several limitations that we show in Figure 34.
Assemblies with a clear single axis, such as Figure 34a, are

https://github.com/hyperplane-lab/Generative-3D-Part-Assembly
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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Figure 32. Additional qualitative joint pose prediction results comparing our method, with and without search, with the B-Pose baseline.
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Figure 33. Example multi-part assembly sequence derived from a
parts graph.
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Figure 34. Additional examples of multi-part assembly.

less challenging for our approach compared to those with
multiple axes. For example, Figure 34b shows a partial
failure case where the main parts are correctly assembled
but placement of the smaller parts is incorrect. Consider-
ing symmetry as an assembly criteria may help resolve such
cases. We find that errors early on compound at each step
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Figure 35. A future hybrid approach to assembly may look to com-
bine top down knowledge and composition of objects and parts,
with bottom up assembly using locally defined joints.

of the assembly, and reduce the overall chance of success.
Figure 34c shows a failure case where an incorrect predic-
tion at the first step impacts subsequent assembly steps and
diverges significantly from the ground truth design. Finally,
in all examples we assume that a well defined assembly se-
quence is provided as input, when in practice that may not
be possible and an automated process would be desirable.

Ultimately we believe a hybrid approach, such as illus-
trated in Figure 35, will be effective to combine top down
knowledge and composition of objects and parts, with the
precision offered by bottom up assembly of locally defined
joints. We leave this investigation to future work.

A.3.2 Future Extensions

A limitation of our current network is that it does not lever-
age geometric or physics-based loss terms that may help
with avoiding undesirable overlap between parts. A hybrid
approach that combines points sampled from B-Rep enti-
ties [25] with a geometric loss term or uses physics simula-
tions in a reinforcement learning environment, may improve
upon our current results.

Another line of research is to experiment with condition-
ing the network to produce targeted output. For example,
providing the current state of the assembly as conditioning
may help resolve ambiguities when predicting where in an
assembly a new part should be connected using a joint.

A.4. Broader Impact

This work is motivated by the opportunity to encourage
sustainable design through the reuse of existing physical
components. Such components are often available in re-
cycling streams, dead inventory, or existing supply chains.
By enabling assembly aware design tools that can identify
and automatically place suitable components, we hope to
reduce the cost and negative environmental impact of estab-
lishing new tooling for manufacturing and the associated
supply chains [20]. Intellectual property is a key consid-



eration with data driven approaches to design, as there ex-
ists the risk of unauthorized use or appropriation of existing
designs. This risk is balanced by providing publicly avail-
able datasets, such as ours, and by component suppliers who
freely provide CAD models to encourage the use and sale
of their components.
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