
Learning to Simulate and Design for Structural Engineering

Kai-Hung Chang 1 Chin-Yi Cheng 1

Abstract
The structural design process for buildings is time-
consuming and laborious. To automate this pro-
cess, structural engineers combine optimization
methods with simulation tools to find an opti-
mal design with minimal building mass subject
to building regulations. However, structural en-
gineers in practice often avoid optimization and
compromise on a suboptimal design for the ma-
jority of buildings, due to the large size of the
design space, the iterative nature of the optimiza-
tion methods, and the slow simulation tools. In
this work, we formulate the building structures
as graphs and create an end-to-end pipeline that
can learn to propose the optimal cross-sections
of columns and beams by training together with
a pre-trained differentiable structural simulator.
The performance of the proposed structural de-
signs is comparable to the ones optimized by ge-
netic algorithm (GA), with all the constraints sat-
isfied. The optimal structural design with the
reduced the building mass can not only lower the
material cost, but also decrease the carbon foot-
print.

1. Introduction
Structural design of buildings is to design the optimal struc-
tures subject to a design objective, such as minimizing ma-
terial usage for cost and sustainability reasons. The design
also has to satisfy a set of rules from established standards
known as building codes, for example, a limited displace-
ment under loading and seismic force. However, most struc-
tural engineers do not employ optimization in real-world
cases for several reasons. First, the design space is large. A
classic five-story building has typically over 500 columns
and beams as design variables. Moreover, optimization al-
gorithms usually require many iterations, and the evaluation

1Autodesk Research, San Francisco, California, United
States. Correspondence to: Kai-Hung Chang <kai-
hung.chang@autodesk.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Figure 1. The iterative industrial structural design workflow.

for each optimization iteration takes 2 to 15 minutes to run
structural simulation. As a result, a single optimization pro-
cess can take days to converge, which does not fit the need
for frequent design changes in a construction project. In
practice, the majority of structural engineers complete struc-
tural designs with trial-and-error. After getting simulation
results from a proposed design, structural engineers have
to revise the design iteratively until all the building codes
are satisfied. Since finding a valid design is already chal-
lenging and laborious, the outcome is usually over-designed,
which means it satisfies the code and constraints but has
poor performance in the design objective.

The main contribution of this paper is proposing an end-to-
end solution to automate the structural design process. As
visualized in Figure 1, a typical structural design process
starts from a given building design, and then the structural
engineer will propose a skeleton design, where the loca-
tions and connectivities of columns and beams are defined.
After proposing the skeleton, the engineer will decide the
cross-section size for each bar (column and beam). The
engineer will then evaluate the design by running structural
simulation and update the skeleton and cross-section sizes
iteratively. As a starting point, the scope of this work only
focuses on automating the size design as well as the struc-
tural simulation process.

We discover that a building skeleton can be naturally repre-
sented as a graph and therefore propose two graph neural
networks, NeuralSim and NeuralSizer. We train Neural-
Sizer to assign the optimal cross-section sizes to the given
columns and beams and evaluate the size design using the
pre-trained neural approximator, NeuralSim, instead of us-
ing real structural simulation tool. Taking advantage of
the differentiable nature of NeuralSim, the gradient of the

Learning to Simulate and Design for Structural Engineering

Figure 2. Our proposed end-to-end learning pipeline for solving the size design optimization problem.

optimization loss can flow through it and update the learn-
ing parameters in NeuralSizer. The learning pipeline is
illustrated in Figure 2. Our results show that NeuralSizer
can produce design comparable to the design generated by
genetic algorithm running for 1000 iterations. We also per-
form experiments including ablation, extrapolation, and user
study.

2. Related Work
2.1. Structural Optimization

Most structural engineering research solves building design
optimization problems with evolutionary algorithms, such
as genetic algorithms (Rajeev & Krishnamoorthy, 1997;
Balogh & Vigh, 2012; Imran et al., 2019). These meth-
ods evaluate candidate solutions using a fitness function
and iteratively evolve the solution population. The com-
putational complexity is high due to the evaluation, espe-
cially with structural simulation tools. Latest studies that
apply deep learning approaches use vector inputs to en-
code information of a structural component (Greco, 2018;
Torky & Aburawwash, 2018; Cheng et al., 2017), a single
structure(Hasançebi & Dumlupınar, 2013), or 2D images
to coarsely describe the structural geometry (Tamura et al.,
2018). These representations suffer from scalability and
expressiveness and thus can hardly be applied to real-world
cases.

2.2. Graph Neural Network

Graph neural networks (GNNs) have shown great successes
in many learning tasks that require graph data and are ap-
plied to many new scientific domains including physics
systems (Kipf et al., 2018; Sanchez-Gonzalez et al., 2018;
Watters et al., 2017), fluid dynamics(Sanchez-Gonzalez
et al., 2020), chemical molecules(Fout et al., 2017; Jin et al.,
2018b; Do et al., 2019), and traffic networks (Guo et al.,
2019; Cui et al., 2019). For readers who are unfamiliar with
GNNs, recent reviews and tutorials exist (Zhou et al., 2018;
Wu et al., 2020). Related to structural engineering domain,
(Hamrick et al., 2018) uses reinforcement learning to train
a graph neural network policy that learns to glue pairs of

blocks to stabilize a block tower under gravity in a physics
engine. However, the scale and the complexity of the tower
(maximum of 12 blocks) are much smaller than real-world
buildings.

Though some papers have applied GNNs to solve combina-
torial optimization problems (Bello et al., 2016; Kool et al.,
2018; Prates et al., 2019; Li et al., 2018), applying GNN to
solve design optimization problem is underexplored. For
molecular design optimization problems, both (Jin et al.,
2018a) and (You et al., 2018) train GNNs to generate a new
molecular graph that optimizes objectives subject to con-
straints. (Jin et al., 2018a) trains a junction tree variational
autoencoder to obtain the latent embedding of a molecu-
lar graph and iteratively revise the latent embedding based
on a neural prediction model. Constraints on the revision
similarity is later enforced over a population of the revised
molecular graphs to find the one that has the best predicted
property. Similar to (Hamrick et al., 2018), (You et al.,
2018) also chooses reinforcement learning approach and
trains a graph convolutional policy network which outputs a
sequence of actions to maximize the property reward. Com-
pared to these two papers, our approach trains NeuralSizer
to directly propose cross-sections, and uses NeuralSim as a
differentiable simulator to provide a back-propagable loss.

2.3. Differentiable Approximator for Design

Differentiable approximators are commonly used to model
the non-differentiable loss function of interest and to pro-
vide gradients in back-propagation. Taking drawing task
as an example, StrokeNet (Zheng et al., 2018) and Canvas
Drawer (Frans & Cheng, 2018) optimizes the unsupervised
reconstruction loss with the aid of a differentiable renderer.
The differentiable renderer models the relation between
stroke actions and the output drawing. Given a target scene
of3D shapes, (Tian et al., 2019) trains a neural program
executer with a pre-trained scene generator, which maps the
input code to the corresponding output scene. Outside of
image generation domain, (Zhou et al., 2016) takes a model-
based approach by training a hand pose generation model
followed by a non-linear layer, which acts as a differentiable
approximator for forward kinematics computation.

Learning to Simulate and Design for Structural Engineering

3. Formulation
3.1. Size Design Optimization Problem

In this paper, we target the size design optimization problem
in the structural design process. After structure engineers
complete the skeleton design, they have to decide the cross-
sections for all the columns and beams, which directly im-
pact the performance of the building, including the material
usage, stability, constructability, etc. The size design opti-
mization problem is formulated with the following objective
and constraints:

• Mass Objective: We want to minimize the total mate-
rial mass of the building.

• Drift Ratio Constraint: Building code regulations re-
quire a building to satisfy a set of constraints to en-
sure its stability and safety. The drift ratio constraint
requires the drift ratios in all stories (visualized and
defined in the grey text box in Figure 3) to be less than
some limit under lateral seismic loads.

• Variety Constraint: This constraint comes from the
constructability requirement which sets a maximum
number for different cross-section types used. Using
too many different cross-section types leads to higher
manufacturing and transportation cost.

Figure 3. Drift Ratio is defined (in the grey text box) as the ratio
of the relative lateral displacement of a story to the story height.

In most cases, using stronger columns or beams improves
stability, but leads to a larger total mass. The optimal design
should satisfy both constraints and have a minimal build-
ing mass. Mathematical equations for the objective and
constraints are provided in Section 4.2.2.

3.2. Data Generation

Due to the lack of real structural design data, we synthesize
a dataset that contains building skeletons with randomly

sampled cross-sections in real-world scale. We also use
Autodesk Robot Structural Simulator (RSA), a simulation
software widely used in the industry, to compute the struc-
tural simulation results for the synthetic dataset. Various
loads are considered in the simulation: 1. Self-weight load
of the building structure, 2. Surface loads on floor panels
which are distributed to the underlying beams, 3. Surface
loads on the roof story, and 4. Linear loads at the boundary
beams for external walls. NeuralSim is then trained with the
building skeletons with paired cross-sections and simulated
drift ratio. Please refer to the supplementary material for
more details.

3.3. Representing Building Structures as Graphs

Figure 4. An example building structure and its structural graph
representation.

We represent building geometries as structural graphs. Every
bar (column or beam) is represented as a graph node. An
edge connects two nodes if the two corresponding bars
are joined together. Information of bar i is stored as node
feature vi = [p1, p2, B, T, L], where p1 and p2 locates the
two endpoints of the bar,B indicates if the bar is a beam or a
column, T is a one-hot vector representing the cross-section,
and L provides auxiliary loading condition information,
including 1. if the bar is on the roof story, 2. if the bar is
on the boundary, and 3. the surrounding floor penal areas
which are multiplied by the per-area loads when computing
the surface loads. A pseudo ground node is connected to all
first-story columns and the values of its feature vector are
all -1. The structural graph of a simple example structure
is illustrated in Figure 4. Story level indices of each bar are
also saved.

4. Graph Neural Networks
4.1. NeuralSim

4.1.1. NETWORK STRUCTURE

Inspired by GraphNet (Battaglia et al., 2018), NeuralSim
also contains three steps: encoder, propagation, and decoder.
The encoder first maps the input node features into the
embedding space. Then, in the propagation step, each node
embedding is iteratively updated based on the aggregated

Learning to Simulate and Design for Structural Engineering

message, which is computed using the neighbor embeddings
as well as the current node embedding. We also experiment
a model variant called NeuralSim + PGNN, which extends
the message by integrating the position-aware message (You
et al., 2019). Though the classic message function can
model the forces and reaction forces between bars, position-
aware message can further provide global information that
helps identify loading conditions, such as if a bar is on the
roof story or boundary. After a fixed number of propagation
steps, we obtain the final embeddings of all nodes. Given the
story indices, story embeddings are computed by pooling
over all final embeddings of nodes in the same story.

Instead of using a standard multi-layer perceptron (MLP)
as a decoder, we design a Structured Decoder (SD) for
outputting drift ratios in each story. The illustration of SD
is visualized in Figure 3. Starting from the roof story, SD
updates each story embedding in the top-down order. The
update module takes in the embedding of a story and the
updated embedding of the above story to replace the current
embedding. The design of SD is intended to mimic the
algorithmic structure of the drift ratio’s definition. Moreover,
given the physics nature that the lower the story, the higher
the story drift, drift ratio in the same story will have different
distributions if two buildings have different total numbers of
stories. After updating the story embeddings, we pass them
to two MLP decoders. One decoder outputs the predicted
drift ratios while the other classifies if the ground-truth drift
ratios exceed the drift ratio limit 0.015 or not.

4.1.2. LOSS

Given the two kinds of output from the decoders, our multi-
task loss is defined as the sum of an L1 loss for the drift
ratio output and a binary cross-entropy loss for the classifier
output. Later in the result section, we show that this multi-
task loss helps NeuralSim learn a better embedding.

4.1.3. TRAINING

We split the total 4000 data into 3200, 400, and 400 for
training, evaluation, and testing purposes. Adam Optimizer
is used with learning rate 1e-4 and weight decay 5e-4. Batch
size is set to 1 and the number of epoch is 5.

4.2. NeuralSizer

4.2.1. NETWORK STRUCTURE

Similar network structure is adopted by NeuralSizer. It has
the same encoder and propagation step. SD is not used
since there isn’t a strong bias in the size design. Instead, a
graph embedding is computed to provide the information of
the entire structure. In the end, an MLP decoder is used to
map the final node embeddings concatenated by the graph
embedding to the probability over cross-sections using hard

Gumbel Softmax function (Jang et al., 2016). The hard
version returns deterministic samples as one-hot vectors
to ensure consistency of NeuralSim inputs, but in back-
propagation, the derivatives are calculated as if they are the
soft samples.

4.2.2. LOSS

Given the objective and constraints of the optimization prob-
lem in 3.1, we formulate them as differentiable losses.

• Mass Objective obj: The total mass of a bar is the
product of its length, the area of its cross-section, and
the material density. The length is derived from the
two endpoint locations of the bar and we assume all
bars are made of the same steel. The total mass is
normalized by the number of bars in the structure.

• Drift Ratio Constraint ldr: This constraint requires the
absolute value of all drift ratio dri to be less than a
limit lim. Therefore, we penalize the mean of how
much the drift ratio in each story exceeds the limit:

ldr =Mean{LeakyReLU(|dri| − lim)} ≤ 0

• Variety Constraint lvar: The variety constraint penal-
izes the number of cross-section usages more than 6.
We compute the usage percentage of each cross-section
p and expect the sum of top 6 percentages to be 1. In
other words, we can formulate the constraint as below:

lvar = 1− SumTop6(p) = 0

• Entropy Constraint lH : To avoid quick overfitting to
some undesired local minimum, we introduce this en-
tropy constraint inspired by maximal entropy reinforce-
ment learning (RL) (Haarnoja et al., 2018). Denote
the entropy of NeuralSizer output of each bar as Hi,
the maximum entropy over n different cross-sections
Hmax, and a target ratio α = 0.6. The entropy con-
straint is formulated as:

lH =Mean{Hi}/Hmax − α = 0

Without this entropy constraint, NeuralSizer converges
within 50 iterations in the experiment and always uses
one cross-section type for all bars.

The total loss L equals w0obj + w1ldr + w2lvar + w3lH .
Instead of fine-tuning the weightswi manually, we automate
the process by optimizing the dual objective and approxi-
mating dual gradient descent(Boyd & Vandenberghe, 2004).
This technique has shown successful results in soft actor-
critic algorithms (Haarnoja et al., 2018) and reward con-
strained policy optimization (Achiam et al., 2017). A brief
explanation of the method is given in the supplementary
material.

Learning to Simulate and Design for Structural Engineering

4.2.3. TRAINING

In each epoch, a new structural graph is randomly gener-
ated and fed to NeuralSizer to get the design output. The
output cross-sections are concatenated to the node embed-
dings in the structural graph, which is passed to NeuralSim
for structural simulation. Given the design output and drift
ratio output, the total loss is computed. NeuralSizer up-
dates based on the back-propagation gradients once every 5
epochs, and runs 50,000 epochs for training. Though having
the best accuracy, NeuralSim + PGNN has a much longer
inference time than NeuralSim due to the computation of
the position-aware message. Therefore, we use a frozen
pre-trained NeuralSim, which also shows high accuracy
throughout the training.

5. Experiments
All training and testing run on a Quadro M6000 GPU.

5.1. NeuralSim Results

We compare NeuralSim to four other graph neural network
models: GCN (Kipf & Welling, 2016), GIN (Xu et al.,
2018), GAT (Veličković et al., 2017), and PGNN (You et al.,
2019). Table 1 shows the L1 loss and the relative accu-
racy of the drift ratio output as well as the classification
accuracy of the classifier output. NeuralSim trained with
the Structured Decoder (SD) outperforms GCN, GIN, GAT,
and PGNN in all three metrics. Moreover, integrating the
position-aware message from PGNN helps further improve
the performance.

Ablation study results are also included in Table 1. Neural-
Sim shows better performance when trained with SD since
the imposed inductive bias of SD models the increasing drift
ratios in lower stories. Moreover, adding the classifier out-
put and the binary cross-entropy loss helps NeuralSim learn
a better embedding and thus improves the performance.

A plot of all learning curves is included in the supplemen-
tary material. Training takes around 3.5 hours and a forward
propagation of NeuralSim for one design takes 6.789 mil-
liseconds in average. Compared to our simulation software
Autodesk RSA, which takes 13 seconds, NeuralSim is 1900
times faster with 97.36% accuracy. NeuralSim + PGNN
takes 43.92 milliseconds, which is 300 times faster.

In Table 2, NeuralSim demonstrates its generalizability to
test data beyond the training scope. We split the test data into
3 buckets based on the numbers of stories: 1∼3, 4∼7, and
8∼10 story. One model is trained with 1∼10 story buildings
while the other is trained with 4∼7 story buildings. Both
models are trained with the same amount of training data
and tested against each bucket. The results in the first row
show that the performance variation across different buckets

is small. The second row demonstrates that NeuralSim also
performs well on extrapolated data. The learned message
passing module in NeuralSim models the physics of force
propagation, which is universal across buildings of different
numbers of stories. As a result, NeuralSim shows strong
generalizability to extrapolated data.

5.2. NeuralSizer Results

Two scenarios are created. The high safety factor scenario
has a drift ratio limit 0.015 while the low safety factor sce-
nario has a drift ratio limit 0.025. For each scenario, two
experiments are conducted with different weights on the
mass objective. Table 3 summarizes the results of all ex-
periments. All constraints are close to zero, indicating that
NeuralSizer learns to satisfy the hard constraints. In partic-
ular, the drift ratio constraint, which measures how much
the drift ratio exceeds the limit, is negligible compared to
the magnitude of drift ratios. Several designs are visual-
ized in Figure 5. Training takes around 2.5 hours and a
forward propagation of NeuralSizer for one design takes
10.07 milliseconds in average.

To test the generalizability of NeuralSizer, we pick the high
safety factor scenario and objective weight = 10 for an ex-
periment. Again, we compare two models (training with
1∼10 story and 4∼7 story buildings) and measures the per-
formance of three test buckets (1∼3, 4∼7, and 8∼10 story
buildings). The results are summarized in Table 4. Both
models satisfy the constraints well and show similar per-
formances across the three different buckets. NueralSizer
trained with 4∼7 story buildings also shows generalizability
to buildings with more and less numbers of stories than the
training range.

5.3. User Feedback and User Study

Figure 5 visualizes the design outputs of NeuralSizer (high
safety factor + objective weight 10) for various buildings. A
cross-section with stronger structural properties is visualized
in a darker color and a thicker stick.

To understand the quality from a professional perspective,
we show 10 different designs to structural engineers and ask
for their feedback. They say that the cross-section choices
look natural to them, except that the design is too sophisti-
cated as they usually assign same cross-sections in groups.
Interestingly, structural engineers reveal some of the design
rules that NeuralSizer reasons and learns and that they think
are reasonable. These rules are listed and explained below.

• During an earthquake, columns must support vertical
gravity loads while undergoing large lateral displace-
ments. Therefore, to satisfy the drift ratio constraint,
NeuralSizer learns to distribute masses on columns
more than beams.

Learning to Simulate and Design for Structural Engineering

Table 1. NeuralSim Performance compared to Other Models

Model L1 Loss ×1e−4 Relative Accuracy Classification Accuracy

GCN 16.01 94.86 89.22
GIN 33.85 89.62 84.27
GAT 10.87 96.41 93.35
PGNN 9.39 96.72 94.83
NeuralSim 7.57 97.36 95.64
NeuralSim + PGNN 5.01 98.22 96.43

NeuralSim(no SD) 10.24 96.65 92.71
NeuralSim(only L1 loss) 16.47 95.24 n/a

Table 2. NeuralSim Generalizability Results

Train Data Test Data L1 Loss ×1e−4 Relative Accuracy Classification Accuracy

1∼10 story
(Baseline)

1∼3 story 6.09 98.09 95.01
4∼7 story 6.67 97.55 96.31
8∼10 story 8.73 96.34 96.79

4∼7 story
1∼3 story 23.97 91.70 85.75
4∼7 story 15.49 92.93 96.40
8∼10 story 26.43 91.11 84.33

Table 3. NeuralSizer Results under Different Scenarios

Scenario Objective Weight Objective Constraints
Mass Objective Drift Ratio Constraint Variety Constraint

High Safety Factor 1 0.870 6.00×1e−7 0.01×1e−8
10 0.735 1.34×1e−7 1.04×1e−8

Low Safety Factor 1 0.592 6.42×1e−5 1.67×1e−8
10 0.596 3.32×1e−5 1.78×1e−8

Table 4. NeuralSizer Generalizability Results (High Safety Factor, Objective Weight = 10)

Train Data Test Data Objective Constraints
Mass Objective Drift Ratio Constraint Variety Constraint

1∼10 story
(Baseline)

1∼3 story 0.738 1.62×1e−7 0.80×1e−8
4∼7 story 0.725 1.28×1e−7 0.97×1e−8
8∼10 story 0.711 1.69×1e−7 1.06×1e−8

4∼7 story
1∼3 story 0.773 2.96×1e−7 1.30×1e−8
4∼7 story 0.746 3.50×1e−7 1.25×1e−8
8∼10 story 0.728 3.68×1e−7 1.01×1e−8

• Since gravity loads are carried down the building struc-
ture, the loads accumulate and increase on lower sto-
ries. Columns for lower stories have a higher strength
requirement than for higher stories. This can also be
observed from NeuralSizer’s design outputs.

• It is reasonable to have similar patterns in design out-
puts of different buildings. Given the objective and
constraints in the optimization problem, structural en-
gineers will probably design with similar patterns.

One user testing is conducted to compare our results with
human design process. Given a building and 30 minutes,
a structural engineer tries five design iterations. The first
three iterations are able to satisfy all the constraints while
the fourth and the fifth cannot. The best out of the three
valid designs is used to compare with NeuralSizer results.
The result shows NeuralSizer’s design output has a better
performance. The quantitative user testing results are pro-
vided in the supplementary material. The goal of this testing
is not to show NeuralSizer can replace professional struc-

Learning to Simulate and Design for Structural Engineering

Figure 5. Visualization of NeuralSizer’s Design Output

tural engineers, but to show that NeuralSizer can speed up
the iterative design process by providing a better starting
point.

5.4. Comparison with Genetic Algorithm(GA)

5.4.1. GA SETUP

In this subsection, we compare our method with the genetic
algorithm (GA), which is a widely-used algorithm in the
structural optimization research. GA contains six steps:

1. Initialization: To start GA, a population of 100 candi-
date solutions is generated. A candidate has a chromo-
some which encodes the cross-sections in genes.

2. Evaluation: We compute the score of each candidate as
measured by the total loss equation. The same initial
weights for individual losses are used as when training
NeuralSizer, except they are now fixed.

3. Selection: The top five candidates are directly passed
to the next generation without crossover and mutation.

4. Crossover: We use a selection mechanism that random
samples two candidates and outputs the better one,
called selected candidate. With a crossover rate of
0.9, this selected candidate pairs with another selected
candidate to breed a children candidate using crossover
operation; otherwise, the selected candidate becomes
the children candidate. In total, ninety-five children
candidates are generated for the next population.

5. Mutation: The genes in the ninety-five children candi-
dates have a probability of 0.01 to randomly change to
a different cross-section. After the mutation process,
the ninety-five children candidates and the top five can-
didates form a new population for the next generation.

Table 5. Time Comparison of GA under Different Setups

Setup Time Total
Iterations

Time /
Iteration

NeuroSizer 10.07 ms - -
GA + RSA 24 hr 30 -
→ (estimated) 2 weeks 1000 20.16 mins
GA + NeuralSim 30 mins 1000 0.03 mins

6. Termination: The iteration process is terminated after
a certain number of iterations or a limited amount of
time.

5.4.2. GA TIME COMPARISON

In the evaluation step, computing scores requires running
simulation tools, which is time-consuming. However, by
replacing simulation tools with NeuralSim, we can reduce
the running time of GA. Table 5 lists running times of GA
solving a building with 622 bars under different setups.
NeuralSizer outputs a design within 10.07 milliseconds.
If we evaluate GA candidates with Autodesk RSA (GA +
RSA), we can run 30 iterations in 24 hours. By estimation,
it will take up to 2 weeks to finish 1000 iterations. However,
if NeuralSim is used for evaluation(GA + NeuralSim), it
only takes around 30 minutes to complete 1000 iterations.

5.4.3. USING NEURALSIZER OUTPUTS AS GA SEEDS

We first run GA + NeuralSim with random seeds for 1000
iterations as a baseline. Due to the stochastic nature of
GA, We execute 10 runs and save the result that has the
minimal total loss. Next, we use the NeuralSizer output
as GA seeds. Since NeuralSizer outputs the probability of
cross-sections, there are two seeding strategies: best seed

Learning to Simulate and Design for Structural Engineering

and sampled seeds. Best seed finds the best design output
based on the highest probability and populates it to the
initial population. On the other hand, sampled seeds sample
from the probability to generate different seeds as the initial
population. We also run GA + RSA runs for 24 hours each
with random seeds and sampled seeds.

Figure 6 plots the performance curves of GA using different
seeding approaches. All curves of GA using NeuralSizer
seeds (orange, green, and purple curves) show lower losses
at the beginning of GA. Moreover, after running the same
number of iterations, curves starting with NeuralSizer seeds
end up in better solutions than those starting with random
seeds. However, the difference between using best seed and
sampled seeds is little.

To quantitatively measure the performance across different
designs, we run GA with NeuralSizer using sampled seeds
and random seeds (once for each) over 20 different designs.
Three metrics are defined and illustrated in Figure 7.

For GA using random seeds, we denote the starting and
ending losses as (rand start, rand end). Likewise, for
GA using NeuralSizer sampled seeds, they are denoted as
(sizer start, sizer end).

1. M1 =
(rand start− sizer start)
(rand start− rand end)

The metric measures the percentage of improvement
gained by initializing GA with NeuralSizer sampled
seeds. If M1 is larger than 100%, it means that the
best performance of the NeuralSizer sampled seeds
at iteration 0 beats the best performance of GA with
random seeds at iteration 1000.

2. M2 =
(rand end− sizer end)

rand end
The metric compared the best performances between
GA with NeuralSizer sampled seeds and random seeds,
both at 1000 iterations. A positive M2 indicates that
the final performance of GA with NeuralSizer sampled
seeds is better.

3. M3 is the first iteration when sizer start is less than
rand end. Note that M3 = 0 whenever M1 > 100%.

The quantitative results are summarized in Table 6. From
M1 results, we can see that some performance of Neural-
Sizer seeds are almost the same as the best performance of
GA with random seeds at iteration 1000, and some are even
better. This proves that NeuralSizer solves the size design
optimization problem and that the results are comparable to
GA. M2 results show the capability of further optimizing
the NeuralSizer output to obtain solutions which are better
than optimizing with random seed after the same amount of
iteration. Lastly, the maximum of the sixM3 values in Table

6 is 128. Thus, compared to the total 1000 iterations, using
NeuralSizer seeds provide a speedup by at least 8 times.

6. Conclusion
In this paper, we propose an end-to-end learning pipeline to
solve the size design optimization problem. Trained as a neu-
ral approximator for structural simulation, NeuralSim shows
∼ 97% accuracy and is 1900 times faster than simulation
tools. As a consequence, it can not only provide gradients
to upstream models due to the differentiable nature, but also
be used to provide quick evaluation in evolutionary solvers
or instant feedback after every human design decision. Neu-
ralSizer is trained to output optimal cross-sections subject
to the optimization objective and constraints. The design
outputs of NeuralSizer satisfy the constraint and are com-
parable to or sometimes better than the optimal solution of
the genetic algorithm. Moreover, they can be used as initial
seeds for the genetic algorithm, which speeds up the conver-
gence and further optimizes the design. Last but not least,
the design outputs demonstrate reasonable design rules and
thus can also be used as the initial design for structural
engineers to save design iterations.

The limitations and future work can be defined in three cat-
egories: first, the skeleton design phase in Figure 1 can be
included into this pipeline and defined as a graph genera-
tion problem. Second, except from columns and beams,
our graph representation does not cover all the structural
components, such as walls and panels. Handling the hetero-
geneous attributes across the components is worth investi-
gating. Lastly, although the general structural constraints
can be applied to any buildings in the world, the local build-
ing codes are varied. Converting the building code as part
of the input is a potential solve.

Buildings account for 40 percent of the global carbon diox-
ide emission (International Energy Agency, 2017). Mini-
mizing the mass of a building, we can not only reduce the
material cost, but also decrease the carbon dioxide emission
during the fabrication, transportation, and construction pro-
cess, and therefore, make a huge impact to the environment.
However, this domain is under-explored in the machine
learning community. Through this work, we hope to arouse
more research interest to explore this valuable direction.

Awknowledgement
We thank all reviewers who gave useful feedback and advice.
Also, we would like to express appreciation to Dr. Mehdi
Nourbakhsh who introduced this industry pain point and
helped formulate the problem. Finally, special thanks to
Waldemar Okapa and Grzegorz Skiba for their support in
consulting about Autodesk Robot Structural Analysis and
validating the data collection process.

Learning to Simulate and Design for Structural Engineering

Figure 6. Performance Curves of GA using Different Seeding Approaches

Table 6. NeuralSizer Seeding Performance

Metric Mass
Objective

Drift Ratio
Constraint

Variety
Constraint

High Safety Factor
1 232.60% 115.30% 186.20%
2 7.43% 25.70% 95.82%
3 0 25.6 0

Low Safety Factor
1 83.15% 95.35% 156.22%
2 4.16% 49.22% 32.53%
3 128 0 0

Figure 7. Performance Metrics Illustration

This is just an illustration.
Not a real curve!

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.

22–31. JMLR. org, 2017.

Balogh, T. and Vigh, L. Genetic algorithm based opti-
mization of regular steel building structures subjected to

Learning to Simulate and Design for Structural Engineering

seismic effects. In Proceedings 15th world conference on
earthquake engineering, pp. 1–10, 2012.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Cheng, Y., KOU, C.-h., Li, C., et al. Optimal design of steel
columns with axial load using artificial neural networks.
DEStech Transactions on Engineering and Technology
Research, (amme), 2017.

Cui, Z., Henrickson, K., Ke, R., and Wang, Y. Traffic graph
convolutional recurrent neural network: A deep learning
framework for network-scale traffic learning and fore-
casting. IEEE Transactions on Intelligent Transportation
Systems, 2019.

Do, K., Tran, T., and Venkatesh, S. Graph transforma-
tion policy network for chemical reaction prediction. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
750–760, 2019.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
In Advances in neural information processing systems,
pp. 6530–6539, 2017.

Frans, K. and Cheng, C.-Y. Unsupervised image to sequence
translation with canvas-drawer networks. arXiv preprint
arXiv:1809.08340, 2018.

Greco, L. Machine learning and optimization techniques for
steel connections. In Proceedings of IASS Annual Sym-
posia, volume 2018, pp. 1–8. International Association
for Shell and Spatial Structures (IASS), 2018.

Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pp. 922–929,
2019.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hasançebi, O. and Dumlupınar, T. A neural network ap-
proach for approximate force response analyses of a
bridge population. Neural Computing and Applications,
22(3-4):755–769, 2013.

Imran, M., Shi, D., Tong, L., and Waqas, H. M. Design
optimization of composite submerged cylindrical pressure
hull using genetic algorithm and finite element analysis.
Ocean Engineering, 190:106443, 2019.

International Energy Agency. World Energy Balances
2017. 2017. doi: https://doi.org/https://doi.org/
10.1787/world energy bal-2017-en. URL https:
//www.oecd-ilibrary.org/content/
publication/world_energy_bal-2017-en.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree varia-
tional autoencoder for molecular graph generation. arXiv
preprint arXiv:1802.04364, 2018a.

Jin, W., Yang, K., Barzilay, R., and Jaakkola, T. Learn-
ing multimodal graph-to-graph translation for molecular
optimization. arXiv preprint arXiv:1812.01070, 2018b.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
In Advances in Neural Information Processing Systems,
pp. 539–548, 2018.

Prates, M., Avelar, P. H., Lemos, H., Lamb, L. C., and Vardi,
M. Y. Learning to solve np-complete problems: A graph
neural network for decision tsp. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 4731–4738, 2019.

Rajeev, S. and Krishnamoorthy, C. Genetic algorithms-
based methodologies for design optimization of trusses.
Journal of structural engineering, 123(3):350–358, 1997.

https://www.oecd-ilibrary.org/content/publication/world_energy_bal-2017-en
https://www.oecd-ilibrary.org/content/publication/world_energy_bal-2017-en
https://www.oecd-ilibrary.org/content/publication/world_energy_bal-2017-en

Learning to Simulate and Design for Structural Engineering

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for infer-
ence and control. arXiv preprint arXiv:1806.01242, 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to simu-
late complex physics with graph networks. arXiv preprint
arXiv:2002.09405, 2020.

Tamura, T., Ohsaki, M., and Takagi, J. Machine learning for
combinatorial optimization of brace placement of steel
frames. Japan Architectural Review, 1(4):419–430, 2018.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Learning to infer and execute 3d
shape programs. arXiv preprint arXiv:1901.02875, 2019.

Torky, A. A. and Aburawwash, A. A. A deep learning ap-
proach to automated structural engineering of prestressed
members. 2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R.,
and Tacchetti, A. Visual interaction networks: Learning
a physics simulator from video. In Advances in neural
information processing systems, pp. 4539–4547, 2017.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 2020.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Advances in neural information
processing systems, pp. 6410–6421, 2018.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. arXiv preprint arXiv:1906.04817, 2019.

Zheng, N., Jiang, Y., and Huang, D. Strokenet: A neural
painting environment. 2018.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A
review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Zhou, X., Wan, Q., Zhang, W., Xue, X., and Wei, Y.
Model-based deep hand pose estimation. arXiv preprint
arXiv:1606.06854, 2016.

