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Abstract. We consider the synthesis problem of a multi-speed gearbox,
a mechanical system that receives an input speed and transmits it to an
outlet through a series of connected gears, decreasing or increasing the
speed according to predetermined transmission ratios. Here we formulate AQ1

this as a bi-level optimization problem, where the inner problem involves
non-convex optimization over continuous parameters of the components,
and the outer task explores different configurations of the system. The
outer problem is decomposed into sub-tasks and optimized by a variety
of global search methods, namely simulated annealing, best-first search
and estimation of distribution algorithm. Our experiments show that a
three-stage decomposition coupled with a best-first search performs well
on small-size problems, and it outmatches other techniques on larger
problems when coupled with an estimation of distribution algorithm.

Keywords: Global search · Best-first search · Stochastic search ·
Evolutionary algorithms · Non-convex optimization.

1 Introduction

As demonstrated by the rich literature available [7,13,23,25,33,40], the abil-
ity to generate optimal designs is of crucial importance in various engineering
applications, since it can lead to significant cost reduction or increased quality of
the designed product. In this paper, we focus on the configuration optimization
of a specific type of multi-component mechanical system, namely a multi-speed
gearbox, which is particularly challenging due to its discrete and bi-level nature.

A gearbox is a mechanical system that transmits and converts an input speed
to one or multiple output speeds by means of a series of rotating elements such
as shafts and gears. Depending on the arrangements of the gears, we have two
different models: the planetary gearbox, used to achieve automatic transmission,
and the gear-pairs model, used in manual transmission. Here we only consider
the manual transmission, often used in heavy-duty systems due to its higher
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2 C. Piacentini et al.

durability. A power source rotates the input shaft with an input velocity, which
in turn rotates the next connected shaft, propagating the speed throughout the
gearbox and towards the output. Pairs of shafts are connected through gear-pairs
with different radii. The size of the gears’ radii determines the speed change
between the connected shafts. Typically, a gearbox is designed to convert the
input speed into multiple output speeds according to several transmission ratios.
This is achieved by having multiple shafts and multiple gear-pairs connecting
those shafts. When a desired transmission ratio is selected, the associated gear-
pairs are activated via clutches. Objectives considered for gearbox design can
be the deviation of the transmission ratios from the nominal values, the power
capacity, and the volume or the mass of the gearbox. The gearbox synthesis
involves choosing the optimal configuration of shafts and gear-pairs, as well as
their parameters such as gears’ radii, with respect to the objectives.

The current work formalizes the gearbox synthesis as a bi-level optimiza-
tion problem. The inner problem (or parameter optimization) takes a gearbox
configuration as input and finds the position and size of the gears and shafts
within given boundaries. This problem can be cast onto a non-convex contin-
uous optimization problem and solved using state-of-the-art solvers. The outer
optimization generates different configurations and we can solve it as a single step
or as a decomposed set of sub-tasks. For both these approaches, we implement
a variety of algorithms: simulated annealing (SA) and best-first search (BFS),
which exploit a formulation of the configuration problem as a state transition
system, and an estimation of distribution algorithm (EDA), from the evolution-
ary algorithms family. While in literature the gearbox synthesis is often modelled
as a state transition system, in this paper we explore novel models and adapt
them to better suit the search algorithms used. In summary, the contributions
of this paper are:
1. formalization of multi-speed gearbox synthesis as a bi-level optimization prob-

lem;
2. presentation of two different decomposition approaches of the problem;
3. modelling of different sub-problems as state transition models;
4. application of BFS for multi-speed gearbox synthesis considering both lower

and upper bounds;
5. development of an EDA for multi-speed gearbox synthesis.

The paper is organized as follows. Section 2 provides a literature review on
gearbox synthesis, while Sect. 3 presents the notation and the problem definition.
In Sect. 4 we describe two ways in which we can decompose the problem and we
summarize each sub-problems. In Sect. 5 we formulate the sub-problems as state
transmission models. Global search algorithms used in this work are described in
Sect. 6. The experimental evaluation of our approach is shown in Sect. 7. Section 8
concludes our paper.

2 Literature Review

Gearbox design has been extensively studied in the mechanical engineering litera-
ture and different variations of the problem have been considered. A large body
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Multi-speed Gearbox Synthesis 3

of work deals with the parameter optimization problem, with the assumption
that a fixed configuration is given as input. The problem can be formulated as a
constraint satisfaction problem [26], and many works attempt to solve it using
heuristic and meta-heuristic methods, such as local search [29,44], simulated
annealing [17], genetic algorithms [4,11,30,43] and particle swarm optimization
[31]. Multi-objective versions of the problem can also be found [10,15,27,41].

Gearbox configurations are often represented using graphs [42] and configu-
ration synthesis is typically performed using formal grammars, i.e. a sets of rules
that combine a finite set of elements to obtain a potentially infinite set of entities
[9,24]. In the context of design synthesis, grammar rules offer a way to define
how a design can be modified [6] and they have been widely used for gearbox
generation [20,21,32,34,36]. Tsai et al. consider the configuration optimization
of a planetary gearbox, where configurations are generated manually and dupli-
cates are detected using graph isomorphism [36]. Schmidt & Chase developed
a set of grammar rules that can be applied to generate several configurations
of a planetary gearbox [32], while Li et al. propose a software that generates
sketches of planetary gearboxes by modifying an initial design [20]. The set of
rules developed by Lin et al. act on a graph representing the configuration of a
manual transmission gearbox [21]. The graph is labelled to capture the relative
position of gears and SA is used to generate candidate configurations and to fix
some of the components’ parameters. When a candidate is generated, collisions
between elements are checked according to a set of constraints. The constraints
identified by the authors, however, do not guarantee to avoid all possible colli-
sions. Swantner & Campbell use an exhaustive tree search algorithm to generate
a gearbox that can have a single transmission ratio, resulting in a fairly small
system. The parameter optimization problem includes bending and stress con-
straints [34]. In the context of computational design synthesis, a complete search
is used to study the quality of grammar rules [18]. Departing from this approach,
Pomrehn & Papalambros consider the optimization of a gear train that outputs a
single velocity as a mixed-integer non-linear programming model [28]. Berx et al.
study a manual multi-speed gearbox and generate different configurations using
constraint programming. A clustering procedure identifies promising candidate
configurations, for which feasibility and objective value are calculated [2].

3 Problem Description

We consider the generation of manual multi-speed gearboxes and impose geo-
metric constraints on gears and shafts, as proposed by Berx et al. [2].

3.1 Notation

Consider a gearbox consisting of a set of shafts S and a set of gear-pairs, i.e.
gears connected with each other, P. Each pair p ∈ P is comprised of an input
gear gi

p and an output gear go
p. We call G the union of all the input and output

gears and we denote with sg the shaft in which a gear g is situated, and si
p
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4 C. Piacentini et al.

and so
p the input and the output shafts of a gear-pair p, respectively. We call C

the union of all the shafts and gears. We assume that all the shafts and gears
are cylinders aligned along the z-axis. Each component c ∈ C is defined by the
coordinates of the center of the bottom face of the cylinder (xc, yc, zc), a radius
ρc and a length (or thickness) lc. We have set of transmission ratios Ω, where
a transmission ratio ω is a real number indicating the desired ratio of the input
and output speed.

A gearbox layout can be represented as an s-t multi-graph G = 〈S,P〉 where
the nodes S are the shafts and edges P are the gear-pairs. A source node s is
identified as the input shaft, while a sink t is the output shaft of the system.

The graph is required to contain at least k = |Ω| simple paths from s to t.
Each simple path π is a sequence of edges π = (p1, ..., pn), with pi ∈ P and all
the vertices are distinct, producing a transmission ratio:

ωπ =
n∏

j=1

ρgi
pj

ρgo
pj

(1)

where ρgi
pj

and ρgo
pj

are the radii of the input and output gears for gear-pair pj .
Given the set of transmission ratios Ω, we call assignment ΠΩ the set of

2-tuples, containing a transmission ratio and a path ΠΩ = {(ω, π), ∀ω ∈ Ω}.
We call configuration C = (G,ΠΩ) of a gearbox the 2-tuple consisting of the
gearbox layout G and an assignment ΠΩ .

Figure 1 shows an example of a gearbox with an input shaft si, an output
shaft so and an intermediate shaft s. Two gear-pairs are connected between si

and s (p1 and p2) and two between s and so (p3 and p4). There are four possible
paths between si and so: π1 = (p1, p3), π2 = (p1, p4), π3 = (p2, p3), and π4 =
(p2, p4), corresponding to four different transmission ratios Ω = {ω1,ω2,ω3,ω4}.
An example of assignment can be ΠΩ = {(ωi,πi),∀i = 1, ..., 4}.

Fig. 1. Graph representation of the gearbox
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Multi-speed Gearbox Synthesis 5

3.2 Parameter Optimization

Let C = (G,ΠΩ) be a given configuration, where shafts, gear-pairs and their
input and the output are known. We want to find the components’ parame-
ters (xc, yc, zc, ρc, lc) that minimize the total mass of the gears and produce
the desired transmission ratios. If we assume that all the gears have a constant
thickness (lg) and are made of same material, the objective function is:

JC(ρ) =
∑

g∈G

ρ2
g (2)

The system must satisfy several constraints based on design requirements and
physical feasibility. For each pair in the assignment (ω, π) ∈ ΠΩ the transmission
ratio produced by π = (p1, ..., pn) is within a given ε to the desired value ω:

∣∣∣∣∣∣

n∏

j=1

ρgi
pj

ρgo
pj

− ω

∣∣∣∣∣∣
≤ ε ∀(ω, π) ∈ ΠΩ , (3)

Every component c ∈ C must be contained inside a parallelepiped with maxi-
mum sizes (xmax, ymax, zmax) and its radius has ρmin,c, ρmax,c as limits:

ρc ≤ xc ≤ xmax − ρc ∀c ∈ C (4)
ρc ≤ yc ≤ ymax − ρc ∀c ∈ C (5)
0 ≤ zc ≤ zmax − lc ∀c ∈ C (6)
ρmin,c ≤ ρc ≤ ρmax,c ∀c ∈ C (7)

A gear g must be placed on its connected shaft sg:

xg = xsg ∀g ∈ G (8)
yg = ysg ∀g ∈ G (9)
zg ≤ zsg ∀g ∈ G (10)
zg + lg ≤ zsg + lsg ∀g ∈ G (11)

In addition, we impose that the gears of each gear-pair must touch:

zgi
p

= zgo
p

∀p ∈ P (12)

ρgi
p

+ ρgo
p

=
√

(xsi
g

− xso
g
)2 + (ysi

g
− yso

g
)2 ∀p ∈ P (13)

Finally, we require that two elements cannot occupy the same position in space.
For two components c, d ∈ C that are not a gear and the shaft in which the gear
is placed on, there exist two parameters λc,d and αc,d, such that:

λc,d(zc − zd − ld) + (αc,d − λc,d)(zd − zc − lc)+

(1 − αc,d)[(xc − xd)2 + (yc − yd)2 − (ρc + ρd)2] > 0 (14)
0 ≤ λc,d ≤ αc,d ≤ 1 (15)
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6 C. Piacentini et al.

This is the continuous formulation of the non-overlapping constraint obtained
from the Lagrange duality applied to the distance determination problem [2,3].

Given a configuration C, we define the parametric optimization problem as:

min
ρ

JC(ρ) (I(C))

s.t. Constraints (3)–(15)

3.3 Configuration Optimization

When designing a gearbox configuration, we can impose a maximum limit on
the number of shafts and the number of gears connecting any two shafts, NS

and NP, respectively. The configuration optimization problem is then:

min
C

I(C) (O)

s.t.|S| ≤ NS (16)
∣∣Psi,sj

∣∣ ≤ NP ∀si, sj ∈ S (17)

where Psi,sj is the set of gear-pairs connecting shafts si and sj . Similarly, we
define Ps as the set of gear-pairs connected to s.

4 Problem Decomposition

This section shows two decomposition approaches. In the two-stage decom-
position approach, the problem is divided into two sub-tasks:

A1. Transmission ratio path assignment: given a complete multi-graph
GNs,Np = (S,P) with Ns shafts and Np gear-pairs between every two shafts,
and a set of transmission ratios Ω, generate an assignment ΠΩ using the
s-t simple paths in GNs,Np . The layout G is the union of paths in the ΠΩ ;

A2. Parameter optimization: given the layout G and the assignment ΠΩ ,
solve I(G,ΠΩ).

Since working with the complete multi-graph GNS,NP may result in a pro-
hibitive large number of possible assignments, we consider an alternative three-
stage decomposition approach, where we first select a sub-graph of GNs,Np

with at least k distinct s-t simple paths:

B1. Graph generation: generate a s-t multi-graph G = (S,P) with at least k
distinct simple paths from the input and output shafts;

B2. Transmission ratio path assignment: given a graph G, find an assign-
ment ΠΩ using the s-t simple paths in G;

B3. Parameter optimization: given a graph G and an assignment ΠΩ , solve
problem I(G,ΠΩ).
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Multi-speed Gearbox Synthesis 7

4.1 Graph Generation

Graph generation entails finding a sub-graph G of G̃ with at least k s-t simple
paths. Given an edge-weighted graph G̃ = (V,E), a source node s ∈ V , a sink
node t ∈ V and a positive number k, we call min-k-simple paths (mkSP) the
problem of finding the minimum weighted edges E′ ⊆ E, such that there exists
k distinct simple paths πi from s to t, whose edges belong to E′: πi ⊆ E′ for
i = 1, . . . , k. In the gearbox synthesis, the input is a complete multi-graph with
GNS,NP and the solution can provide a lower bound on the number of gears
necessary to add to the system.

The problem can be seen as a particular type of coverage problem, namely
min-k-union (mkU) [38]: given a set U , a collection S of subsets of U , and
an integer number k, select k subsets of S to minimize the number of covered
elements in U . Min-k-union is the minimization version of the classical maximum
coverage problem. While for maximum coverage, a greedy solution has a (1−1/e)
approximation guarantee, mkU is harder to approximate [8].

The reduction of mkSP to mkU is trivial: the set of all the edges E in mkSP
is U in mkU and the set of all paths corresponds to S. This, however, requires
the identification of all the s-t simple paths in G, which is a #p-complete task
in the general case [37].

When generating graphs, we can leverage graph isomorphism to avoid the
repeated evaluation of equivalent graphs. While it is not known if the detection
of isomorphic graphs can be solved in polynomial time or if it is a np-complete
problem, efficient solvers are available [22].

4.2 Transmission Ratio Path Assignment

Given a graph G with n s-t simple paths and a set of transmission ratios Ω,
the task requires to find an assignment Πω. If we have k transmission ratios,
with k ≤ n, we have n!

(n−k)! assignments. To reduce the number of assignments
that we need to check, we can identify those that lead to the same parameter
optimization problem.

Consider the example in Fig. 2 with three transmission ratios ω1,ω2,ω3. The
configuration contains three simple paths: π1 = (p1, p4),π2 = (p2, p4),π1 =
(p3) and six assignments can be made: {(ω1,π1), (ω2,π2), (ω3,π3)}, {(ω1,π1),

Fig. 2. Example of transmission ratio path assignments and their labeling
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8 C. Piacentini et al.

(ω2,π3), (ω3,π2)}, {(ω1,π2), (ω2,π1), (ω3,π3)}, {(ω1,π2), (ω2,π3), (ω3,π1)},
{(ω1,π3), (ω2,π2), (ω3,π1)}, and {(ω1,π3), (ω2,π1), (ω3,π2)}. If we have only
a single transmission ratio, paths with the same lengths will lead to the same
parameters. In our particular example, this allows us to check only three assign-
ments: {(ω1,π1), (ω2,π2), (ω3,π3)}, {(ω1,π1), (ω2,π3), (ω3,π2)}, and {(ω1,π3),
(ω2,π2), (ω3,π1)}.

Formally, given a gearbox problem, a layout G and two assignments ΠΩ and
Π ′Ω over a set of s-t simple paths in G, we say that the two assignments are
equivalent ΠΩ ≡ Π ′Ω if problems I((G,ΠΩ)) and I((G,Π ′Ω)) produce the same
optimal solution. To detect equivalent assignments, we fix an arbitrary order of
the transmission ratios and label the edges of the associated paths in their order
of appearance. Thus, two assignments with the same labeling are equivalent.

4.3 Parameter Optimization

The parameter optimization I(C) is a non-convex optimization problem. We
solve it using the solver Ipopt [39]. Ipopt is a software specialized in large
scale continuous non-linear optimization problems, based on primal-dual interior
point method. For non-convex problems, it does not guarantee that the solution
found is globally optimal nor that the problem is globally infeasible. As shown
in previous work [2], Constraints (14)–(15) are hard to enforce and can cause the
solver to get stuck in a region of local infeasibility. To alleviate this problem, we
first consider a relaxation of the problem containing only Constraint (3). If the
relaxation is infeasible, we also consider the original problem to be infeasible.
Otherwise, we use its solution to initialize the values of the radii of the gears.
If the solver finds that I(C) is infeasible, we restart the solver with a different
random initialization of the parameters, up to a fixed maximum number of times,
or until a feasible solution is found.

5 State Transmission Models

In this section, we present different transition systems that can be used to solve
the sub-tasks of our problem. Similar to grammar rules [18,21], a transition
system can be used to describe how an algorithm moves from one partial solution
(a state) to another, using applicable actions.

More formally, a state transition system is defined by a set of states S, a set
of possible actions A and a transition function T : S × A → S. An action can
be applied to a state if the state satisfies some preconditions. Each transition
is characterized by a cost function QT : S × A → R. Given an initial state
σi ∈ S and a set of goal states Sg ⊆ S, we want to find a sequence of applicable
actions π = (α1, ...,αn), such that after applying the actions from σi, we obtain
a goal state σg = T (T (T (σi,α1), ...),αn) ∈ Sg, using a sequence of actions with
minimal cost. In all the sub-tasks considered, the cost does not depend on the
transition, but only on the state.
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Multi-speed Gearbox Synthesis 9

5.1 Graph Generation

A state is an s-t multi-graph G = (S,P) with nodes S and edges P. The source
of the graph is the input shaft si ∈ S while the sink is the output shaft so ∈ S. A
goal state is defined as a graph containing k = |Ω| simple paths from si to so. We
assign cost 0 to non-goal states, while the cost of a goal state is determined by
the solution of the nested problem. We report here the primitive actions for this
task. However, depending on the algorithm, we use a subset of such actions, or
we define new actions as a sequence of these primitive actions. In the following,
every action is identified by a name, where the subscript indicates the involved
objects (gears, shafts, paths), its preconditions Φ, and the transition function T
from a state G = (S,P):

– ap,sj ,sk : add a gear-pair p between shafts sj , sk ∈ S. Φ : |Psj ,sk | < Np,
T : (S,P ∪ {p})

– as: add a new shaft s. Φ : |S| < Ns. T : (S ∪ {s},P)
– dp: delete edge p ∈ P. Φ : p ∈ P. T : (S,P/{p})
– ds: delete shaft s ∈ S. Φ : s ∈ S, s ,= si, s ,= so, T : (S/{s},P/Ps)

5.2 Transmission Ratio Path Assignment

We consider two distinct models for the transmission ratio path assignment task.
The first model, called paths generation model, incrementally builds paths
adding edges, while the second, assignment model, finds all the s-t simple
paths in a graph and tries to assign each transmission ratio to one of them.

Paths Generation Model. In path generation, a state is defined as a tuple
(π1, ...,πk), where πi = (p1, ..., pni) is the sequence of gear-pairs associated with
the transmission ratio ωi, starting with shaft si. The sequence requires the gear-
pairs to be connected: i.e. si

pj
= so

pj−1
, ∀j = 2, ..., ni. A sequence may be empty.

We say that a sequence is a complete path if it terminates with shaft so. A
goal state is a state where all the sequences of gear-pairs are complete, distinct
paths. A goal state uniquely identifies a transmission ratio path assignment. For
this task, we only add or delete gear-pairs from a state (π1, ...,πk) (shafts are
automatically added if they are the input or the output of the gear-pair added):

– ap,πi : add gear-pair p at the end of πi. Φ : si
p = so

pni
, |Psi

p,so
p
| < Np, |S| < Ns,

πi ∪ p is a simple path. T : (π1, ...,πi ∪ p, ...,πk),
– dπi : delete the last element of πi. Φ : πi is not empty. T : (π1, ...,πi/pni , ...,πk)

The cost of a non-goal state is determined by the solution of the relaxed version
of the parameter optimization problem, which considers only the transmission
ratios associated with complete paths. The cost of goal states is the cost of the
full parameter optimization problem.
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10 C. Piacentini et al.

Assignment Model. For this model, given a graph G containing n simple
paths from si to so, a state is a partial assignment Π̃Ω , i.e. a subset of ΠΩ .
Actions assign a simple path to a transmission ratio, i.e. add an element (ω, π)
to the partial assignment. A goal state is defined as a state where all the trans-
mission ratios are assigned. The cost of a non-goal state is determined by the
solution of the relaxed version of the parameter optimization problem over the
partial assignment, while for goal states, the cost is the objective value of the
full parameter optimization problem.

6 Global Search

This section describes three search algorithms used to solve the gearbox synthesis
problem. For each search, both the two-stage and three-stage decomposition
approaches are considered (see Fig. 3). Each sub-task is solved using transition
systems described in the previous section and its solution is the input of the
next sub-task. The first algorithm presented, our baseline, is SA [16]. Next, we
consider a BFS [12] that keeps track of both the upper bound and lower bound
of solutions, similarly to branch-and-bound [19]. Finally, an EDA, a population-
based meta-heuristics approach is used.

A1. Transmission Ratio Path 
Assignment B1. Graph Generation

A2. Parameter Optimization B2. Transmission Ratio Path 
Assignment

B3. Parameter Optimization

ΠΩ

Two-stage decomposition Three-stage decomposition

cost

cost

ΠΩ

GNS,NP

G

GNS,NP

Fig. 3. Flowchart of the decomposition approaches

6.1 Simulated Annealing

In SA, states are feasible solutions and their cost corresponds to the cost of
a solution. A new state is generated by randomly selecting one transition of
the transition model and solving the subsequent sub-tasks. If this results in a
non-feasible solution, the state is automatically rejected.

A
ut

ho
r 

Pr
oo

f



Multi-speed Gearbox Synthesis 11

Two-Stage Decomposition. The search is initialized with randomly gen-
erated paths and the neighborhood is defined by the paths generation model
in Sect. 5.2. We consider the following actions, obtained by concatenating the
actions in Sect. 5.2:

– delete gear-pair p at position i in π: dp,i,π = dpn,π, dpn−1,π, ..., dpi−1,π,
a(si

pi−1
,si

pi+1
),π, api+2,π, ..., apn,π

– add gear-pair p at position i in π: ap,i,π = dpn,π, dpn−1,π, ..., dpi−1,π,
a(si

pi−1
,si

p),π, ap,π, a(so
p,so

pi
),π, api,π, ..., apn,π

– replace gear-pair pj with pk in π: rpj ,pk,i,π = dpj ,i,π, apk,i,π

Three-Stage Decomposition. For this approach, we first generate a graph
using the graph generation model in Sect. 5.1 with the actions devised by
Konigseder et al. [18], which are a combination of actions in Sect. 5.1:

– create a new gear-pair between two existing shafts: ap,sj ,sk

– delete an existing gear-pair: p, dp

– create a new shaft and connect to two existing ones: as, api,spi
j
,s, apj ,s,so

pj

– delete a shaft: ds

– replace a gear-pair: dp, as, apj ,si
p,s, apk,s,so

p

Starting from a randomly generated graph, the SA randomly selects one of the
actions and finds a new graph. The transmission ratio-path assignment problem
is solved heuristically by selecting a limited number of assignments, which are
then used to solve the parameter optimization problem. The cost of the graph
is the best objective value found among the sub-problems considered.

6.2 Best-First Search

In BFS, starting from the initial state, the algorithm selects a node for expan-
sion based on an evaluation function f , which represents an estimation of the
cost of the best solution. During expansion all the possible successor states are
generated, evaluated and inserted into a priority queue. The process is repeated,
selecting each time the state in the queue with the lowest f , until a goal state
is retrieved from the queue. We consider here a tweaked version of BFS that
also keeps track of an upper bound [5], which is simply the cost of the best
incumbent solution found during the evaluation stage of the algorithm. This
allows us to return the such feasible solution when we limit the running time
of the algorithm. Our evaluation function f is defined as a lower bound of the
cheapest configuration that can be achieved from a state σ and it is set to 0
at initialization. The optimality of the algorithm cannot be guaranteed because
our parameter optimization problem is not solved to (global) optimality.

A
ut

ho
r 

Pr
oo

f

Chiara

Chiara



12 C. Piacentini et al.

Two-Stage Decomposition. Similarly to SA, we solve the transmission ratio
path assignment problem using the path generation model in Sect. 5.2. We start a
search with a state with empty paths and incrementally add all possible edges to
create the first path. When the path is complete, we solve the inner optimization
problem to determine the cost of the state and we can start adding edges to
create the next path. Notice that the only action that we need is the addition of
a gear-pair. The evaluation function is calculated by running the relaxed solver
on paths that are completed. In addition, we add a lower bound related to the
number of gear-pairs that we need to add to the graph to have k paths. This is
calculated by building the graph representing the gearbox layout as the union
of the paths and estimating the number of edges necessary to have k s-t simple
paths: if the graph has k s-t simple paths, this is the number of edges in the
graph, otherwise, we take the number of edges plus one. We calculate the lower
bound on the cost by multiplying such number by two (every edge is a pair of
gears) and the square of the minimum radius of the gears.

Three-Stage Decomposition. We set the initial state to be a graph containing
only the input si and the output so shafts and consider the actions in Sect. 5.1:

– create a new gear-pair between two existing shafts: ap,sj ,sk

– create a new gear-pair p between an existing and a new shafts s: as, ap,sj ,s

Since we insert all the states explored in the queue and we start with an empty
graph, we do not need actions that delete gear-pairs or shafts. We use graph iso-
morphism to detect duplicated states. When a goal state (a graph with k simple
paths from si to so) is generated, we calculate the minimal cost of the graph.
This cost is calculated by solving the transmission ratio path assignment prob-
lem. The evaluation function is calculated by estimating the minimum number
of edges that we need to have a graph with at least k simple paths, similarly to
the 2-stage decomposition approach. Since the cost of a graph is defined by I,
which is a non-convex problem, adding a gear-pair does not necessarily increase
the cost of a configuration. For this reason, the evaluation function of a goal
state is not the cost of the configuration but is the lower bound defined above.
Our algorithm does not terminate when a goal state is found, but when the gap
between lower and upper bound is 0 or all the states have been explored.

To solve the transmission ratio path assignment problem, we run another BFS
using the assignment model in Sect. 5.2, where we start from a state where none
of the transmission ratios is assigned and actions correspond to the assignment
of a simple path to a transmission ratio.

6.3 Estimation of Distribution Algorithm

The last type of global search method is EDA, a class of meta-heuristic
approaches based on the evolution of populations [14]. While typical evolutionary
algorithms, such as genetic algorithms, use variation operators such as cross-over
and mutation, EDAs use an explicit probability model to generate new solutions,
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showing advantages in terms of performance, theoretical convergence, and cap-
turing the structure of the problem space [14]. The probabilities are computed
by directly using the frequency statistics of the selected top individuals from a
population and indicate the likelihood of a particular solution being included in
a set of top quality solutions based on prior observations. EDA has also been suc-
cessfully applied to the configuration design of vehicle suspension systems [7]. As
with the other algorithms, both two and three-stage decomposition approaches
are implemented and EDA is used to solve the top-level task. The overall frame-
work for the both approaches is the same except for the details in each of the
steps, as detailed below.

i) Generation of Initial Population: As a first step, an initial population of
individuals P is randomly generated.

In the two-stage decomposition approach, an individual is a tuple of k simple
paths, each corresponding to a transmission ratio path assignment. Each path
is constructed by randomly choosing an edge at a given node from a uniform
distribution defined over all possible outgoing edges of the node, starting from
the input shaft node si and ending at the output shaft node so.

In the three-stage decomposition approach, an individual is a graph G. An
individual is generated by randomly selecting an edge from a uniform distribution
defined over all possible edges, and incrementally adding the selected edge to a
null graph until the number of simple paths n is such that k ≤ n ≤ nmax.
We impose an upper bound on the number of paths to limit the number of
transmission ratio path assignments. If the last edge added results in n > nmax,
we backtrack one step and add another edge until k ≤ n ≤ nmax.

ii) Evaluation and Selection: Each individual in the population is evaluated
by solving the parameter optimization problem. For the three-stage decomposi-
tion approach, several transmission ratio path assignments are created exhaus-
tively before parameter optimization. A subset of the population, P ′ ⊆ P, rep-
resenting top t individuals, is selected. |P ′|/|P| is called truncation rate.

iii) Estimation of Probability Distribution: From P ′, the probability dis-
tributions of the edges in the individuals are estimated.

The probability model used for the two-stage decomposition approach is:

Ppath,πj (P) =
∏

p∈P

Ppath,πj (p|si
p) ∀j = 1, ..., k (18)

Here, a conditional probability distribution is assumed and the probability of a
gear-pair p is dependent on its input shaft, si

p.
The probability model used for the three-stage decomposition approach is:

Pgraph(P) =
∏

p∈P

Pgraph(p) (19)
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In other words, a univariate probability distribution is assumed and the proba-
bility of an edge p is determined independently from other edges.

iv) New Population Generation: A new population of individuals is gen-
erated using the same techniques as in Step i) with probability distributions
estimated in Step iii). That is, instead of randomly selecting edges from uniform
distributions to construct a graph or a path, the edges are sampled from the
probability distributions in Eq. (19) or Eq. (18), depending on the approach.

v) Iterate Steps ii)–iv): Steps ii) to iv) are repeated with the newly generated
population until an allocated number of iterations is reached.

7 Experimental Evaluation

Experiments are run on a single desktop computer with two Intel Xeon CPUs
E5-2650 v2 2.60 GHz and 32G of RAM.

7.1 Experimental Setup

Datasets. We generate a first dataset with 45 synthetic problem instances
(synthetic dataset). Instances have 4, 7 and 10 transmission ratios. We fix the
minimum transmission ratio to 1, and the maximum to 2, 6 and 10, respectively.
The values of the transmission ratios are generated randomly between the min-
imum and the maximum. The second dataset (tremec dataset) contains nine
realistic problems, five with five transmission ratios and four with ten transmis-
sion ratios. The transmission ratios and the size of the gearbox are taken from
the specifications found on the TREMEC website [35].

Implementation Details. The inner problem I(C) is solved with Ipopt [39],
using the modeling language CasADi [1]. Isomorphic graphs are detected using
the nauty library [22]. For EDAs, evaluations are run in parallel across 32 CPU
threads available in the computer used. For the two-stage decomposition app-
roach, we use population sizes of 192 for the five-ratio problems and 384 for
the ten-ratio problems in the tremec dataset. For the three-stage decomposition
approach, we use population size of 64, while using different time limits for eval-
uating each individual: three minutes for the five-ratio problems and six minutes
for the ten-ratio problems. For all EDAs, the truncation rate and the number
of iterations are set to 0.2 and 10, respectively. Both SA and BFS are run on a
single thread. The temperature parameter in SA is set to 2000 and decremented
every 1000 evaluations with a step size of 5. Time limits vary depending on the
size of the problem and are reported in the next section. They are assumed to
be tolerable waiting times from a design process perspective.
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Table 1. Results on the synthetic dataset. We report the average and the standard
deviation of objective value for problems that are solved by all algorithms (excluding
those that cannot solve any problem). We report also the number of problems solved
by each algorithm.

k 4 7 10
max ω 2 6 10 2 6 10 2 6 10

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ
SA2 obj 1349 92 2868 336 3377 105 6821 581 13389 2083 22805 1449 - - - - - -

# 5 - 5 - 5 - 5 - 5 - 5 - 0 - 0 - 0 -
BFS2 obj 1168 99 2015 97 2596 121 1715 45 - - - - - - - - - -

# 5 - 5 - 5 - 5 - 0 - 0 - 0 - 0 - 0 -
SA3 obj 1168 100 2033 120 2644 145 1764 116 3456 268 4427 285 3161 608 5337 - 6787 -

# 5 - 5 - 5 - 5 - 5 - 5 - 5 - 4 - 5 -
BFS3 obj 1168 99 2015 97 2597 121 1640 22 3858 307 6018 499 2258 364 7565 - 24206 -

# 5 - 5 - 5 - 5 - 5 - 5 - 5 - 1 - 1 -

Table 2. Results on the tremec dataset. We report the average and the standard
deviation of the objective value of each problem. The value marked with ∗ is the
objective value of the only solution found in all runs of the algorithm.

5-transmission ratios 10-transmission ratios
problem id es42-5a es52-5a es60-5a es60-5c tr-3550 tr-t-10d tr-t-10v tr-to-10s tr-to-10v

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ
EDA2 23281 1307 23733 957 24294 1522 24468 1538 12670 761 - - - - - - -
SA2 28523 2102 28114 2363 27468 4187 28863 3966 14501 1797 - - - - - - 466813∗ 0
BFS2 - - - - 23797 265 24651 696 10952 200 - - - - - - - -
EDA3 21644 473 22014 414 21199 0 22674 155 11067 69 22891 1247 25936 1343 21844 711 22698 631
SA3 25866 1957 26401 1773 25401 1993 24232 2618 11976 800 44105 10130 46084 20198 33093 9432 40640 10993
BFS3 31022 573 31370 552 30799 438 30792 538 10995 162 55458 1049 69725 1571 47989 1291 51338 1127

7.2 Results

We use the synthetic dataset to test the behaviour of the algorithms running on
a single thread: BFS and SA. In Table 1 we report the average solution qualities
and the number of problems solved for different groups of problems, using a
time-limit of 1 h. The name of the algorithm is followed by 2 or 3, indicating the
two-stage or three-stage decomposition approach, respectively. Every algorithm
is run 3 times to account for the randomization in the algorithms. Both SA and
BFS perform better when using the three-stage decomposition approach. The
two-stage approach fails to find feasible solutions to medium-size problems. In
terms of solution quality, BFS outperforms SA for small size problems, while SA
generally performs better on problems with more transmission ratios.

All algorithms are tested on the tremec dataset and results are in Table 2.
The time limit is 1 and 2 h for problems with 5 and 10 transmission ratios,
respectively. Each algorithm is run 10 times for each problem. Results on this
dataset confirms that the three-stage decomposition generally outperforms the
two-stage. Among the algorithms, EDA is the best performing, mainly attributed
to the larger number of solutions that can be evaluated in parallel.
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8 Conclusion

In this paper, we consider the multi-speed gearbox synthesis problem formulated
as a bi-level optimization problem. The inner task, or parameter optimization,
is a non-convex continuous optimization problem, solved with a state-of-the-art
solver. For the outer problem, we used two approaches to search over gearbox
configurations: the two-stage decomposition approach searches over transmis-
sion ratio path assignments, while the three-stage decomposition approach first
selects a sub-graph, and then performs the transmission ratio path assignment.
We found that the latter consistently outperforms the first in all test problems
and search algorithms. We investigated a variety of global search algorithms for
solving the sub-tasks of the outer problem. While best-first-search usually per-
forms well on small-size problems, the estimation of distribution algorithm pro-
duces better quality solutions for realistic instances. This work demonstrates the
value of integrating methods from both the artificial intelligence and optimiza-
tion fields applied to configuration design problems in mechanical engineering.
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