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A B S T R A C T   

In architectural construction, automated robotic assembly is challenging due to occurring tolerances, small series 
production and complex contact situations, especially in assembly of elements with form-closure such as timber 
structures with integral joints. This paper proposes to apply Reinforcement Learning to control robot movements 
in contact-rich and tolerance-prone assembly tasks and presents the first successful demonstration of this 
approach in the context of architectural construction. Exemplified by assembly of lap joints for custom timber 
frames, robot movements are guided by force/torque and pose data to insert a timber element in its mating 
counterpart(s). Using an adapted Ape-X DDPG algorithm, the control policy is trained entirely in simulation and 
successfully deployed in reality. The experiments show the policy can also generalize to situations in real world 
not seen in training, such as tolerances and shape variations. This caters to uncertainties occurring in con
struction processes and facilitates fabrication of differentiated, customized designs.   

1. Introduction 

1.1. Automated assembly in architectural construction 

While automated assembly using robotic systems is commonplace in 
many manufacturing industries, it is still in its infancy in architectural 
construction. One of the reasons is that buildings are usually bespoke 
and the development of automation processes for each new design often 
requires substantial investment. However, automated assembly in 
architectural construction has been gaining momentum in recent years, 
especially in bricklaying [1–4] and timber prefabrication [5,6]. In the 
latter, matured CAD-CAM workflows and CNC technologies for parts 
manufacture provide favourable conditions for a full-stack digital chain, 
from design through fabrication of parts to assembly. So far, however, 
industrially available solutions for automated assembly in timber con
struction, such as automated framing stations [6,7], are scarce and focus 
on narrowly standardized and usually butt-jointed modular construc
tion, which makes only limited use of the capabilities of the robotic and 
CNC tools. By contrast, research by [8–10] has shown that automated 
assembly can facilitate more resource-aware production and handle 
highly differentiated designs. The learning control methods presented in 

this work can expand assembly processes to highly varied, non-standard 
structures, including those with integral timber-to-timber joints (Fig. 1). 

Fig. 1. Vision: robotic assembly of a free-form timber frame structure with 
lap joints. 
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1.2. Assembly of timber joints 

Historic timber frame houses and structures were constructed using 
elaborate carpentry joints, which were laborious to cut and assemble. 
Modern European timber frame construction evolved to use predomi
nantly simple butt joints and metal fasteners, but a certain amount of 
joints still entails form closure, e.g. to transfer shear force, for which a 
tight-fit contact between the parts is required. The mating notches are 
cut to 0 mm accuracy and usually assembled by hand; the force needed 
to insert such tight-fitting parts is exerted using a hammer or a clamp. 
The edges of the notch are often chamfered, or the sides tapered, to 
facilitate initiating the insertion. When multiple connections need to be 
joined simultaneously (multiple engagement), even small misalignment 
or lack of synchronization may lead to jamming and stick-slip effect. 
Tapered joints can alleviate this, but are often unfavourable structurally 
and can disengage more easily. Both the contact forces and accuracy 
form a challenging control problem for automated assembly. 

1.3. Robotic control for assembly tasks 

Assembly tasks are contact-rich and require interaction between the 
robot and its environment, which is often hard to predict [11]. In 
manufacturing industries, one of the classic approaches applied for 
repeatable and high precision tasks is to program robot’s key config
urations manually with a teach pendant, relying on robots’ high 
repeatability. Methods that exploit passive mechanical compliance and 
insertion guiding features to overcome positional uncertainties can 
provide faster and more reliable responses for dynamic collision than 
sensors, but are usually engineered to a very specific task. Direct 
control methods for constrained motion control include active 
mechanical compliance and force control algorithms [11]. Most of 
these methods are based on explicit procedures, engineered to perform 
a specific task and require precise models of contact and friction 
dynamics [12]. In contrast to the aforementioned approaches, to 
handle products or environments with considerable uncertainty or 
variation, advanced force control methods are needed, such as adap
tive or learning methods [13,14]. 

1.4. Reinforcement Learning for robotic assembly tasks 

Reinforcement Learning (RL) is an area of machine learning in which 
agents generate actions within an environment based on observations 
and learn an optimal policy to maximize the expected total reward. With 
RL, a robotic system can autonomously acquire policies to manage 
contact-rich manipulation without prior knowledge of the environment 
or the dynamics model. Since these policies can generalize well to new 
scenarios and in reaction to real-time observations, recently [15–21] RL 
has become a popular technique [22–25] for control policies for robotic 
assembly tasks. 

1.5. About this work 

This paper presents – to our knowledge the first successful – 
application of Reinforcement Learning for assembly tasks using large 
industrial robots in the context of architectural construction. In 
particular, we demonstrate an autonomous execution of assembly tasks 
while being able to simultaneously adapt to uncertainties such as 
inaccuracies and geometric variance. To control the robot, a RL policy 
is trained entirely in simulation, based on force/torque (FT) and pose 
observations only. This challenge is explained in Section 2 and 
followed by an overview of related work in Section 3. The presented 
solution (see Section 4) uses a distributed DDPG algorithm [16], 
leverages human demonstrations [26], and applies domain randomi
zation [21,27] to bridge the gap between simulation and reality. We 
test this approach in a series of physical experiments exemplified by 
lap-joint insertion tasks (Section 5), from which the conclusions are 

drawn in Section 6. Implementation details are provided in the 
Appendix. 

2. Problem statement 

In this paper, we look at the final stage of an assembly routine – the 
insertion task – which is particularly challenging because of multiple 
inaccuracies and uncertainties that can occur and cannot be explicitly 
planned for. The preceding steps, including picking up the timber piece 
and bringing it close to its final location in a structure, are done as in [9] 
and are not discussed here further. The aforementioned uncertainties 
may stem from allowances in size and shape of the timber element, 
displacement of the already built structure or an inaccuracy of the robot 
that can amount to several millimetres, especially in large-scale robotic 
systems [28], and together they may result in a misalignment of the 
mating notches and hinder the insertion of the element. To solve this 
problem, we aim to learn a motion control policy using Reinforcement 
Learning. The controller should react to the contact forces and produce a 
smooth insertion movement without damaging the wooden elements. 
We intend to guide it in real-time using FT and pose feedback and an RL 
policy. Addressing non-standard, mass-customized structures, the 
controller should also be able to handle a variety of different element 
shapes and poses. 

Since it is impractical, dangerous, costly and time-consuming to 
conduct sufficient training with real industrial robots and physical ma
terials, we intend to train the policy purely in simulation. Physics en
gines are often used to simulate robotic manipulation tasks, negotiating 
different trade-offs between speed and accuracy [29]. To deploy that 
policy in reality, we need to bridge the gap between simulation and 
reality. Physical phenomena, such as friction or deformation, contribute 
substantially to contact forces during assembly and are very difficult to 
simulate. On the other hand, sensor noise and control delays do not 
occur in simulation but add to the perturbations an agent may experi
ence in reality. 

In this paper, our goal is to learn a motion-control policy that will 
output Cartesian velocities [vx, vy, vz, ωx, ωy, ωz] given FT observations 
[fx, fy, fz, tx, ty, tz] and pose observations [px, py, pz, qw, qx, qy, qz] as input, 
and to evaluate the applicability of the policy to control an industrial 
robot for the assembly of timber frame structures. 

3. Related work 

3.1. Robotic assembly 

In architectural context, notable examples of robotic assembly at real 
scale include non-standard timber frames [9] and trusses [30,31], 
however, in these projects connections are designed to accommodate 
inaccuracies and avoid concern for contact situations. In contrast, high 
accuracy and insertion force is indispensable to assemble timber plate 
structures with multiple through-tenons, for which [32] adds vibration 
at the end-effector. 

On a smaller scale of desktop and collaborative robots, past research 
presented methods for autonomous acquisition of control policies for 
contact-rich assembly tasks such as peg-in-a-hole, toys or furniture. In 
[33], multiple linear-Gaussian controllers are used to train a non-linear 
policy, exemplified by assembly of various toys with a PR2 robot. To 
assemble an IKEA chair, [34] applies hybrid position/force control to 
insert dowels into holes or a part in multiple dowels. 

3.2. Reinforcement Llearning for robotic assembly 

Among various established RL methods, DDPG [15] is a model-free 
algorithm developed for problems with a low-dimensional observation 
space and a continuous action space, as needed for robotic control. Its 
follow-up Ape-X DDPG [16] is considered well suited to tackle complex 
assembly tasks thanks to a distributed architecture and a much higher 
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training efficiency. Set to solve similar assembly tasks and also based on 
Ape-X DDPG, [23] focuses on a novel technique that allows RL algo
rithms to use experience replay samples from successful transitions 
generated by RL agents during training. In this paper, we focus on the 
simulation-to-reality transfer of the learned policy to solve timber joint 
assembly tasks and on extensive experimentation on industrial robots 
with varying geometries and conditions in the context of architectural 
construction. 

Other notable RL-based approaches include, for example, a recurrent 
neural network with RL for peg-in-a-hole task using FT and pose ob
servations [25]. To solve high-precision gear assembly tasks, [22] pro
posed model-based RL and operational-space force control. In [12], 
instead of using random exploration, geometric information in 
Computer-Aided Design (CAD) models is used to guide RL to solve 
various insertion tasks. 

In terms of the choice of the action space, many approaches to ro
botic motion control involving RL rely on forward kinematics 
[12,22,24,26,35] and describe actions in joint space. Because our ac
tions require a small volume, we can instead focus on Cartesian-space 
poses and learn a policy that is robot-agnostic. 

3.3. Bridging simulation and reality 

Research on bridging the gap between simulation and reality mainly 
focuses on two techniques. The first technique is incorporating experi
ence from the real, or physical, world [36,37]. The other is Domain 
Randomization, with which discrepancies between the source and target 
domains are modeled as variability in the source domain. In dynamics, 
randomization has been used to develop controllers that are robust to 
uncertainty [38] and to transfer manipulation policies by randomizing 
physical parameters [21,39]. 

4. Approach 

4.1. Setup 

We simplify the overall assembly problem and focus only on the 
movements at the end-effector. We disregard the kinematic chain of the 
robot and assume that a valid joint configuration exists at all times since 
we focus on relatively small movements. Conveniently, we move at low 
speeds and may also ignore the dynamics of the system. 

For simulation, we use a physics engine and we only consider objects 
that contribute to FT readings, i.e. a model of the gripper, of the sensor 
and of the timber members. We provide estimated inertial properties 
(mass and centre of mass) of all dynamic objects and include friction in 

the simulation. In reality, the robotic workcell is a 6-axis industrial robot 
with a custom-made FT sensor, an end-effector and a robot controller 
(see Appendix for details). In both simulation and reality, the FT sensor 
is mounted before the gripper, further referred to as sensor pose. In the 
following, we distinguish it from the control pose, member pose and target 
pose (Fig. 2). 

4.2. Observations 

The observation space is continuous, 13-dimensional, and consists of 
the position [px, py, pz] and orientation [qw, qx, qy, qz] at the member 
pose as acquired from the robot and the contact force [fx, fy, fz] and 
contact torque [tx, ty, tz] at the sensor pose as acquired from the sensor. 

4.3. Actions 

The action space is continuous, 6-dimensional, and consists of the 
predicted linear velocity [vx, vy, vz] and angular velocity [ωx, ωy, ωz] for 
each timestep at the control pose as acquired from the policy. 

4.4. Human demonstration 

We record one human demonstration of a given task conducted 
exclusively within the simulation environment, using a game controller 
to drive the end-effector [23] until the timber member and the timber 
assembly are successfully joined. The demonstrator is aware and in 
control of linear and angular velocities applied to the end-effector, but 
has no haptic feedback of contact forces during the recording of 
assembly. 

4.5. Simulation-to-reality transfer 

Within the simulation environment, we set gravity acceleration to 
0 m/s2 to isolate contact force and torque. In the real environment, 
gravity, sensor bias and drift are compensated using an approach similar 
to [40]. To reconcile FT sensing in simulation [29] with that in reality, 
we also calibrate the FT range in simulation and reality by performing 
the same task, and scale the FT observations by a computed factor. 

To better reproduce the noise present in FT observations in reality, 
we apply domain randomization in the form of Gaussian noise to FT 
readings in simulation. Specifically, we apply correlated noise, sampled 
once per episode, and uncorrelated noise, sampled once per timestep 
(see Appendix for details). We experimented with adding randomization 
to pose observations and friction coefficients in simulation, however, 
results show no visible improvement in learning transfer. 

Fig. 2. Visualization of control, sensor, member and target poses with reference to the gripper, FT sensor and the timber members in simulation (left) and in reality 
(right). In a double-lap joint, the member and the target pose are at the average position of the notches. In the default configuration, all poses’ Z-axes and origins 
are colinear. 
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System delays in the real world are a critical factor in the simulation- 
to-reality gap [35]. Instead of adding randomization to the communi
cation rate in simulation, we characterize the control delay profile of our 
physical robot [41], and use the maximum communication frequency 
that does not trigger the control delay on the real setup. 

4.6. Algorithm 

We use the Ape-X DDPG algorithm [16] and incorporate human 
demonstrations in its distributed architecture. In [16] the actors interact 
with their own instances of the simulation environment and accumulate 
the resulting experience in a shared experience replay memory, whereas 
the learner replays experience samples and updates the shared neural 
network, from which actors draw actions. 

We record all transitions from one successful human demonstration. 
One transition is defined as et = (st,at, rt, st+1), where st, at and rt are 
observation (state), action and reward at time t, respectively. We use a 
linear reward function based on the linear and angular distance between 
the member pose and the target pose, adding a large positive reward 
(+100) if that distance is less than or equal to a distance threshold. The 
reward given at timestep t, defined as 

rt =

{
− ∣g − xt∣, ∣g − xt∣ > ε
− ∣g − xt∣ + R, ∣g − xt∣ ≤ ε ,

where xt is the member pose at time t, g is the target pose, ε is a distance 
threshold, and R is the large positive reward, is added to the total reward 
of each episode. The negative distance at each timestep encourages the 
policy to reach the goal in fewer steps. No penalties for exceeding 
readable sensor range are added to the reward function. 

The training consists of multiple iterations. In each training iteration, 
the agent makes several attempts (episodes) to complete the task. 
Training concludes when the average success rate of all the episodes 
within a training iteration reaches a predefined threshold or when the 
total number of training iterations is exceeded. An episode is considered 
successful when ∣g − x∣ ≤ ε. In simulation, if this goal has not been 
reached within a user-defined number of steps, the episode is regarded 
as a failure. In reality, the number of steps is not limited, but the 
execution is aborted and the episode considered unsuccessful when the 
sensor or the robot’s wrist torque limits are violated. 

5. Experiments 

5.1. Method 

To test our approach, we deploy (roll out) the trained policy in reality 
on a robotic workcell and conduct a series of assembly tasks. We eval
uate the robustness of the trained policy with respect to variations 
common in timber construction. Specifically, we vary the geometrical 
configurations, joint tightness, and the initial linear and angular offsets 
of each task. We also deploy the policy in simulation and compare these 
rollouts with those in reality to assess how successful the policy is at 
transferring from simulation to reality. 

We focus on half-lap joints as a toy example for a simple and common 
joint in woodworking, in which two or more timber members overlap 

each other by half their depth at a mating notch. In our experiments we 
look at two scenarios: 1) two members with one joint (single-lap) and 2) 
three members with two joints (double-lap), as shown in Fig. 3. For each 
of the two scenarios, we train a single policy in simulation and then test 
that policy in reality, with varying task parameters to see if the policy is 
able to generalize. These parameters are: angle α between connecting 
timber elements, tolerance b between mating faces of the notch, and x0 
describing the offset applied to the initial pose of the timber member. 
The default values of the tasks parameters used in the training are α =
90◦, b = 1 mm and x0 = 0. The relative position of the gripper to the 

Fig. 3. Left to right: X-shaped single-lap, H- and Δ-shaped double-lap.  

Fig. 4. Overview of experiment parameters and results. The parameters used 
for training are highlighted. 

Fig. 5. Close-up of a 90◦ lap joint with a gap b = 1 mm.  
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inserted member is constant in all experiments: above the notch in a 
single-lap joint and centred between two notches in the double-lap joint 
tasks. The overview of the experiments and results is given in Fig. 4. A 
video showing the execution of our experiments is available at 
https://vimeo.com/359005752/3a1513ed75. 

5.2. Single-lap tasks 

First, we test how the policy learned in simulation transfers to reality 
by rolling it out on a physical robot with the same default task param
eters used during training (Fig. 5). It achieves a 100% success rate. 

Next, we challenge the same single-lap policy (trained with α = 90◦) 
to assemble joints with α equal to 75◦, 60◦, and 45◦. With the angle 
decreasing, the area of and, thus, the friction between mating faces is 
greater than in training. Additionally, FT readings and movement con
straints will naturally differ with notch geometry. Both in the simulation 
and in reality rollouts, the policy performs robustly in the range 90◦ – 
60◦, which is a considerably high flexibility for the envisioned archi
tectural applications. 

Subsequently, we test if the policy is able to handle different levels of 

tight-fitness. As the gap b in the joint decreases the policy must produce 
finer movements. As expected, the policy easily succeeds if the gap is 
increased. When decreasing the gap from the default b = 1 mm to b =
0.5 mm, the policy still performs well in simulation but fails to do so in 
reality. These failures are caused by contact forces that violate the 
allowable range of our sensor, mostly torque on the X- and Y-axis. 

Finally, to test if our policy is able to perform the insertion even if the 
elements are initially misaligned, which can arise from a combination of 
different unintended tolerances, we apply a combination of linear (≤ 10 
mm) and angular (≤ 4◦) offsets at the initial member pose. The policy 
proves to be reliable with up to 2 mm linear offsets in the X- and Y-di
rection, up to 5 mm linear offsets in the Z-direction, or 2◦ angular offsets 
on all axes. This range of adaptability may be promising for assemblies 
of larger scale, where offsets of this degree are common. Unfortunately, 
combinations of linear and angular offsets are largely unsuccessful and 
this would need to improve for a practical application in industry. 

5.3. Double-lap tasks 

Although a single-lap is a good initial test scenario, in timber framing 

Fig. 6. Stills from an assembly of an H-shaped (left) and Δ-shaped (right) double-lap tasks by the real robot.  

Fig. 7. Plots of linear and angular actions from rollouts in simulation and reality, from all conducted single-lap tasks where α = 90◦, b = 1 mm, and offsets are zero. 
All these rollouts were successful, as summarized in Fig. 4. The solid line represents the average, and the shaded area the bounds, of the values. 
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it is much more likely for a member to engage with more than one other 
member simultaneously. In order to consider such connections, next we 
attempt to join a timber member with two other members in H- and 
Δ-shaped configurations (Fig. 6). We train a policy using an H-shaped 
design with right angles, and deploy it for both the H- and Δ-shaped 
specimen. We are able to successfully and consistently assemble H- 
shaped joints, but the policy fails to generalize to Δ-shaped joints. 
Failures are caused by violating the FT sensor limits, specifically, by 
generating excessive torque about the Z-axis; the joints, displaced from 
center, form a significant lever arm during assembly. Also, if the two 
joints become unevenly engaged, for example due to rotation around the 
X-axis, they may jam. 

5.4. Simulation vs. reality 

On the success rates of rollouts in simulation compared with those in 
reality, approximately more than half of all tasks have similar outcomes, 
as shown in the last two columns of Fig. 4. 

We observe that the tasks where success rates are significantly lower 
in reality are those with difficult parameters, i.e. largely different from 
the ones used in training, such as when b = 0.5, α = 45◦, with large x0 or 
with substantially different joint geometry. We suspect it is because 
reality is less forgiving than simulation in terms of friction and contact 
forces. More accurate modeling of friction and contact forces in simu
lation may be desirable in the future. 

We compare observations and actions of a rollout in simulation vs. 
reality in Fig. 7. There is a significantly higher variance in reality’s ac
tion space, which we attribute to the policy’s response to the large 
amount of noise FT observations captured by the sensor. While obser
vations in reality differ substantially from those in simulation, actions 
output from the policy are appropriate responses. This shows the suc
cessful sim-to-real transfer and the capacity of the learned policy to 
generalize. 

6. Conclusion and future work 

This paper presented how RL can be applied to robotic construction 
to assemble timber structures using industrial robots. Exemplified by 
lap-joint assembly tasks, the experiments demonstrate that control 
policies trained in simulation can successfully transfer to reality and can 
overcome geometric inaccuracies during assembly. 

In particular, the flexibility of the policy in single-lap assembly tasks 
exceeded our expectations. The fact that it can overcome positional 
tolerances suggests that during training the neural network learns to 
base actions more on force torque observation than on pose observation. 
In the future, pose observation could be removed to base actions purely 
on contact forces. In contrast, the ability to handle multi-engagement 
assembly tasks requires further work towards the reduction of torques 
arising from the lever-arm situations. For this, instead of a single FT 
sensor mounted before the gripper, a system of distributed sensors at the 

fingertips [42] could give a more meaningful haptic feedback from the 
robot. In terms of tolerances, our ability to assemble tight-fitting joints 
(with less than 1 mm gap) was considerably compromised by limitations 
of our experimental physical setup, i.a. the range of the FT sensor. In 
future work, penalties for actions that result in violation of sensor limits 
could also be included in the reward formulation during training, e.g. by 
Constrained Policy Optimization [43]. Furthermore, acceleration-based 
actions could be investigated to enable greater velocities and smooth
ness in robot control. It would be also interesting to explore success 
criteria other than distance or incorporate other sensing routines in 
order to ensure that tasks are properly assembled. Looking towards 
application in practice, future work could include a wider range of joint 
types, joint configurations and element geometries. Also, relative posi
tion between the member pose and the sensor pose could be added as a 
parameter to the training to add flexibility to gripping positions, or the 
policy could learn a wider range of experienced forces to accommodate 
for different positions. 

The presented work addresses just a selected part of an overall robot- 
based assembly process and is only a small step towards automated 
timber construction. We address two challenges of automation in 
architectural construction which are essentially distinct from other 
manufacturing industries: the prevalence of uncertainties and small se
ries. First, the control policy is able to handle tolerances, inaccuracies 
and deformations that naturally occur when building with elements 
made of wood at this scale. Second, by being able to cater to different 
shapes, a wider range of element geometries can be handled without the 
need to be reprogrammed for every new design. These traits are indis
pensable for automated timber construction to gain ground in the near 
future. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.autcon.2021.103569. 
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Appendix A 

A.1. Software 

Simulations were conducted using PyBullet [45]. In simulation, the friction noise coefficient is set to 0.1. 
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Fig. A.1. Architecture of the software-hardware interfaces.  

The RL algorithm is based on the RLlib [46] implementation and default parameters. For training, the minimum iteration time is 60 s, the 
maximum number of steps taken per episode is 6000, and the minimum success rate is 90%. Maximum linear velocity is 0.002 m/s, and maximum 
angular velocity is 0.002 rad/s. Domain randomization in the form of Gaussian noise N

(
0, σ2) is added to FT observations, where σ is [2 N, 2 N, 2 N, 

0.2 Nm, 0.2 Nm, 0.2 Nm] as correlated noise, and [0.5 N, 0.5 N, 0.5 N, 0.05 Nm, 0.05 Nm, 0.05 Nm] as uncorrelated noise. The distance threshold, 
used to define the exit condition, is ε= 0.005 m. Other hyperparameters may be found in the code, available at https://github. 
com/AutodeskRoboticsLab/RLRoboticAssembly. 

A.2. Physical setup 

We use ABB IRB4600–40/2.55 robot mounted to a large, overhead gantry. To control the robot with the RL policy, we implemented following 
interfaces (see Fig. A.1). We use ROS and roslibpy [47] to communicate with the robot and the sensor at a rate of 50 Hz. For real-time control, we use 
ABB Externally Guided Motion (EGM) [48], which has control delay of 10–20 ms [48,p.328]. We use a prototypical BOTA Systems FT sensor [49]. The 
nominal calibrated range of the FT sensor is [3 kN, 3 kN, 6 kN, 100 Nm, 100 Nm, 77 Nm]. The resolution of an axis is equal to 1/10000 of its range. The 
accuracy of an axis is equal to 1% of its range. 

Timber members are planed spruce slats, 40 × 80 × 1200 mm and 1.6 kg. These dimensions are small for construction but practical for our tasks. 
Notches are 40+b × 40 × 20 mm and CNC-milled; overall dimensional accuracy is sub-millimeter. As the material wore off during experiments, 
members were regularly replaced to avoid biasing success rates. 

References 

[1] J. Andres, T. Bock, F. Gebhart, W. Steck, First results of the development of the 
masonry robot system ROCCO: A fault tolerant assembly tool, in: D.A. Chamberlain 
(Ed.), Automation and Robotics in Construction Xi, Elsevier, Oxford, 1994, 
pp. 87–93. ISBN: 978-0-444-82044-0. https://doi.org/10.1016/B978-0-444-820 
44-0.50016-3. 

[2] T. Bonwetsch, Robotically Assembled Brickwork. Manipulating Assembly Processes 
of Discrete Elements, Ph.D. thesis, ETH Zurich, 2015, https://doi.org/10.3929/eth 
z-a-010602028. 

[3] Construction Robotics, Sam100 (semi-automated mason), https://www. 
construction-robotics.com/sam100, Accessed: 26/03/2020 (2018). 

[4] FastBrick Robotics, Hadrian X, https://www.fbr.com.au/view/hadrian-x, 
Accessed: 26/03/2020 (2016). 

[5] K. Orlowski, Automated manufacturing for timber-based panelised wall systems, 
Autom. Constr. 109 (2020) 102988. ISSN: 0926-5805, https://doi.org/10.1016/j. 
autcon.2019.102988. 

[6] Weinmann, Frame work stations and combi-wall systems FRAMETEQ F-300/500/ 
700 M-300/500, https://www.homag.com/fileadmin/product/house 
construction/brochures/weinmann-frame-work-stations- 

FRAMETEQ-en.pdf, Accessed: 26/03/2020 (2020). 
[7] Homag, Robots in timber work, https://www.homag.com/en/news-events/news/ 

article/robots-in-timber-work, Accessed: 05/12/2019 (2018). 
[8] A.A. Apolinarska, Complex timber structures from simple elements: Computational 

design of novel bar structures for robotic fabrication and assembly, Ph.D. thesis, 
ETH Zurich, 2018, https://doi.org/10.3929/ETHZ-B-000266723. 

[9] A. Thoma, A. Adel, M. Helmreich, T. Wehrle, F. Gramazio, M. Kohler, Robotic 
fabrication of bespoke timber frame modules, in: J. Willmann, P. Block, M. Hutter, 
K. Byrne, T. Schork (Eds.), Robotic Fabrication in Architecture, Art and Design 

2018 (ROBARCH 2018), Springer International Publishing, Cham, 2019, 
pp. 447–458. ISBN: 978-3-319-92294-2. https://doi.org/10.1007/978-3-319-9229 
4-2_34. 

[10] S. Parascho, T. Kohlhammer, S. Coros, F. Gramazio, M. Kohler, Computational 
design of robotically assembled spatial structures. A sequence based method for the 
generation and evaluation of structures fabricated with cooperating robots, in: 
L. Hesselgren, A. Kilian, S. Malek, K.-G. Olsson, O. Sorkine-Hornung, C. Williams 
(Eds.), Advances in Architectural Geometry 2018 (AAG 2018), Klein Publishing 
GmbH, Vienna, 2018, pp. 112–139 (ISBN: 978-3-903015-13-5). 

[11] M. Vukobratovic, A. Tuneski, Contact control concepts in manipulation robotics – 
an overview, IEEE Trans. Ind. Electron. 41 (1) (1994) 12–24. ISSN: 1557-9948, 
https://doi.org/10.1109/41.281603. 

[12] G. Thomas, M. Chien, A. Tamar, J.A. Ojea, P. Abbeel, Learning Robotic Assembly 
from CAD, in: 2018 IEEE International Conference on Robotics and Automation 
(ICRA), 2018, pp. 3524–3531. ISSN: 2577-087X, https://doi.org/10.1109/ICRA. 
2018.8460696. 

[13] D. Whitney, Historical perspective and state of the art in robot force control, in: 
Proceedings. 1985 IEEE International Conference on Robotics and Automation vol. 
2, 1985, pp. 262–268, https://doi.org/10.1109/ROBOT.1985.1087266. 

[14] G. Zeng, A. Hemami, An overview of robot force control, Robotica 15 (5) (1997) 
pp. 473–482, Cambridge University Press, New York, USA, ISSN: 0263-5747. doi: 
https://doi.org/10.1017/S026357479700057X. 

[15] T.P. Lillicrap, J.J. Hunt, A.E. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, 
D. Wierstra, Continuous Control with Deep Reinforcement Learning, arXiv e- 
printsAccessed: 13/09/2019, 2019. 

[16] D. Horgan, J. Quan, G. Barth-Maron, M. Hessel, Distributed prioritized experience 
replay, in: 6th International Conference on Learning Representations (ICRL 2018), 
Vancouver, Canada, 2018. https://iclr. 
cc/Conferences/2018/Schedule?showEvent=134 (Accessed: 13/09/ 
2019). 

A.A. Apolinarska et al.                                                                                                                                                                                                                        

https://github.com/AutodeskRoboticsLab/RLRoboticAssembly
https://github.com/AutodeskRoboticsLab/RLRoboticAssembly
https://doi.org/10.1016/B978-0-444-82044-0.50016-3
https://doi.org/10.1016/B978-0-444-82044-0.50016-3
https://doi.org/10.3929/ethz-a-010602028
https://doi.org/10.3929/ethz-a-010602028
https://www.construction-robotics.com/sam100
https://www.construction-robotics.com/sam100
https://www.fbr.com.au/view/hadrian-x
https://doi.org/10.1016/j.autcon.2019.102988
https://doi.org/10.1016/j.autcon.2019.102988
https://www.homag.com/fileadmin/product/houseconstruction/brochures/weinmann-frame-work-stations-FRAMETEQ-en.pdf
https://www.homag.com/fileadmin/product/houseconstruction/brochures/weinmann-frame-work-stations-FRAMETEQ-en.pdf
https://www.homag.com/fileadmin/product/houseconstruction/brochures/weinmann-frame-work-stations-FRAMETEQ-en.pdf
https://www.homag.com/en/news-events/news/article/robots-in-timber-work
https://www.homag.com/en/news-events/news/article/robots-in-timber-work
https://doi.org/10.3929/ETHZ-B-000266723
https://doi.org/10.1007/978-3-319-92294-2_34
https://doi.org/10.1007/978-3-319-92294-2_34
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0030
https://doi.org/10.1109/41.281603
https://doi.org/10.1109/ICRA.2018.8460696
https://doi.org/10.1109/ICRA.2018.8460696
https://doi.org/10.1109/ROBOT.1985.1087266
https://doi.org/10.1017/S026357479700057X
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0050
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0050
http://refhub.elsevier.com/S0926-5805(21)00020-0/rf0050
https://iclr.cc/Conferences/2018/Schedule?showEvent=134
https://iclr.cc/Conferences/2018/Schedule?showEvent=134


Automation in Construction 125 (2021) 103569

8

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy 
Optimization Algorithms, arXiv e-printsAccessed: 01/05/2020, 2017. 

[18] W.H. Montgomery, S. Levine, Guided policy search via approximate mirror 
descent, in: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (Eds.), 
Advances in Neural Information Processing Systems 29, 30th Annual Conference 
on Neural Information Processing Systems (NIPS 2016), Curran Associates, Inc., 
NY, USA, 2016, pp. 4008–4016 (ISBN: 978-1-5108-3881-9). 

[19] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. 
Muldal, N. Heess, T. Lillicrap, Distributed distributional deterministic policy 
gradients, in: 6th International Conference on Learning Representations (ICRL 
2018), Vancouver, Canada, 2018, https://iclr. 
cc/Conferences/2018/Schedule?showEvent=25, Accessed: 26/08/2020. 

[20] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, 
B. McGrew, J. Tobin, O. Pieter Abbeel, W. Zaremba, Hindsight experience replay, 
in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, 
R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, 31th 
Annual Conference on Neural Information Processing Systems (NIPS 2017), Curran 
Associates, Inc., NY, USA, 2017, pp. 5048–5058 (ISBN: 978-1-5108-6096-4). 

[21] M. Andrychowicz, B. Baker, M. Chociej, R. Zefowicz, B. McGrew, J. Pachocki, 
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, 
P. Welinder, L. Weng, W. Zaremba, Learning dexterous in-hand manipulation, The 
International Journal of Robotics Research 39 (1) (2020) 3–20. ISSN: 0278–3649, 
Publisher: SAGE Publications Ltd STM, https://doi.org/10.1177/027836491 
9887447. 

[22] J. Luo, E. Solowjow, C. Wen, J.A. Ojea, A.M. Agogino, A. Tamar, P. Abbeel, 
Reinforcement learning on variable impedance controller for high-precision 
robotic assembly, in: 2019 International Conference on Robotics and Automation 
(ICRA), 2019, pp. 3080–3087. ISSN: 2577-087X, https://doi.org/10.1109/ICRA. 
2019.8793506. 

[23] J. Luo, H. Li, Dynamic experience replay, in: L.P. Kaelbling, D. Kragic, K. Sugiura 
(Eds.), Proceedings of the Conference on Robot Learning (CoRL), Vol. 100 of 
Proceedings of Machine Learning Research, PMLR, Osaka, Japan, 2020, 
pp. 1191–1200, in: http://proceedings.mlr.press/v100/luo20a.html (Accessed: 
17/05/2020). 

[24] Y. Fan, J. Luo, M. Tomizuka, A learning framework for high precision industrial 
assembly, in: 2019 International Conference on Robotics and Automation (ICRA), 
2019, pp. 811–817. ISSN: 2577-087X, https://doi.org/10.1109/ICRA.2019. 
8793659. 

[25] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, R. Tachibana, Deep 
reinforcement learning for high precision assembly tasks, in: 2017 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), 2017, 
pp. 819–825. ISSN: 2153-0866, https://doi.org/10.1109/IROS.2017.8202244. 

[26] M. Vecerk, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, 
T. Lampe, M.A. Riedmiller, Leveraging demonstrations for deep reinforcement 
learning on robotics problems with sparse rewards, arXiv e-printsAccessed: 18/08/ 
2020, 2017. 

[27] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain 
randomization for transferring deep neural networks from simulation to the real 
world, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), 2017, pp. 23–30. ISSN: 2153-0866, https://doi.org/10.110 
9/IROS.2017.8202133. 

[28] L. Stadelmann, T. Sandy, A. Thoma, J. Buchli, End-effector pose correction for 
versatile large-scale multi-robotic systems, IEEE Robotics and Automation Letters 4 
(2) (2019) 546–553. ISSN: 2377-3766, https://doi.org/10.1109/LRA.2019.2891 
499. 

[29] J. Collins, D. Howard, J. Leitner, Quantifying the reality gap in robotic 
manipulation tasks, in: 2019 International Conference on Robotics and Automation 
(ICRA), 2019, pp. 6706–6712. ISSN: 2577-087X, https://doi.org/10.1109/ICRA. 
2019.8793591. 

[30] M. Krammer, Individual Serialism Through the Use of Robotics in the Production of 
Large-Scale Building Components, in: D. Reinhardt, R. Saunders, J. Burry (Eds.), 
Robotic Fabrication in Architecture, Art and Design 2016, Springer International 
Publishing, Cham, 2016, ISBN 978-3-319-26378-6, pp. 460–467, https://doi.org/ 
10.1007/978-3-319-26378-6_38. 
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