q

Check for
updates

Unified Access to Heterogeneous Data
Sources Using an Ontology

1(=9)

Daniel Mercier , Hyunmin Cheong!, and Chaitanya Tapaswi?

1 Autodesk Research, Toronto, ON, Canada
{daniel.mercier,hyunmin.cheong}@autodesk.com
2 Autodesk, Pier 9, San Francisco, CA, USA

http://www.autodeskresearch.com/

Abstract. The rise of cloud computing started a transition for software
applications from local to remote infrastructures. This migration cre-
ated an opportunity to aggregate and consolidate analogous data con-
tent. However, this data content usually come with very different data
structures and data terminologies and is usually tightly coupled to one or
more applications. With these disparities and restrictions, the analogous
data ends up both centrally stored but spread over several disconnected
heterogeneous data sources. In this article, we present an approach to
aggregate data sources using live data consolidation. The approach pre-
serves the original data sources; and by doing so, prevents associated
applications from having to migrate to a new data source. The app-
roach uses an ontology at its core to serve as a common semantic ground
between data sources and leverage its stored knowledge to expand query
capabilities.

Keywords: Ontology - Databases - Aggregation -+ Consolidation
Standardization - Query expansion + Materials

1 Introduction

The development of Cloud technologies, remote computing infrastructures, has
recently seen a steep growth due to a combination of global network coverage
and higher communication speeds. Software companies are progressively moving
their applications from being historically deployed locally on desktops to being
deployed on these remote infrastructures. This migration provides an oppor-
tunity to aggregate data sources. The receiving data warehouses offer extreme
storage capacities, resilience from redundancies, traceability over changes and
connection to advanced processing pipelines. This newly aggregated data con-
tent often holds compatible and analogous data prone to consolidation. The
result from consolidation is an increased availability of data on specific topics
and richer data diversity.

The aggregation and consolidation of existing data sources is naturally a
challenge because the sources are often historically designed, assembled, and

© Springer Nature Switzerland AG 2018
R. Ichise et al. (Eds.): JIST 2018, LNCS 11341, pp. 104-118, 2018.
https://doi.org/10.1007/978-3-030-04284-4_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04284-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-04284-4_8

Unified Access to Data Sources Using an Ontology 105

optimized for one or more specific applications; and therefore, deeply linked to
these applications. A successful aggregation and consolidation of data sources
would have to minimize the impact on the consuming applications and their
active operations as well as avoid creating copies that could lead to synchroniza-
tion issues.

Our proposed solution is to use live data consolidation; a method where the
data aggregation happens at the time of content query to maintain the original
data sources. Its core operations consist in the alignment of the data attributes
and the homogenization of data structures. The unique aspect of the proposed
solution is the introduction of an ontology at the core to serve as a unifying
language. The architecture calls for a registry of data sources and an ontology
to:

— Store the information to query each data source attribute,

— Serve as a common language to correlate attributes between data sources,

— Expand query capabilities by developing the ontology to new domains of
knowledge.

In this article, we address the various considerations to generate such a solu-
tion and develop a full-service architecture. The following section goes through
a background on known data aggregation and consolidation techniques; and
develop the reasons for the choice of technique. Section 3 details the core opera-
tions and described a full service architecture. Finally, Sect. 4 illustrates the use
of the ontology during query conversion when searching materials data sources.

2 Background on Data Aggregation

There are two primary techniques to coalesce multiple data sources: data integra-
tion and live data consolidation. The former combines multiple scattered sources
into one larger source. The latter keeps the original scattered sources and only
coalesces the data during content retrieval. The main difference stems from the
fact that data integration is a one-off operation resulting in a new and larger
data source; while live data consolidation adds operations every time a query
is received to: First, convert the original query to the query format of the data
sources; and second, homogenize the returned data to the requested format.
Both techniques use the schema from each data source for content structure,
data attributes, data types and other defining information.

2.1 Comparison Between Techniques

Data integration is appealing as a one-off operation but the decision to adopt
the technique must also take into account the following considerations: The
presence of a larger and more varied data content structure will have an effect
on performance. The resulting data source will also likely be built using a data
structure composed of a mix of attributes from the original data sources. This



106 D. Mercier et al.

mixed composition will likely affect the consuming applications and require code
changes inside the applications to access the new data source. Finally, if the
original data sources are built from various database types, the communication
protocol might also have to change. A solution to avert these issues would be
to keep the original data sources along with the merged data source. But this
solution is sensitive to content changes and prone to synchronization issues.
In some cases, the management of copies can become far more complex and
computationally intense than the initial operation to integrate the data.

On the other end, live data consolidation does not modify the original data
sources; but introduces processing operations during each query for:

— Converting the query from its original format to the formats of the different
data sources,

— Converting the returned data contents to the requested format,

— Cleaning the data to remove inconsistencies and data overlapping.

When compared to querying a single data source, these repeated operations add
an operational time overhead. However, since each data source is independent,
these operations can run in parallel. Beyond processing time, the technique is
very versatile. It can easily scale up or down with the number of data sources,
and it can accommodate a range of query languages and output formats. The
technique is not sensitive to content changes but is sensitive to structural changes
instead. For this reason, an implementation of this technique must keep track of
the format in which the data is stored inside each data source. Finally, live data
consolidation stands as a good intermediary solution before data integration. Its
history of uses can influence the choice of attributes and data structure during
data integration.

The choice between the two techniques comes down to either moving perma-
nently to an integrated source; or keeping the original sources and incurring a
processing overhead.

Both techniques have in common the need for data standardization to reshape
and convert the extracted information into a common form; and data cleaning to
address the issues of data overlapping and inconsistencies. Data standardization
has two components: attribute matching and schema mapping.

2.2 Attribute Matching

Attribute matching is the identification and correlation of attributes between
data sources. The attribute matching must consider all variations in attribute
naming including homonyms, synonyms, abbreviations, abstractions, and idioms.
As illustrated by recent research, effective attribute matching often goes beyond
attribute names. Zhang et al. [16] addressed the relation between attributes and
data types to filter out interference between data. Liu et al. [8] established a
method to compute semantic similarities by considering associated properties.
But most importantly, recent advances in natural language processing (NLP)
using word embedding introduced robust methods for automated matching [10].



Unified Access to Data Sources Using an Ontology 107

Word embedding has the capability of identifying similarities and analogies
beyond lettering equivalences by encoding the semantic relationships in the
Euclidean space [6]. The resulting vector-form facilitates clustering of words and
idioms. The key to an effective implementation of word embedding is a domain-
specific corpus composed of a consistent set of writings on a particular subject
to define the initial space. Word embedding has also the capability to support
multi-languages but requires for this purpose to have semantic bridges between
languages with direct translations to create embedding alignment [5].

Direct attribute matching is a solution to connect two sources. But in order
to support a greater number of data sources, it is more efficient to introduce a
common semantic ground to bound schema attributes, e.g. Ali et al. [1] intro-
duced the concept of a global schema in a middle-ware service to connect multiple
data sources. A more powerful approach is to use an ontology, a Semantic Web
technology.

2.3 Semantic Web Technologies

Research in data integration and live data consolidation frequently uses Semantic
Web technologies. As envisioned by Tim Bernes-Lee et al. [3], and as formulated
by the World Wide Web Consortium: “The Semantic Web provides a common
framework that allows data to be shared and reused across application, enter-
prise, and community boundaries”. Noaman et al. [11] introduced an ontology
to do data integration from relational databases and assembled the final schema
automatically. Zhao et al. [17] created a set of generic rules to automatically
convert the data content of any SQL database, directly into the ontology as
instances of ontology classes.

On live data consolidation, Konstantopoulos et al. [7] took the approach of
federating search queries, converting the SPARQL queries to the query language
of the Cassandra database. SPARQL is the query language for the Resource
Description Framework or RDF, a popular format to store ontologies. Liu et
al. [8] expanded the approach by combining multiple open-source libraries for
the conversion of SPARQL to the query languages of SQL, NO-SQL, Triplestore
or XML databases, and by returning the data source contents in RDF format.
Ontology-Based Data Access or OBDA, [15], was developed since the mids 2000s
to federate relational data sources through an ontology. OBDA focuses specifi-
cally on the query aspect. The query language uses SPARQL which is converted
to SQL equivalents to retrieved content from the relational data sources. The
process uses at its core a mapping between the ontology and the schema of the
relational data sources. The query language is bound to the ontology taxonomy
and the traversing of the ontology is limited to the capabilities of SPARQL.

3 Proposed Solution

As our data sources are deeply connected to applications, our choice of technique
was primarily driven by the impact that an integrated data source would have



108 D. Mercier et al.

on the associated applications. Therefore, our proposed solution is the imple-
mentation of a live data consolidation service with an ontology at its core.

3.1 Ontology for Attribute Matching

The use of an ontology, a cross-linked structure of classes and relationships, is
a perfect common semantic ground for attribute matching. An ontology offers
a semantic rich environment for attributes and has the advantage of situating
attributes in their respective contexts. Figure 1 illustrates the basic use of an
ontology for attribute matching.

Data source #1 Data source #2 Data source #3
Young's modulus mod_elast Code:3801
| equivalent to equivalent to |
: o.m.o@v ........... vy — A
| ( :ElasticModulus ) |
L e 4

Fig. 1. Attribute matching using ontology

The capacity of an ontology to store extended knowledge adds an impor-
tant feature to the live data consolidation. Beyond the attribute-bound tree of
classes, the exploration of class relationships inside the ontology opens new query
capabilities by connecting neighboring classes belonging to different domains
of knowledge. Associations that would normally be unavailable, can now be
searched with little data overhead and without affecting data sources. As an
example, an attribute called ‘material_type’ may have a valid value called
‘Water’. ‘Ozxygen’ and ‘Hydrogen’ compose ‘Water’. This knowledge can be
added inside the ontology with a separate tree of classes for chemical atoms
and the setting of two inverse relationships such as composedOf and composes.
With this ontology, the user can now query for materials composedOf of * Ozygen’
and receive in return the data content related to ‘ Water’.

3.2 Description of Schema Mapping

From attribute matching, the next step is schema mapping to convert data con-
tents between data sources. Schema mapping is fundamentally a data manip-
ulation. The process takes data content formatted using an input schema and
maps it into the format of an output schema. The complexity of the mapping
operations essentially depends on the richness of the schemas, e.g. Mecca et
al. [9] investigated how the mapping process changes in the presence of a richer
conceptual schema.



Unified Access to Data Sources Using an Ontology 109

Schema mapping uses the attribute matching, the data structure from the
source schema and various additional structural connections, e.g. the association
between values and units for unit conversion. The attribute matching as well as
the internal connections are defined using the original schema, and often stored
as metadata inside an enhanced version of the schema. Figure2 illustrates the
addition of metadata inside a JSON schema with the attribute ‘ontology’ holding
the ontology class matching, and the attribute ‘unit’ holding the information on
unit.

1
2 "property_attribute”:{

3 "type”: "object”,

4 7ontology”: [”:Property_attribute_classname”],

5 "properties”:{

6 "value_attribute”: {

7 "type”: "number”

8 7ontology”: [”:Value_attribute_classname”],
9 7unit”:{

10 Pdefault”: "#unit_name#”,

11 "location”: 7./#unit_attribute#’

12 }

13 }7

14 7unit_attribute”: {

15 "type”: "string”,

16 7ontology”: [”:Unit_attribute_classname”],
17 “unit”: "#unit_name#”’

18 }

19 }

20 }

Fig. 2. Example of enhanced JSON schema

When describing a schema structure, the schema attributes can be split in two
groups: structural attributes and value-carrying attributes. The schema mapping
primarily affects structural attributes. We identified three primary transforma-
tions illustrated by Fig. 3:

— Spreading which flattens trees of attributes.

— Inverting which reverses trees of attributes. This transformation creates
attribute duplicates with a parent attribute becoming a child attribute to
its original child attributes.

— Condensing which aggregates branches of attributes into a single attribute.

Condensing was the original drive for associating single attributes to multiple
ontology classes. As an example of condensing, let’s consider a material with an
attribute called ‘young_modulus’ matched to the ontology class :ElasticModulus.



110 D. Mercier et al.

_’d_'
/ Condense
i SRS o

) Spread

Invert

Fig. 3. Structural transformations during schema mapping

This property has two sub-properties: ‘value’ attached to the ontology class
:Value; and ‘unit’ attached to the ontology class :Unit. The condensed version
of the ‘young_modulus’ branches becomes two condensed attributes:

— ‘young_-modulus_value’ attached to the classes: :ElasticModulus and :Value
— ‘young_-modulus_unit’ attached to the classes: :FElasticModulus and :Unit

This one-to-many association maintains an accurate attribute semantic signifi-
cance, or attribute meaning. This is extremely useful for complex attributes with
complex or composite names. For this reason, value-carrying attributes are asso-
ciated to the list of ontology classes in their tree branch during schema mapping.
During the development of the schema mapping engine, the presence of these
associations helped identifying a few best practices for attribute matching:

1. The matching of structural attributes to ontology classes should be avoided
unless there is a direct dependency with a value-carrying attributes, such as,
young-modulus and wvalue. An exhaustive matching of structural attributes
reduces the chance of matching sequences of classes between schemas.

2. The order of ontology classes matched to an attribute does not affect mapping
because each class is unique.

3.3 Service Architecture

Our implementation of live data consolidation takes the form of a stateless service
with two primary workflows and a dedicated query language. The service acts
as an agent between users and data sources as illustrated by Fig. 4.

As usual for a service, authentication and authorization protect the service
and enforces access rights through user profiles. The four profiles which may
interact with the service, are:

— User who queries data content,
— Schema owner who provides the necessary information about a data source
and sets the mapping between the schema and the ontology,



Unified Access to Data Sources Using an Ontology 111

— Domain ezpert who maintains the core ontology,
— Administrator who oversees users and operations.

Fig. 4. Simplified view of service.

The set of service operations is tightly linked to these user profiles. While the
service comes with a standard set of operations for clustering and user manage-
ment, the remaining operations cover the two primary workflows for data source
registration and querying.

3.4 Data Source Registration

The workflow for data source registration is designed to gather the necessary
information about a new data source from its schema owner. The workflow is
best supported by a dedicated user interface and facilitate attribute matching.
Figure5 illustrates the workflow. Upon receiving the information about a new
data source in the form of its database type, location and original schema, the
service immediately returns an enhanced schema with an initial attribute match-
ing. This initial matching is currently automatically generated from lettering
equivalence using Levenshtein distance function over the combination of ontol-
ogy class label and previously matched attributes to that class. In the future, the
implementation of word embedding should help implementing a more efficient
automatic matching engine. It is worth mentioning that the service does not
automatically match attributes to multiple ontology classes as this is left to the
schema owner to define richer context for attributes.

During the next phase, the schema owner validates and modifies the attribute
matching. To assist with the matching process, the service provides upon request
the five closest alternatives to a given attribute. If the schema owner does not
find an adequate match for an attribute, the service can provide the taxonomy
of the ontology, the bare tree of ontology classes, with a few selected properties
to aid in finding a suitable class match. If the schema owner still cannot find a
match for an attribute, the schema owner may submit a request to add a new
class to the ontology. Upon receiving the request, the service places the data
source registration on hold, records the request and transfers the request to the
domain experts in charge of curating the ontology. The domain experts in turn,
may choose to add a new class or make a recommendation to the schema owner.
In both cases, a notification is sent back to the schema owner to complete the
registration.



112 D. Mercier et al.

Schema owner

Submit data source information & schema ]

|

-
[Validate schema mapping ,-T-, HAdd new class m ]
..

Request class

Class
missing
?
Domain expert

-
[Scan of data source content @ —>_|—l—|_ Add to regular automated scansJ
[ Data source registration complete ]

Fig. 5. Sequence during data source registration.

During attribute matching, the schema owner is also responsible for providing
a set of ‘equivalencies axioms’. The concept is very important to fully leverage
the ontology. Some classes are outside the attribute-bound tree of classes. They
are part of neighboring trees holding additional segments of knowledge; but they
are not matched to attributes or connected to classes matched to attributes
through relationships. These classes may still be linked to schema attributes
through equivalency axioms. An equivalency axiom is illustrated by Eq.1. It
links an ontology class to a query expression recognized by the data source.
These equivalency axioms are used during query conversion.

: Isotropic <=> “material _structure” =1 (1)

Once the service receives the final schema complemented with attribute
matching, internal connections, and equivalency axioms, the service can com-
plete the data source registration. The source general information is added to
the source registry, the schema is parsed to extract operational data, and the
attribute matching is modified to aggregate for each value-carrying attribute,
the sequence of classes along its schema branch. Finally, for each listed equiv-
alency axiom and value-carrying attribute, a new individual, an instance of an
ontology class, is added to the ontology to store the necessary information in
the form of individual ‘data properties’ to build a query for the newly registered
data source.



Unified Access to Data Sources Using an Ontology 113

The number of data properties depends on the type of database, and whether
the individual holds information about an attribute or an equivalency axiom. The
data properties may include the data type as well to check for type consistency
and unit for unit conversion.

The individuals are named after their parent class names. The individuals
are grouped under unique IRIs for each data source. This construction allows
easy identification of the content stored inside the ontology and facilitates main-
tenance operations. When an attribute is attached to more than one class, its
individual is attached to each of these classes and its name composed by com-
bining class names, alphabetically sorted. The naming convention is designed for
easy parsing using regular expression.

During the generation of individuals, the service creates in parallel a two-way
dictionary between attributes and classes. This dictionary is used during the ini-
tial phase of query conversion from the original query language to a composition
based on ontology classes. After the data source registration is complete, the
newly added data source joins the pool of already available data sources and
becomes available for users to query.

3.5 Query

Users have access to a query function to search the aggregated data content from
the registered data sources. Figure 6 illustrates the query workflow. It hinges on
the initial selection of a schema by the user. The schema sets the language for
the original query and the format for the returned data content.

User

D
[ Build query from selected schema ]
v
[ Traverse ontology to convert query rh]d—b@

¥

[ Assemble queries to databases

D
Convert returned contents to schema %}
|

Fig. 6. Sequence during a query.



114 D. Mercier et al.

The query language is a combination of a generic query framework and a well
nested declarative environment. The query framework includes logical operators
(AND, OR, NOT) as well as parentheses to create groups. The nested declar-
ative environment is generated by merging two dictionaries and adding the list
of ontology relationships and associated class names. The first dictionary is the
one mentioned in the previous section, extracted from the user schema between
attributes and ontology classes. The second dictionary is extracted from the
ontology itself with the associations between ontology class labels and ontol-
ogy class names. The two dictionaries are merged by replacing any equivalent
attribute/class entry inside the ontology dictionary by the one found inside the
schema dictionary. Once composed, the nested declarative environment is used
to do the initial conversion of the query to an intermediary form with ontology
class names in place of attributes. The nested declarative environment is also
used to implement an auto-complete feature to assist with early query compo-
sition and partial validation. The auto-complete feature can suggest attribute
names from partially typed attributes, isolate invalid ones, check relationships,
validate value types, and verify unit compatibility.

The format of a generic query is a set of logically bounded and grouped
functional blocks. The query parser assumes a linguistic typology of “subject
verb object” for the query blocks. The generic subject is assumed to be ‘data’.
The ‘object’ can be either be a logical expression, a numerical expression, or a
string expression.

— A logical expression tests existence, and the ‘object’ should be a single term,

— A string expression associates a term and a specific string with equality ‘=’,

— A numerical expression associates a term and a value with a comparison
operator =, <>, <, >, <=, >=. If the block includes unit and the unit
information was provided for the intended data source, the value is converted,
and the unit name removed.

In the presence of a ‘verb’ in the form of a known relationship, the query parser
expects a logical expression as ‘object’.

After the initial conversion of objects from attributes to ontology classes, the
query parser accesses the ontology to find the necessary individuals to continue
the conversion into the specific query language of each data source. In the case
where an individual for a target data source is not directly connected to the class
found as the object, the query parser starts exploring the ontology to find one.

— If the functional block does not include a relationship as ‘verb’, the query
parser assumes either an ‘is’ as a defining state or a ‘has’ as a defining prop-
erty; and explores from parent to children.

— If the functional block does include a relationship as ‘verb’, the query parser
first traverses the relationship and then explores from parent to children. If
an identical relationship is detected during the exploration, the query parser
traverses the new relationship; and from there, continues the exploration.

— If multiple individuals are found during the exploration, the original block is
converted into as many blocks as the number of found individuals.



Unified Access to Data Sources Using an Ontology 115

The key to the query conversion is the effective exploration of the ontology to
find individuals attached to data sources. The process can partially be driven by
the SPARQL query language. However, the SPARQL language is explicit which
limits lateral exploration over unknown layers of class relationships. The work
of Reuter et al. [13] proposed to solve the issue by adding an additional keyword
to the SPARQL language for recursive searches. Our service uses a dedicated
programming language for the exploration and traversing of the ontology in
place of SPARQL.

The outcome of the query conversion is a set of new queries for each of the
registered data sources. If the query parser fails to compose a new query, the
associated data source is excluded. Once composed, these new queries are sent to
their respective data sources. The returned data content is then converted using
schema mapping to the user schema. During this operation, if units are specified
in both the source and destination schemas, values as well as unit names may
also be converted.

The combination of attribute matching, schema mapping, operational work-
flows, simplified query language with the use of an ontology at the core creates
an effective and functional body for the live data consolidation service.

4 Application

The aggregation of materials data sources is the original motivation for this
article. Applications in Computer Aided Design, Computer Aided Manufactur-
ing, and Computer Animation, all rely on materials data to accurately represent
and simulate reality in the digital world. However, materials data is historically
scattered and often application specific. The intent for building a live data con-
solidation service for materials data is to facilitate access to these data sources,
increase the available content, and by doing so, open new research in data valida-
tion, characterization, surrogate modeling, and the discovery of new materials.
The core for this implementation of the live data consolidation service is its
material ontology.

4.1 Materials Ontology

The history of material ontologies is a mix of generic and dedicated approaches.
One of the earliest published materials ontology, the Plinius ontology [14] focused
on ceramic materials. The effort was followed by many other ontologies with
diverse degrees of refinements. More recently, Premkumar et al. [12] estab-
lished the Semantic LAminated Composites Knowledge management System
or SLACKS, to bridge composite materials and their manufacturing processes.
On the generic side, Ashino [2] established one of the earliest set of classes for
materials. Cheung et al. [4] created a platform called MatOnto for materials data
integration using a generic ontology to facilitate research.



116 D. Mercier et al.

Thing

|
v v v v L] L

Environment Property Descriptor Material Group Atom

Fig. 7. Top layer of the materials ontology.

Our base ontology is inspired by the work of Ashino [2]. Ashino was one of the
first to establish a well-recognized generic ontology structure to describe mate-
rials. His ontology focused on material types, families, environment and prop-
erties. While Ashino designed his ontology for direct storage of the data inside
the ontology, our ontology only serves as a middleman to unify data sources.
As such, Ashino’s instance properties, Object Properties and Datatype Proper-
ties are data source attributes in our context and present in the ontology as
standalone classes instead. The first layer of our ontology is illustrated by Fig. 7.
This materials ontology before service activation has an initial set of around 50
classes. The ontology was also enhanced with the periodic table to connect mate-
rials to their chemical compositions. The periodic table adds about 120 classes
and 200 individuals.

4.2 Query Examples
Here is a list of query examples for materials data.
Use of an equivalency axiom - Using the Eq. 1, and given the query:
query : NOT Isotropic (2)

‘Isotropic’ is first replaced by the class ‘:Isotropic’ and then replaced by the
expression ‘(material_structure = 1)’ upon finding the equivalency axiom inside
the ontology. The results are materials with ‘material_structure’ different from
1; which covers mostly composite materials, such as:

— Fiber reinforced polymers from polymer data sources,
— Reinforced concretes from construction data sources.

Traversing the ontology using class relationships - Given the query:
query : isNamedAfter Acrylate (3)

‘Acrylate’ is converted to the class :Acrylate and this class is linked through
the ‘isNamedAfter’ relationship to four classes. Each with an equivalency axiom
linking to the polymer data source:



Unified Access to Data Sources Using an Ontology 117

:AcryloNitrile with ‘category = acrylonitrile’

— :MethylMethacrylate with ‘category = methylmethacrylate’

— :PolyCyanoAcrylate with ‘category = methylmethacrylate’

— :PolyMethylMethAcrylate with ‘category = polymethylmethacrylate’

The results are the grades (commercial types) for the above categories.
Combined query capabilities - Given the query:
query :  Polymer AND young modulus > 500 ksi
AND  young-modulus < 550 ksi

AND density > 0.2 Ib/in®
AND  density < 0.5 1b/in®

(4)

— ‘Polymer’ becomes the class ‘:Polymer’ and access the first source with the
equivalency ‘material_type = polymer’ and access the other source by com-
bining children classes with the insert ‘family = thermoplastic AND family
= thermoset AND family = elastomer’,

— ‘young_-modulus’ becomes for one source ‘elastic.modulus’ and for the other
‘young-mod’,

— One of the source uses SI units. The young modulus is searched in ‘ksi’ and the
stored unit is in ‘ GPa’. Therefore, the values and units are transformed during
query conversion to ‘GPa’ and the returned data content from that source
converted back to ‘ksi’. A similar unit conversion applies to the densities.

The results are various grades (commercial types) of:

— Nylon 12
— Polyether Block amid

5 Conclusions

This article introduced an innovative and viable service architecture to access
multiple heterogeneous data sources using live data consolidation. The architec-
ture is portable and has a versatile engine for data standardization. The core
of its architecture is its ontology. The ontology acts as a common language
to federate data structures and attributes between data sources. The ontology
also expands query capabilities with little overhead, well beyond the ones made
available by the original data sources. Overall, this article illustrates the capacity
for an ontology to serve as a preprocessor to connect computing resources and
enhance their capabilities by leveraging its stored knowledge.



118

D. Mercier et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Ali, M.G.: A multidatabase system as 4-tiered client-server distributed heteroge-

neous database system. Int. J. Comput. Sci. Inf. Secur. 6(2), 10-14 (2009)

. Ashino, T.: Materials ontology: an infrastructure for exchanging materials infor-

mation and knowledge. Data Sci. J. 9, 54-61 (2010)

Berners-lee, T., Hendler, J., Lassila, O.: The semantic web: a new form of web con-
tent that is meaningful to computers will unleash a revolution of new possibilities.
Sci. Am. 284(5) (2001)

. Cheung, K., Drennan, J., Hunter, J.: Towards an ontology for data-driven discov-

ery of new materials. In: Semantic Scientific Knowledge Integration AAAI/SSS
Workshop, pp. 9-14. Stanford University, Palo Alto (2008)

Duong, L., Kanayama, H., Ma, T., Bird, S., Cohn, T.: Multilingual training of
crosslingual word embeddings. In: Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pp. 894-904 (2017)
Jurafsky, D., Martin, J.H.: Speech and language processing. https://web.stanford.
edu/~jurafsky/slp3/

. Konstantopoulos, S., Charalambidis, A., Mouchakis, G., Troumpoukis, A., Jako-

bitch, J., Karkaletsis, V.: Semantic web technologies and big data infrastructures:
SPARQL federated querying of heterogeneous big data stores. In: International
Semantic Web Conference (2016)

Liu, Z., Calve, A.L., Cretton, F., Glassey, N.: Using semantic web technologies in
heterogeneous distributed database system a case study for managing energy data
on mobile devices. Int. J. New Comput. Archit. Appl. 4(2), 56-59 (2014)

Mecca, G., Rull, G., Santoro, D., Teniente, E.: Semantic-based mappings. In: Ng,
W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 255-269.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_22
Muzny, G., Zettlemoyer, L.S.: Automatic idiom identification in wiktionary. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1417-1421 (2013)

Noaman, A., Essia, F., Salah, M.: Web services based integration tool for hetero-
geneous databases. Int. J. Res. Eng. Sci. 1(3), 16-26 (2013)

Premkumar, V., Krishamurty, S., Wileden, J.C., Grosse, [.LR.: A semantic knowl-
edge management system for laminated composites. Adv. Eng. Inform. 28, 91-101
(2014)

Reutter, J.L., Soto, A., Vrgo¢, D.: Recursion in SPARQL. In: Arenas, M., et al.
(eds.) ISWC 2015. LNCS, vol. 9366, pp. 19-35. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25007-6_2

van der Vet, P.E., Speel, P.H., Mars, N.J.: The Plinius ontology of ceramic mate-
rials. In: Proceedings of Comparison of Implemented Ontologies Workshop (1994)
Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2108, pp. 5511-5519 (2018)

Zhang, R., Wang, J., Bu, W.: Research on attribute matching method in hetero-
geneous databases semantic integration. J. Chem. Pharm. Res. 7(3), 1626 (2015)
Zhao, S., Qian, Q.: Ontology based heterogeneous materials database integration
and semantic query. AIP Adv. 7(10) (2017)


https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1007/978-3-642-41924-9_22
https://doi.org/10.1007/978-3-319-25007-6_2
https://doi.org/10.1007/978-3-319-25007-6_2

	Unified Access to Heterogeneous Data Sources Using an Ontology
	1 Introduction
	2 Background on Data Aggregation
	2.1 Comparison Between Techniques
	2.2 Attribute Matching
	2.3 Semantic Web Technologies

	3 Proposed Solution
	3.1 Ontology for Attribute Matching
	3.2 Description of Schema Mapping
	3.3 Service Architecture
	3.4 Data Source Registration
	3.5 Query

	4 Application
	4.1 Materials Ontology
	4.2 Query Examples

	5 Conclusions
	References




