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Abstract. As a step towards creating evolutionary developmental neu-
ral networks on FPGAs, a bio-inspired cellular structure suitable for
online routing of axons and dendrites on FPGAs based on a new digi-
tal spiking neuron model (introduced previously by the authors) is pro-
posed here. This structure is designed to allow changing the routing of
the dendrites and axons and formation/elimination of synapses on the
fly by dynamic partial reconfiguration of the LUTs. The feasibility and
techniques for implementing this structure on a Xilinx Virtex-5 FPGA
are also studied.
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1 Introduction

The idea of creating a small adaptable, robust, fault-tolerant and intelligent brain
in silicon has been around for more than a decade. However, the realization of
this dream may require a better understanding of how real brains work. As new
peculiarities of the brain unfold every day (e.g. [1]), the need for an alternative
approach becomes more clear. Inspired by nature, many researchers resorted to
use evolutionary computing to create such artificial brains.

Numerous different methods to evolve artificial neural networks [2] have been
introduced, which were more or less successful in creating intelligent systems.
However, oversimplification of natural processes in these approaches may have
impaired the system as including some of these complexities leads to higher
performance and emergence of new capabilities. The higher computation power
of spiking neural networks compared to the traditional neural networks [3,4]
and the intrinsic ability of recurrent spiking neural networks to process tem-
poral patterns [5] both indicate that including a spiking mechanism with all of
its complexities is rewarding. The positive impacts of introducing developmen-
tal processes on emergence of robustness [6], scalability [7], regeneration, and
fault-tolerance [8] in neural networks all imply that incorporating some of these
complexities may improve the final performance of the system.

Inclusion of these complexities, on the other hand, requires a huge amount of
computational power that makes an evolutionary approach intractable. For ex-
ample evolving a developmental spiking neural network involves iterative nested
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loops of evolution, development, simulation and learning over a diverse training
set from a problem class at differing timescales. This is particularly problem-
atic in an experimental setting where there are dozens of parameters to tune
and many different techniques to investigate. It even seems impossible given
that nature has accomplished the equivalent to this through billions of years of
evolution, employing huge number of processing elements, optimizing each and
every system and process from scratch. The only ray of hope is to adopt the right
combination of natural processes and imitate this subset of nature at a sufficient
level of detail. Evolvable hardware [9] may enable us to exploit computational
resources at a lower level, leading to fine-grained system interactions, low-level
parallelism, and a biologically more plausible approach compared to traditional
evolutionary computation.

Two major subtleties of this kind are the particular structure of the brain
and the malleability of its structure in response to new problems and changes
in the environment. Evidence suggests that structural plasticity [10] and wiring
delays [11] play major roles in the brain and the placement and wiring of the
neurons are optimized for the high interconnectivity in the brain [12]. However,
the existing evolvable hardware neural network models (e.g. [7,13]) are not ca-
pable of regeneration and dendrite growth on FPGAs. They are typically either
constricted in terms of number of inputs per neuron or impose constraints on the
patterns of connectivity and/or placement on the actual chip mostly due to im-
plementation issues. They also do not allow heterogeneous networks with flexible
parametric neurons and learning rules as important bio-plausible features.

Following a nature-inspired approach, here we propose a cellular structure
for online routing of axons and dendrites on FPGAs (Field-Programmable Gate
Arrays), based on a new digital spiking neuron model introduced by the au-
thors [14], aiming at: flexibility and evolvability, development-friendliness, high
simulation and learning speeds, parallelism, and bio-plausibility, while having
hardware implementation in mind. This work is another step towards creating
adaptable and bio-plausible FPGA-based spiking neural networks using evolu-
tionary, developmental and learning processes.

In the next section, the relevant literature is reviewed. In section 3, the digital
spiking neuron model that is used in this work and its advantages are summa-
rized. The new cellular structure is introduced in section 4 along with a compre-
hensive example. The feasibility of implementation of this cellular structure in
Xilinx Virtex-5 FPGAs and possible reconfiguration techniques are discussed in
section 5. The paper is concluded and possible future directions are mentioned
in section 6.

2 Background

Cellular Computing is a vast field of study based on computation using locally-
connected multi-dimensional arrays of simple processing elements. It includes
(but is not limited to) the study of Cellular Automata (CA), Cellular Neural
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Networks (CNN) [15], other cellular complex systems, evolving them and apply-
ing them to different problems such as image processing, pattern recognition and
vision [16], control, random number generation, etc. The cellular nature of FP-
GAs (Field-Programmable Gate Arrays) [17] lends itself to high-speed parallel
implementation of cellular systems.

The seminal work of Thomson [18] with a cellular structure on Xilinx XC6264
not only revived the field of intrinsic evolvable hardware, but also showed the
power of evolutionary cellular systems on FPGAs. Different cellular developmen-
tal systems for FPGAs have been designed by Haddow and Tufte, Liu, Miller and
Tyrrell, and many others that are reviewed in [7]. Upegui and Sanchez [19] used a
cellular structure to evolve random boolean networks on a Xilinx Virtex FPGA
and introduced a new method for dynamic reconfiguration of Virtex FPGAs
based on direct bitstream manipulation. In another work, Upegui et al. evolved
a 3-layer recurrent spiking neural network on Xilinx Spartan FPGA. However,
the number of neurons and synapses, general architecture of the network and
the neuron parameters were fixed during the evolution. Cellular systems have
been used for development (and simulation) of neural networks and sought to
be implemented in FPGA by de Garis et al. [20].

One of the interesting studies on evolving developmental neural networks on
FPGA is the work of Roggen [7]. He also presented a comprehensive review of the
developmental systems in evolvable hardware and introduced a new classification
criteria for developmental systems noting that most of the advantages of devel-
opmental systems lie in cellular online developmental systems implemented in
hardware. He introduced such a cellular development system for evolvable hard-
ware and used it to evolve neural networks for pattern recognition and robot
navigation. However the connectivity patterns of the neurons and the neuron
model were limited to 6 fixed patterns and a simplistic leaky integrate and fire
soma model.

3 Digital Neuron Model

The digital spiking neuron model used as the basis of this work is explained
in detail in [14]. Here, we summarise its general design and advantages. To
improve the performance of evolution, a developmental digital neuron model
should be as flexible as possible, for any constraint may impair evolvability.
Evolution must be able to modify everything from network topology and dendrite
structures to learning rules, neuro-coding, membrane decay constants, and other
cell parameters and processes.

This model is suitable for evolutionary development of heterogeneous spiking
neural networks on FPGAs in many different ways. First, it uses a parametri-
cally flexible and relatively bio-plausible soma model, which has the potential
to be upgraded to more plausible models if hardware budget permits. Secondly,
it provides the means for adding a local (thus parallel) learning process such as
STDP in each synapse. Moreover, it is relatively fast and occupies acceptable
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Fig. 1. (a) General Architecture of the digital neuron model. (b) Example of the den-
drite structure and its adaptability (Syn and small blocks represent synapse units and
pipeline D flip-flops respectively).

area on the FPGA. But more importantly, it allows us to develop adaptable
dendrite and axon branches in a cellular structure as is proposed here.

3.1 General Architecture

In this model, each digital neuron consists of a set of synapse units and a soma
unit connected in a daisy chain architecture shown in figure 1(a). The axonal
input of each synapse is connected to the axon of the pre-synaptic neuron. This
architecture creates a 2-way communication channel in the dendrite and allows
the development of different dendrite structures as demonstrated in the example
of figure 1(b). The dendritic lines and DFFs (D flip-flops) that connect the units
form a loop (dendritic loop) that conveys data packets. The soma unit sends
a packet containing the current membrane potential on its dendritic output.
Synapse units process the packets. If a synapse unit receives a pre-synaptic
action potential it adds (or subtracts) its synaptic weight to the first arriving
packet. Therefore, the soma unit receives the sum of membrane potential and
post-synaptic currents in its dendritic input. After processing this packet, the
soma unit sends another packet with the updated membrane potential. Serial
arithmetic is used in all the units to create pipelined parallel processing inside
each neuron, meaning that neighbouring units process different bits of the same
packet at the same time.

This architecture minimizes the number of local and global connections, which
leads to a significant relaxation of constraints imposed upon the network archi-
tecture as limited routing resources is the major constraint in optimal utiliza-
tion of FPGA functional resources. Each unit needs only a global clock signal
to work. Other global signals can also be added for global supervised learning
mechanisms. The user is free to trim (add) dendrite branchlets at any point
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simply by cutting few connections and bypassing (inserting) the root unit of the
branchlet as shown by the dashed lines in figure 1(b). This is done through a set
of multiplexers as explained in detail in section 4. This flexibility is vital for a
developmental model that needs on-line growth and modification.

3.2 The Synapse Unit

The synapse unit comprises a serial adder, a shift register containing the synaptic
weight, and a control unit. It simply redirects its Dendritic Input (DI) to its
Dendritic Output (DO) when no spike has arrived. When the control unit detects
a spike on the aXonal Input (XI), it waits for the next packet to arrive. Then it
enables the shift register and the adder until the whole packet is processed. The
weight value loops back into the weight register. A learning block can be simply
inserted into the feedback loop of the weight register in order to realize a local
unsupervised learning mechanism like STDP. This learning block can access the
post-synaptic potential and the pre-synaptic input.

3.3 The Soma Unit

Most of the hardware models are based on the Leaky Integrate and Fire (LIF)
[21,22] or simplified LIF neuron models [7,13]. However, the neuron model used
here is based on a Piecewise-Linear Approximation of Quadratic Integrate and
Fire neuron model (PLAQIF) [14], which is biologically more plausible compared
to the popular LIF model. This soma model has the parametric flexibility needed
for evolving heterogeneous networks and the user can change its parameters by
reconfiguring LUTs and shift registers on the fly. It occupies almost the same
area as an equivalent LIF model. It generates bio-plausible action potentials in
the dendrites and sends out logic ’1’ pulses (spikes) on its axonal output. The
design and benefits of this soma model are discussed in [14] in more detail.

4 Cellular Structure

Biological brains are mainly composed of neurons and glial cells [23]. Glial cells
provide support and nutrition for neurons and act as “glue” between them and
recently were suspected to be involved in the synapse formation and axon and
dendrite development [23,24]. Here, we use the word “glial cells” to mean non-
neuron cells that provide the means for routing dendrites and axons, and forma-
tion of synapses at their intersections.

The proposed cellular structure consists of a grid of glial cells with neuron
soma cells embedded in the middle of them. A hexagonal or even a multilayer
3D grid structure is also possible on new FPGAs. However, the limited resources
of the FPGA logic blocks makes a simple 2D grid simpler and more feasible. To
keep the regularity of the cellular structure, it is desirable that soma and glial
cells be of the same size. Nevertheless, as functionality of soma cells requires more
hardware resources than glial cells, they are two times larger than glial cells and
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Fig. 2. (a) Internal Architecture of soma cell. (b) Internal architecture of glial cell.

fit into two vertically adjacent grid cells. The vertical option is preferred as it
minimises the signal delay between neighbouring cells on the actual chip (see
section 5). Each glial cell receives an axonal and a dendritic input signal from
each side and has an axonal and a dendritic output on each side. Soma cells have
six of those signals as they are in contact with six neighbouring glial cells.

4.1 Soma Cells

Each soma cell consists of a soma unit, six reconfigurable multiplexers and six
pipeline D flip-flops (DFF). Reconfigurable multiplexers (from now on we refer to
them as MUX) are basically FPGA LUTs (look-up tables) or multiplexers that are
dynamically configured to work as many-to-one switch boxes. Using LUTs for this
purpose makes it possible to use difference-based dynamic partial reconfiguration
[25] for changing the routings [19]. The internal architecture of the soma cell is
shown in figure 4. The axon output of the soma unit is connected to all the six ax-
onal outputs of the soma cell (XN, XS, XW, XW’, XE, XE’). This way axons can
project out of the soma cell in any direction before branching into branchlets, in-
creasing the flexibility of the system. When there is no dendrite growth, DFFs and
MUXs form the dendritic loop right inside the soma cell by switching all MUXs
to their first input. A soma cell can start growing a dendrite branch on any of its
edges by switching the corresponding MUX to its second input. Therefore, a soma
cell can project up to six dendrite branches directly from the cell body before any
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division into dendritic branchlets. This adds to the flexibility of the routing while
resembles to dendrite growth of the biological neurons.

4.2 Glial Cells

Figure 4 shows the internal architecture of the glial cells. Each glial cell consists
of a synapse unit, ten MUXs, and eight DFFs for routing axons and dendrites.
On each side of a glial cell, there is one axonal output coming from a pipeline
DFF connected to a MUX. Each axonal MUX can switch to any of four axonal
inputs on the edges of the glial cell (XN, XS, XW, XE). This way, it is possible
to route up to four axons through a glial cell as explained later in the example
of section 4.3.

A similar circuit is employed for the dendrite routing. However, each MUX
in the dendritic circuit has a fifth input, which is connected to the dendritic
output of the synapse unit (DO). The dendritic input of the synapse unit (DI)
comes from another MUX that can switch to any of the dendritic inputs on the
edges of the glial cell (N, S, W, E). Therefore, the synapse unit can be inserted
into any of the dendritic loops routed through the glial cell. The axonal input
of the synapse unit can also be connected to any of the four axonal inputs of
the glial cell using a 4-to-1 MUX. Therefore, it is possible to form a synapse
between any dendrite and axon routed through a glial cell in three simple steps:
1. Switch the axonal MUX of the synapse unit. 2. Copy the configuration of
the corresponding dendritic MUX to the dendritic MUX of the synapse unit. 3.
Switch the corresponding dendritic MUX to synapse dendritic output (DO). The
pipeline DFFs in the routing circuit improve clock frequency and allow evolution
to optimize dendritic and axonal delays by changing the length and path of each
branch. Similarly, a reverse procedure can be use to eliminate a synapse.

The only limitation is that there is only one synapse unit available in each
glial cell. The other option is to assign more hardware resources to glial cells
and have two (or even more) synapse units in each glial cell. By increasing the
number of synapse units, fan-in of the dendritic MUXs increases (to 6 inputs for
2 synapse units) and hardware resources to implement them grow exponentially.
For efficient use of the hardware resources there should be an appropriate ratio
of functional resources to routing resources in each cell. Although up to four
different dendrites can project into a glial cell, the practical average number of
the dendrites passing through a cell will be less than two in practice. Therefore,
one synapse unit per glial cell seems reasonable.

4.3 Example

Figure 3(a) shows a symbolic view of the example network. It consists of three
soma cells in a 6x4 grid of glial cells. Figure 4 shows the active circuit elements
of the same network. The bottom soma in the E2 and F2 cells, projected three
dendrites and one axon. On the bottom edge, there is no dendrite thus the
bottom MUX is switched to input 1 to bypass the external circuit and use a
pipeline DFF instead. On the bottom-left edge a very short dendrite is projected
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Fig. 3. (a) Symbolic view of the example network in a 4x6 grid. (b) Assignment of
FPGA CLBs to glial and soma cells.

into the F1 cell. Therefore, the bottom-left MUX is switched to input 2. In the
F1 cell the dendrite is looped back without forming any synapse by switching
the corresponding MUX to input E. The dendritic loop is continued on the top-
left edge of the soma cell with another short projection, this time forming a
synapse with an axon coming from above. The other projection of the soma cell
on its bottom-right edge has passed through a number of MUXs in different glial
cells and formed a synapse with another axon in D4. The dendritic loop of this
neuron contains 12 FFs, 17 MUXs and 2 synapse units. Its axon is gone through
3 MUXs and FFs upwards into A2 and then divided into two axons extending
outwards. Routing of the projections from the other two neurons can be also
tracked in a similar manner. In C3, for instance, a dendrite is divided into two
branches. In B2, another dendrite formed a synapse as it extended into C2.

5 Virtex-5 Feasibility Study

Here we discuss the feasibility of implementing this cellular structure in Virtex-5
family of FPGAs. Two horizontally adjacent CLBs (Configurable Logic Blocks)
are assigned to each grid cell. This is because synapse and soma unit designs
make extensive use of Virtex-5 32-bit shift registers and only one out of four
slices in two horizontally adjacent CLBs is a SLICEM capable of implementing
shift registers [26]. As soma cells need more hardware resources they occupy a
square block of four CLBs on the FPGA. This is because assigning 4 CLBs in
a row to soma complicates the partial reconfiguration process (due to columnar
nature of the FPGA fabric) and leads to employing long-range routing lines of
the FPGA for inter-cellular connectivity. These lines are limited in number and
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Fig. 4. Schematic diagram of the active circuits of the example network
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have higher signal delays. Figure 3(b) shows how cellular structure of the above
example can be implemented in the Virtex-5 CLBs.

VHDL and ISE 9.2i design tools were used for implementation of a sample
cellular structure in a LX50T Virtex-5 FPGA. Implementing and floor-planning
of the the soma and glial cells on the chip revealed that it is possible to pack
the soma and glial cells in 2 and 4 CLBs respectively. Every two 5-to-1 MUXs
with the same set of inputs are implemented in a 6-input LUT configured as two
5-input LUTs. This way, the whole routing circuit of a glial cell is implemented
with six LUTs and eight DFFs, which is less than the available resources in the
right CLB of the glial cell. The synapse unit takes almost all of the left CLB of
the glial cell. The routing circuit of the soma cell is implemented using six DFFs
and three LUTs, each configured as two 2-input LUTs. The rest of the hardware
resources were more than enough for implementing the soma unit. Therefore,
the extra hardware resources in each cell were reserved for future improvements
(e.g. synaptic plasticity or upgrading to a more bio-plausible soma model).

It is possible to pack 1800 glial cells in an entry-level Virtex-5 FPGA (LX50T)
and 12960 glial cells in the largest Virtex-5 chip (LX330T). With a 1/10 soma
to glial cell ratio (each soma cell surrounded by a layer of glial cells), it is
possible to implement networks with 150 and 1080 neurons with up to 1500 and
10800 synapses in LX50T and LX330T chips respectively. This might not be the
optimum ratio but this is left to evolution to tune the ratio and placement of
the cells in order to optimize the resources and performance.

5.1 Reconfiguration

The cellular structure is designed to exploit the dynamic partial reconfigura-
tion feature of Virtex-5 FPGAs. Here, feasibility of reconfiguration methods for
placement of the neurons at the first stage of the development and runtime
modification to parameters and wiring of the neural network are studied. The
reconfiguration can be carried our in three main steps:

At the first step, the whole area on the FPGA that is assigned to the neural
network is configured as glial cells. This is simply done through the standard
flow configuring the device with a bitstream generated from HDL. However,
glial cells need to be defined as hard macros so that the exact locations of all
MUXs (LUTs) and cell ports be fixed and known. In the second phase, soma
cells are reconfigured instead of glial cells in the required places using merge
dynamic reconfiguration technique [27]. Soma cell should be defined as a hard
macro again with its ports carefully matched with the ports of the neighbouring
glial cells. The merge reconfiguration technique [27] allows to vertically relocate
a module with an arbitrary shape and size (2x2 CLBs in this case). Therefore,
a relocatable soma bitstream should be created for each grid column (2 CLBs
wide). In the final phase, soma and synapse parameters and axon and dendrite
routings are modified by runtime difference-based dynamic partial reconfigura-
tion of LUTs [25,28,19] provided that all the parameters and routings are based
on LUT contents and the exact locations of all these LUTs on the FPGA are
known (by using hard macros). Therefore, it will be possible to grow dendrites
and axons and form/eliminate synapses on the fly.
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6 Conclusions

A new cellular structure for routing of axons and dendrites on FPGAs based
on the new digital spiking neuron model [14] was proposed and its feasibility
on Virtex-5 FPGA was studied. The feasibility of online adaptation of routing
and synapse formation/elimination through runtime partial reconfiguration of
LUTs was shown. Using this design, it would be practically possible to develop
neural networks as large as 150 and 1080 neurons and up to 1500 and 10800
synapses on entry-level and high-end Virtex-5 chips respectively. Despite the
limited resources when implemented in current FPGAs, this architecture will
still allow systems such as time series prediction, robot navigation, and gesture
recognition to be implemented successfully.

The next step toward creating a evolutionary developmental neural network
would be to design an online developmental process that configures the LUTs
with dendrite growth and axon guidance mechanisms based on gene expression,
protein diffusion and availability of routing resources at each site. It would be
also very interesting to see if local information in each glial cell can be used to
create activity dependant synapse formation and elimination.
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