A Combinatorial Design Workflow for Search and Prioritization in Large-Scale
Synthetic Biology Construct Assembly

Justin Ng, Aaron Berliner, Joe Lachoff, Florencio Mazzoldi, Eli Groban
Autodesk Research
jkc2ng @uwaterloo.ca, {aaron.berliner, joe.lachoff, florencio.mazzoldi, eli.groban} @autodesk.com

Abstract

We propose a strategy to effectively search the large
solution space for a genetic system built from com-
binations of genetic parts. An iterative and inter-
changeable algorithm then searches the combina-
torial space and creates a reasonably sized test set
to build using new highly parallel genetic foundry
capabilities. The algorithm can also learn from in-
formation gained from prior iterations to suggest
combinations to try in the following iteration.

1 Introduction

The commercialization of large scale DNA construction com-
panies such as Amyris and Intrexon and their academic coun-
terparts such as The Foundry at Imperial College London
and the Edinburgh Genome Foundry enable new approaches
to synthetic biology design. They grant synthetic biologists
the ability to easily build and test large genetic constructs
in excess of 30,000 bp, while abstracting away the construc-
tion techniques. Furthermore, these foundries are able to as-
semble thousands of these constructs in parallel. However,
utilizing these capabilities adds additional complexity when
designing large quantities of genetic constructs of this size.
Software tools such as the Genotype Specification Language
(GSL) have been designed to help biologists leverage the new
capabilities of these foundries, while keeping complexity to
a minimum. GSL provides a formal language for a higher
level of genetic specification and aims to move the focus
from construction to function [Wilson et al., 0]. Autodesk
is producing a cloud based, extensible platform for genetic
design that aims to reduce the complexity when designing
large sequences. However, both of these tools aim to help the
biologist by managing the complexity of longer sequences,
and few tools have been targeted at managing the complexity
of creating a large number of sequences. In this paper, we
describe a workflow to aid biologists that enables the semi-
rational design of sequences that can leverage the parallel na-
ture of foundries. This workflow provides a method for the
optimization of a performance metric for a combination of
genetic parts.

2 Combinatorial Design

Optimization of genetic systems is currently done either
through screening experiments or done manually. Screen-
ing experiments are undirected and require an exponential
increase in combinations tried to gain an expected improve-
ment in performance, while manual experimentation requires
a considerable amount of cognitive effort, an understanding
of the system, and most often fail to produce the desired re-
sult. We present the alternative of a semi-rational design.

2.1 Design Specification

Combinatorial designs have been used in screening experi-
ments to efficiently optimize the performance of genetic sys-
tems [Smanski et al., 2014]. However, these methods often
require in depth knowledge of construction techniques and
screening experiments are not always possible due to biolog-
ical conflict or inherent limitations on the screening numbers.
Only a finite number of combinations can be screened at a
given time and this number is limited by the laboratory au-
tomation configuration. Our approach in dealing with this
limitation is to prioritize the designs for testing. We describe
a semi-rational process, where a user specifies a given combi-
natorial design, from which an algorithm chooses prioritized
combinations of parts to assemble and test.

For our definition of combinatorial design, we first build a
concept of blocks, and extend them to list blocks. A block rep-
resents a DNA sequence or a genetic part, such as a promoter
or a terminator. The complete list of these genetic parts is
sourced from the Synthetic Biology Open Language (SBOL)
visual framework. Blocks can be composed sequentially with
other blocks. List blocks extend this concept by represent-
ing multiple blocks, similar in style to a drop-down list. A
combinatorial design is a sequence of blocks that contains
multiple list blocks. A combinatorial design spans a com-
binatorial space, which represents all possible instantiations
of the list blocks. These spaces grow extremely quickly in
size due to the curse of dimensionality [Keogh and Mueen,
20101, thus synthesizing and testing all possible combinations
quickly becomes intractable. As a result of this, a more intel-
ligent search of the space is required. In the rest of this paper,
we will use the term combination to refer to a given combina-
tion of genetic parts that can be specified by the design. We
build our workflow on top of Autodesk Genome Designer,

Figure 1: Combinatorial Design Space of Promoters for Violacein Pathway. Figure depicts the graphical difference between
Block, Combination, List Block, and Combinatorial Space in terms of their representation as UX elements styled with SBOL
Visual symbols. The Combinatorial Space shown depicts the 5° = 3125 combinations of promoters pTDH3, pTEF1, pRPL18B,

pRNR2 and pREV1.

Promoter-1 |_)

pTDH3 [* ‘ pTDH3 |->‘ cps-1 B ‘ pTEF1 |—>‘ cos2 B ‘ oTOH3 [

Block Combination olEF1 | List Block
Promoter-1 [? | CDS-1 I | Promoter-2 [? | cDS-2 B | Promoter-3 [| CDS-3 I | Promoter-4 [? | cDS-4 B | Promoter-5 [? | CDS-5 B
pTDH3 7 pTDH3 [plDH3 2 pTDHZ [? pTDH3 ?
pTEF1 - pTEF1 r pTEF1 r pTEF1 r pTEF1 r
pRPL1BB 2 pRPL1BB [* pRPL1BB [? pRPL1BB [pRPL18E [
pRNR2 > pRNR2 > pRNR2 P pRNR2 2 pRNR2 2
pREV1 - pREV1 r pREV1 r pREV1 r pREV1 r

51 52- 25 53- 125 54- 625 5°- 3125

Combinatorial Space

which is a drag-and-drop platform for synthetic biology con-
struct design.

3 Combinatorial Design Workflow

We propose a workflow for bioengineers to find the optimal or
near-optimal combination of parts. Our workflow mirrors the
standard synthetic biology mantra of design/build/test/learn.
This workflow, described in Figure 2, is composed of both a
software step where the priority of combinations is optimized
and an external validation step where combinations are ex-
perimentally characterized.

In the software portion, the user creates a design of parts
utilizing list blocks, selects the number of combinations they
wish to test, and then uses the combinatorial design feature to
select the combinations that should be run. The user is given
a chance to edit the combinations to their liking, and then the
results will be submitted in the form of a bill of materials to
a foundry of choice for experimental testing. This software
portion corresponds to the design and learn stages of the syn-
thetic biology cycle.

Given a set of combinations, the foundry will synthesize,
assemble, and either return them to the user or perform for
screening and analysis. Performance of a given combina-
tion should return a scalar value used for comparison to other
combinations. These results should then be used as input back
into the software step, beginning a secondary iteration of opti-
mization. This experimental portion corresponds to the build
and test stages of the synthetic biology cycle.

4 Combinatorial Design Programs

The core of this workflow is the algorithm that selects the
next batch of combinations for biological evaluation. This

Figure 2: Proposed Combinatorial Design Workflow. Fig-
ure depicts the workflow for using combinatorial design as a
prioritization methodology in the synthetic biology Design-
Build-Test-Learn Cycle. This cycle is broken into two seg-
ments, Design/Learn and Build/Test, to illustrate the differ-
ence between in silico and experimental aspects of iteration.
The dotted line illustrates that various algorithms can be cut-
and-pasted into the workflow.

Design/Learn
Finish
Create Combinatorial Design A
oo 'v """ 1
v Run Combinatorial Design : Quantify Sequence
' Algorithm ' Performance
i SETRREREE e
N A
Review Gombinations Assemble Sequences
Build/Test

algorithm can be seen as an iterative optimization problem
over several categorical variables.

Let X = {[D1] x ... x [Dy]} be the combinatorial space
of possible designs, where D; is the number of choices in
the sth list block and d is the number of list blocks in the
design. Let D be the set of pairs for all inputs x € X" and its
corresponding real world performance y € R. We define a
dataset D C D to be a set of pairs between inputs x € X and
a performance value y € R, where the performance values

are known. Let k be the number of combinations to try per
iteration.
The algorithm is then a function of the following form:

F:D— X*F (1)

with the goal:
max 2
hax Y @)

This workflow follows the Sequential Model-based Global
Optimization (SMBO) algorithm [Bergstra er al., 2011].
SMBO aims to solve arg maxf(x), where f(x) is an expen-

reX

sive, black box function. This is done by iterating between
fitting a model and using that model to identify areas with a
high probability of improvement. In this instance, f(z) is the
real-world performance of a given combination . The main
difference from SMBO and our workflow is that we select
multiple points to try, effectively creating a parallel instantia-
tion of SMBO.

We treat each genetic part as a categorical variable for
simplicity and generality, as biological data is often non-
homogeneous and sparse. Furthermore, modeling such sys-
tems has proven difficult, especially beyond the transcrip-
tional level. We currently refrain from using metadata as-
sociated with a given part to allow the program to be used
with arbitrary parts. This mathematical abstraction also im-
plies that the designs are permutation invariant, so informa-
tion about the order of blocks is ignored. Furthermore, the
abstraction also removes knowledge about the function of the
block, such as its SBOL part type. Lastly, we also assume
that the performance of a given combination is deterministic.

4.1 Sample Algorithms

Any algorithm that follows has the function type F' : D —
X* can be used in this workflow. Programs designed to op-
timize black box functions which support categorical vari-
ables can be used here if parallelized. Some examples in-
clude ParamILS [Hutter et al., 2007] and SMAC [Hutter et
al.,2011].

We describe and test two sample algorithms. The first al-
gorithm we tested is random search [Bergstra and Bengio,
2012]. This is notably similar to a screening design, where
random combinations are chosen and tested, effectively ig-
noring any learning potential offered by the iterative process.

Algorithm 1: SMBO(N, model, f). The SMBO algo-
rithm.
input : The number of iterations to perform N, a
surrogate model, and an expensive function f.
output: A list of combinations to try.
1 dataset + ()
2 for i < 1in range(N) do
3 model.fit(dataset)

4 2’ < arg max model.predict(z)
reX

5 dataset < dataset U f(z')

¢ end

7 Return dataset

It will be used as a baseline for comparison of other algo-
rithms. The second algorithm augments random search by
oversampling the search space by a factor ¢ and then filtering
the samples using a random forest regression.

5 Evaluation

Evaluation of the performance of the algorithms used in the
workflow requires the ability to fetch the true performance
of a combination. Although we do not currently have a com-
pelete dataset to test upon, there are incomplete datasets avail-
able.

5.1 Dataset Details

We use a dataset which describes the multi-enzyme pathway
for the production of violacein [Lee et al., 2013] by opti-
mizing promoters. Promoters are genetic elements that can
be represented as blocks. The pathway is constructed us-
ing five promoters. This translates into a design with five list
blocks. In this dataset, there are five promoters, enumerated
one through five. These promoters are characterized and enu-
merated such that Promoter] is the strongest and Promoter5
is the weakest. These promoters can appear multiple times
in this design and each of the list blocks can take on the se-
quence of any of the promoters. The size of the combina-
torial space is therefore 55 = 3125, asitisab x 5 design.
The design for this dataset is shown in Figure 1. The dataset
itself contains approximately 200 unique combinations, with
multiple measurements for several variants of violacein. We
focus on the first measurement of violacein. The maximum
performance in this data set is 212.5.

To use this sparse dataset for the evaluation of combinato-
rial workflows, the dataset must be extended to contain values
for the entire combinatorial space. To do this, we train a sur-
rogate model to estimate points which have no value in the
dataset. This surrogate model will be given additional meta-
data available in the dataset, which will not be available to the
combinatorial design algorithm. We provide this information
to the model by using the numerical values for the promoters.
To prevent giving this information to the combinatorial design
algorithm, we encode the values as a one-hot vector, which is
a method for encoding categorical variables as a vector. A
one-hot vector for a single category is a binary vector where
the dimension is the number of options in the category. All
the dimensions are 0 except for the chosen option, which is
1. This can be extended to multiple categories by concatenat-
ing their respective one-hot vectors. We use a random forest
regression, which has a R? score of 0.722 using 5-fold cross-
validation. Observing the individual fold scores, the model
does well for areas of the space that are near zero. However,
the important parts of the space are the areas of high perfor-
mance and the model struggles to predict those values. Those
values tend to be higher than the rest, but do not reach the
same magnitude as the actual values.

5.2 Results

We compare random search with an augmented version that
utilizes random forest. We show the performance of the best
combination found up to that point.

Figure 3: Best Performance Found at each Iteration. Fig-
ure depicts the average performance of the best combination
found across all prior iterations in arbitrary units. We sample
100 complete rounds for both random search and the random
search augmented with a random forest. We test over 10 iter-
ations with 20 combinations tested per iteration for a total of
200 combinations tested.

200

Best Combination Found

=== Random Forest with Random Search
== Random Search

80 ! L N 1 N 1
1 2 3 4 5] 7 8 9 10
Iteration

In figure 3, we see the rate of improvement of each algo-
rithm over the number of iterations. The random forest has a
moderate improvement over the random search. We hypoth-
esize that a greater improvement would be seen in a larger
combinatorial space, where large regions of the space can-
not be simply covered with a random search. In figure 4,
we see little improvement past 25 iterations. This is likely
due to the algorithm having no local search properties. An
algorithm that searches through local space would be able to
leverage the additional information gathered in each iteration.
The random search curve, shown in Figure 4 as a control, is
relatively flat, as would be expected as it does not have any
learning properties.

6 Conclusion

We designed a tool to optimize genetic systems by using an
iterated combinatorial design workflow, which is enabled by
recent progress in DNA synthesis and construction technolo-
gies. A design specification is presented, along with require-
ments for an algorithm to decide which combinations should
be prioritized. We present a simplistic algorithm to demon-
strate the method.

Future work will require well-developed datasets. These
datasets should cover the full combinatorial space, as to avoid
having to use a surrogate model during evaluation. The space
should be sufficiently large such that it simulates real-world
designs and exploration of the space becomes necessary. The
design utilized for such a dataset should also incorporate a
wider variety of parts and preferably non-linear metabolic
pathways.

Future algorithms for suggesting higher performing com-
binations are also required. Future algorithms may be able to

Figure 4: Performance vs Iterations, normalized for 200
combinations tested. Figure depicts the average final perfor-
mance of each algorithm tested with various configurations
of batch sizes and number of iterations. The configurations
tested are normalized for the number of combinations tested
to show the increase of performance when given more iter-
ations, where the data point at 200 iterations represent a se-
quential process. This displays the algorithms ability to uti-
lize the information provided by the iterative process.

200

190 -
o
=
5
(=]
w
5 180
®
2
E
b
L
[sa]

160 —
== Random Search w/ Random Forest Regression
== Random Search

150 L L L

0 50 100 150 200

Number of Iterations

handle multiple objectives, have a local search mechanism,
and will be able to utilize additional, sparse metadata. They
may also be able to leverage biological details, such as incor-
porating sequence of parts or the type of the part. For exam-
ple, we may be able to reduce all promoters and terminators
in the sequence into coefficients for a gene’s effect on the sys-
tem by using a dynamical model. This may effectively act as
a feature selection step.

User input and suggestion to the algorithms may also be
a desirable feature. This poses several challenges; the algo-
rithms must be able to respond to the user’s input, which can
e considered as another objective in a multi-objective func-
tion. Additionally, a simple, flexible user interface must also
be developed. To further increase the flexibility offered to the
user, more general combinatorial designs may be permitted.
This may include directionality of parts, or removing the per-
mutation invariance assumption.

Acknowledgements

This work was funded entirely by Autodesk. The authors
thank Morgan Price in the ArkinLab of Lawrence Berkeley
National Laboratory for his review of this article, the Duber
Laboratory at the University of California Berkeley for the vi-
olacein data, and the Bio/Nano Research Group at Autodesk
for their continued support.

References

[Bergstra and Bengio, 2012] James Bergstra and Yoshua
Bengio. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research, 13(1):281-
305, 2012.

[Bergstra ef al., 2011] James S Bergstra, Rémi Bardenet,
Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Informa-
tion Processing Systems, pages 2546-2554, 2011.

[Hutter et al., 2007] F. Hutter, H. H. Hoos, and T. Stiitzle.
Automatic algorithm configuration based on local search.
In Proc. of the Twenty-Second Conference on Artifical In-
telligence (AAAI "07), pages 11521157, 2007.

[Hutter ef al., 2011] F. Hutter, H. H. Hoos, and K. Leyton-
Brown. Sequential model-based optimization for general
algorithm configuration. In Proc. of LION-5, page 507523,
2011.

[Keogh and Mueen, 2010] Eamonn Keogh and Abdullah
Mueen. Encyclopedia of Machine Learning, chapter Curse
of Dimensionality, pages 257-258. Springer US, Boston,
MA, 2010.

[Lee er al., 2013] Michael E Lee, Anil Aswani, Audrey S
Han, Claire J Tomlin, and John E Dueber. Expression-
level optimization of a multi-enzyme pathway in the ab-
sence of a high-throughput assay. Nucleic acids research,
page gkt809, 2013.

[Smanski er al., 2014] Michael J Smanski, Swapnil Bhatia,
Dehua Zhao, YongJin Park, Lauren BA Woodruff, Geor-
gia Giannoukos, Dawn Ciulla, Michele Busby, Johnathan
Calderon, Robert Nicol, et al. Functional optimization of
gene clusters by combinatorial design and assembly. Na-
ture biotechnology, 32(12):1241-1249, 2014.

[Wilson er al., 0] Erin H. Wilson, Shiori Sagawa, James W.
Weis, Max G. Schubert, Michael Bissell, Brian
Hawthorne, Christopher D Reeves, Jed Dean, and
Darren Platt. Genotype specification language. ACS
Synthetic Biology, 0(0):null, 0. PMID: 26886161.

