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Abstract. In this work, we have developed a design environment to allow
casual users to quickly and easily create custom robots. A drag-and-drop
graphical interface allows users to intuitively assemble electromechani-
cal systems from a library of predesigned parametrized components. A
script-based infrastructure encapsulates and automatically composes me-
chanical, electrical, and software subsystems based on the user input. The
generated design can be passed through output plugins to produce fabri-
cation drawings for a range of rapid manufacturing processes, along with
the necessary firmware and software to control the device. From an intu-
itive description of the desired specification, this system generates ready-
to-use printable robots on demand.
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1 Introduction

Creating a robotic system generally requires broad engineering expertise to suc-
cessfully manage the interplay between constituent electromechanical subsys-
tems. For an average user to be able to create their own robots for personal use,
a system is needed to abstract away technical details in favor of easy to under-
stand functionality specifications. To parallel a typical solution methodology in
which a problem is broken into atomic tasks, we have developed a design en-
vironment in which robots are assembled by simply connecting self-contained
components. These modular building blocks encapsulate mechanical, electrical,
and software subsystems without relying on a specific manufacturing process.
A full robot is then defined by the component hierarchy required to achieve
each necessary behavior, and can be directly fabricated from design files auto-
matically co-generated after passing the specification through a suitable output
plugin.

This definition is specified by the user in an intuitive and simplified high-
level graphical programming language. Blocks describing distinct parts of a
robot are graphically connected together on a workspace to describe the robot
design. From this, Python code is automatically generated which, when exe-
cuted, creates the hardware design description of printable robots. This graph-
ical frontend provides intuitive user interfacing while providing versatile cus-
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tomizability, while the backend is compatible with a variety of 2D and 3D man-
ufacturing processes suitable for automated home fabrication. The overall sys-
tem, outlined in figure 1 takes as input a schematic outlining a high-level break-
down of the required components, and outputs a fabricated ready-to-use robot,
with minimal required user intervention. This system paves the way towards
realizing smart programmable cyber-physical systems on demand towards a
future of pervasive personal robots.

Fig. 1. Workflow diagram showing the steps necessary for a user to design, create, and
fabricate a robot

2 Related Work

2.1 Fabrication

There are a variety of fabrication methods to create printable devices. Arbi-
trary 3D structures are generally achievable by additive manufacturing using
3D printers; advances in printer technology have made desktop printers avail-
able to the general public. However, while complex solid geometries are easily
manufactured with 3D printing, achieving the required compliance and mo-
bility necessary for general robotic systems is nevertheless difficult to achieve
using most common techniques [1]. Limited workarounds do exist [2, 3]; these
often lack robustness or reliability, though current technology has been improv-
ing.
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Alternatively, mechanical structures can be realized by patterning then fold-
ing 2D sheets to define the shell of the desired geometry. A variety of substrates
are possible, including cardboard laminates [4], single layer plastic film [5], or
more exotic materials [6, 7]. These designs can be manually folded by hand,
folded by embedded or external active stimuli, or passively folded by con-
trolled environmental conditions [8, 9].

2.2 Design

The fabrication processes listed in the previous section require a multitude of
computer-aided design (CAD) tools to specify mechanical structures or elec-
tromechanical assemblies. Though some automated design tools have been de-
veloped, especially to translate 3D geometries into 2D unfoldings [10, 11], these
are often limited in scope, resulting in custom designs needing to be manu-
ally drawn by experienced designers. Instead, the work presented in this paper
builds off of the system presented in [12, 13], wherein mechanical designs for a
particular cut-and-fold fabrication process are abstracted into code objects.

The use of graphical languages is common in the engineering and academic
community. Simulink [14] and LabView [15] are two well known examples
widely used for general purpose engineering computing. Authors in [16] use
a formal graphical language to program medical operation between different
medical devices. Standing more from a robotic perspective, only a few graph-
ical programming environments are available and usually limited and con-
strained to specific platforms [17, 18]. To overcome this limitation, in [19] a high
level programming language called ROSLab was proposed to generate C++/
Python code for general robotic applications involving different type of plat-
forms such as aerial, wheeled, and multi-legged robots.

3 Technical Approach

3.1 Scripted Hardware Programming

The system presented in [12, 13] provides a scripted programming language to
specify designs for printable robots realized using a cut-and-fold fabrication
process. To enable greater versatility, that system was overhauled in this work
to abstract designs into a process-agnostic representation of the component hi-
erarchy.

In this system, parametrized components are defined by code objects, with
scripted functions representing physical manipulations and design steps. Basic
building blocks can define mechanical, electrical, or software elements, while
composite blocks can be integrated across subsystems. Parameters can be used
to customize variable geometric measurements, alternate electric components,
or other design-time configurable quantities.

The code objects expose an interface allowing them to be hierarchically com-
posed: component modules specify predetermined connections along which
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other components can be attached. Attaching modules via their connections
forms a new higher-order module, establishing constraints on their free param-
eters, merging their mechanical structures, and wiring together their electrical
components.

Complex designs, from electromechanical mechanisms up to full robots, can
then be represented as simple software scripts implementing the above steps.
Executing a script co-generates fabricable design files for the complete device,
including mechanical drawings to be sent to a fabrication tool, electrical compo-
nent requirements and wiring information, and firmware and software libraries
and application code.

The composition of building blocks into higher order components is carried
out using an internal graph-based representation to generate structurally spec-
ified robot designs. This graph specifies the connections and parameter con-
straints between constituent modules. To generate fabricable drawings, then,
an interpreter plugin realizes the geometries along the design graph into a for-
mat required by the manufacturing process of choice. Plugins have been written
for a number of fabrication methods as described in section 4.2 below.

Mechanical geometries are stored using a face-edge graph that can be re-
solved to both 2D and 3D shapes as required by specific fabrication processes.
A basic example of this is shown in by the beam in figure 2, generated from the
code in listing 1.1. The blue squares in the graph represent the rectangular faces
of the beam, connected to each other along folded edges represented by red cir-
cles. The unconnected dashed lines represent connections along which future
components can be attached. A cut-and-fold pattern can be generated from the
face graph, requiring the dotted edge to be replaced by a tab-and-slot connec-
tor. A 3D solid model can also be generated to display the structure resulting
from folding the 2D pattern, or to directly generate a 3D object via 3D printing.

(a) Face-edge graph representation of a
beam geometry

(b) Generated drawing
to be sent to a 2D cutter

(c) Generated 3D
solid model

Fig. 2. Outputs generated from the code in listing 1.1

1 import Beam

2 b = Beam.Beam()

3 b.setParameter("length", 100)

4 b.setParameter("beamwidth", 10)

5 b.setParameter("shape", 3)

Listing 1.1. Scripted design of a mechanical beam

A simple composite structure is demonstrated in figure 3 from the code in
listing 1.2. As above, constituent objects are instantiated and their parameters
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are set. However, these building blocks are attached along exposed connections
in a new higher-order component. The connection type is set to be a flexible
joint to allow for compliant motion, and geometric constraints are imposed on
objects’ parameters.

(a) Component-connection
graph representation of a
finger design hierarchy

(b) Generated drawing to
be sent to a 2D cutter

(c) Generated 3D solid
model

Fig. 3. Outputs generated from the code in listing 1.2

1 from api.Component import Component

2 from api.Edge import Flex

3 from Beam import Beam

4
5 finger = Component()

6
7 finger.addSubComponent("beam1", Beam)

8 finger.addSubComponent("beam2", Beam)

9
10 finger.setSubParameter("beam1", "length", 60)

11 finger.setSubParameter("beam1", "beamwidth", 10)

12 finger.setSubParameter("beam1", "shape", 3)

13 finger.setSubParameter("beam1", "angle", 45)

14
15 finger.setSubParameter("beam2", "length", 40)

16 finger.setSubParameter("beam2", "angle", 45)

17
18 finger.add("beam1")

19 finger.connect(("beam1", "topedge"),

20 ("beam2", "botedge"),

21 Flex())

Listing 1.2. Scripted design of a composite finger

As described in [13], electrical components, including sensors, actuators,
and processors, can also be encapsulated in the same component framework of
the mechanical designs described above. Purely electrical devices can be com-
bined with mechanical structures to form integrated electromechanical mech-
anisms. Software drivers and UI elements can similarly be included within a
component to define a fully self-contained robotic subsystem. The connections
for such integrated components algorithmically combine electrical wiring and
software blocks as well as mechanical geometries, preserving the modular de-
sign abstraction across robotic subsystems.

When compiled, the design scripts produce device specifications and wiring
diagrams for the complete electronic subsystem, as well as integrated software
packages to operate the designed electromechanical system. In this way, com-
plete designs are automatically co-generated for the design hierarchy, thus en-
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abling a user to design a print-and-play robot by scripting the composition of
elements.

3.2 ROSLab for Hardware Design Generation

To further simplify the design flow for casual users, a graphical programming
tool was adapted to generate the hardware specification scripts. ROSLab [19]
provides an intuitive and simplified high-level development environment that
builds software through a drag-and-drop interface. Code components are rep-
resented as blocks which can be imported from a library into a workspace, then
connected along available interfaces to generate new designs.

In this work, we extend ROSLab to provide a design environment for cre-
ating printable robots with the scripted infrastructure described above. A pre-
designed collection of Python scripts representing parametrized robotic build-
ing blocks are available to a user as a component library in the ROSLab en-
vironment. Desired blocks can be dragged into a workspace, and parameters
can be set by the user based on target specifications. Exposed interfaces on each
robot component are represented by ports on the ROSLab block; these ports can
be wired together to specify electromechanical connections. Compositions can
themselves be saved as components in the library to be used in future higher
order designs. In this way, a full robot can be hierarchically composed from its
constituent blocks.

Code Generation and User Interface (UI) The programming workflow in ROSLab
follows the intuitive logic of how one would construct a robot. Generally speak-
ing, a robot is made of a main body part, which we call brain because it con-
tains the processing unit (e.g., microcontroller, microprocessor, etc.), locomotion
components (e.g., legs, wheels, propellers, etc.), and other extremities that hold
sensors and actuators (e.g., gripper). A typical ROSLab program for fabrication
starts by defining the brain node followed by the desired locomotion technique.
For instance, a user that is interested in designing an ant-like robot would need
to specify the <brain> component and two <motion> type <leg-pair> blocks.
Similarly for a two wheeled robot (e.g., a Segway), the <brain> component will
be connected to two <wheel> modules of type <motion>. The user will then
place blocks in the ROSLab workspace to symbolize the brain and leg-pairs (or
wheels for the Segway) and will connect these blocks together. Once the design
is finalized, it will be automatically generated by ROSLab.

ROSLab is written in Java and is designed to follow a template logic. The
templates are characterized by fields which are filled by specific code snippets
according to how a component is connected to another component. Prior to use
by a casual user, a ROSLab developer must first carefully construct the tem-
plates by finding common code primitives among the possible output files.
Each component is described by (i) a set of ports which for a printable robot
consist of foldable tabs; and (ii) a set of parameters which define the dimen-
sion and interface with the electronic hardware. These parameters can be easily
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edited within the ROSLab UI, thus giving the user the ability to create unlim-
ited designs for the robot under development.

The code generation process is initiated by calling a function which parses
the UI workspace, checks the connections and components in the design, and
fills the template holes with code associated with each used component. Specif-
ically, the code generation creates a Python script that contains details about the
assembly of the different components.

Figure 4 shows an example of the blocks and code associated with the as-
sembly of the brain to a leg-pair.

Fig. 4. Pictorial representation of ROSLab code generation. The bottom right (botright) of
the <brain> component named core by the user is connected to the top right (topright)
of the <half> component named front. The last field inside the parenthesis is used to
define how the the half will be folded during the assembling

The user can create different designs however not all configurations are
guaranteed to generate a stable mechanical system. The user can easily change
connections and adapt the design from the ROSLab UI.

3.3 Robot Fabrication

Once a robot has been designed, it can be compiled to generate manufactur-
ing specifications. Because the system can generate both a 2D representation
of the surface of the robot body as well as the 3D volume, a number of rapid
fabrication processes, as described in section 2.1 above, can be used to create
the specified mechanical structures. Output scripts in the system are used to
translate the internal representation of the robot design into fabrication files
suitable for manufacture. When compiling the design, the user can select from
the available fabrication processes to create the robot body.

Since the system can generate the 3D geometry of the final mechanical body,
a solid model output by the system can be sent to a 3D printer for fully au-
tonomous fabrication of the desired structure. Though this process is generally
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versatile enough to make even the most complicated shapes, it often lacks the
compliance needed for robot mobility. Instead, the 3D volume can also be re-
alized by folding its surface from a patterned flexible 2D sheet, providing both
structure and compliance. The underlying geometric data stores the face and
edge geometries of the 2D unfolding, and so the body can be automatically
self-folded by uniform heating of a patterned 3 layer laminate, as presented
in [20]. Alternately, the cuts and folds can be patterned onto a plastic sheet us-
ing a laser cutter [21] or desktop vinyl cutter [12], and then manually folded
to the final 3D geometry. Finally, it is possible to realize the mechanical body
without any custom tools by printing the fold pattern onto a sheet of paper. A
user can cut the design out with scissors, and fold the structure according to the
printed instructions.

Once the body has been fabricated, the specified electronic components and
electromechanical transducers must be mounted onto the body and wired to-
gether as specified by the system, with auto-generated firmware loaded onto
the core microcontroller. The device then simply needs to be powered on and
paired with a user interface for the process to be complete, delivering a fully
functioning custom printed robot on demand.

4 Experiments and Results

4.1 Design

We use the ROSLab interface to create robots. A library of basic components
was imported from [13], forming the building blocks from which new systems
were designed. These systems were then manufactured and operated.

A simple wheeled robot can be specified as two motors attached to a central
core. To add stability, a third point of contact, such as a tail, can be added to a
free end. Symbolically, this is represented by the following relation:

Seg = left wheel + core + right wheel + tail. (1)

The core, motors, and tail were all basic components from the library, and so
the design of this simple robot consisted simply of dragging blocks into the
workspace and connecting them as per equation 1. The ROSLab source along
with the resulting printed robot are shown in figure 5. Similarly designed and
fabricated wheels, also from the library, are added to complete the device.

Within the programming environment, labels can be added to the blocks:
the central core provides a brain containing the low level computational elec-
tronics (e.g. processing, communications, and control), while the motor blocks
provide motion, in particular mobility. These tags can be used to quickly gener-
ate alternate, functionally similar designs.

Instead of generating motion through wheels, an insect-like crawler can use
a leg-pair block from the library to generate a walking motion. Since a tail is no
longer needed to provide stability, the new design can be simply expressed as:

Ant = left leg-pair + core + right leg-pair. (2)
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(a) A simple two wheeled robot design (b) The resulting robot

Fig. 5. A Seg robot designed within the ROSLab programming environment and fabri-
cated in a cut-and-fold process

The ROSLab source and generated robot are shown in figure 6.

(a) Making an insect-like crawler with
ROSLab

(b) A cut-and-fold robotic ant

Fig. 6. The Ant robot generated by adapting the earlier Seg design

The base components, and therefore the derived designs, are all parametrized;
by using this framework, a user has the freedom to adjust design geometries in
a variety of ways by tweaking the exposed parameters. As an example, some of
the free user-defined parameters for a multi-legged robot are the leg length, the
body length, the servo motor type, and the desired microcontroller in the brain.

4.2 Fabrication

The user can also select a manufacturing process. The Seg design from equa-
tion 1 was fabricated with four different methods:

(I) a 2D edge unfolding can be encoded in a drawing to laser cut a plastic
sheet, as in figure 5(b);
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(II) the edge unfolding can also be printed on paper for manual cutting and
folding, as in figure 7(a);

(III) the geometry can instead be formed into a solid model, which can get
fabricated on a 3D printer as in figure 7(b);

(IV) the geometric information can be used to preprogram an active patterned
laminate for self-folding through uniform heating, as in figure 7(c).

(a) Cut and folded by hand (b) 3D printed (c) Self-folded in an oven

Fig. 7. Fabrication files for three additional processes can be generated from the same
source as in figure 5 above

These four methods generated robots with the same geometry as specified
by the robot design, but with significantly varying tradeoffs.

The traditional cut-and-fold process (I), wherein the structure was folded
out of a patterned compliant plastic sheet, was overall a middle-of-the-road
process. Though it took the shortest time to fabricate, needing only a single
layer 2D cut, its required post-process folding step took a fair amount of user
time and skill to assemble. The flexible source material was very useful in cre-
ating compliant degrees of freedom for moving parts such as in the legs of
the crawler, but needed designed structural reinforcement when stiffness was
desired as in the wheels of the Seg. It required an expensive laser cutter for
fabrication.

The manual cut-and-fold process (II) was by far the cheapest process, re-
quiring only a printed sheet of card stock and a pair of scissors or a knife. The
generated design as shown in figure 8 can be printed using any standard color
printer, fully defining the geometry. The lack of tooling was made up for by the
labor necessary for fabrication and assembly as the user had to cut then fold
the 2D design by hand, as shown in figure 9. The stiffer card stock made the
structural elements simpler to design than the plastic substrate above, though
the compliant folds were more prone to fatigue.

The 3D printed process (III) took the least user input, directly building the
generated 3D geometry as shown in figure 10, but took the longest overall time
to fabricate. It produced the most rigid structural body, but could not gener-
ate flexible hinges necessary for compliant joints. Though flexible materials are
slowly becoming available for 3D printers [22], they are still new and not well
characterized.
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Fig. 8. The design file for a manual cut-and-fold process consists of a color diagram to
be printed onto a sheet of cardstock. The user is responsible for cutting along the blue
lines; red and green lines represent mountain and valley folds, respectively.

(a) The designs are cut using a knife or
scissors.

(b) Electronic components are assembled
while folding the body.

Fig. 9. The manual cut-and-fold fabrication process is labor intensive, but requires cheap
tools and minimal infrastructure.
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(a) The generated solid model is sent to
3D printer software to manufacture the
desired geometry.

(b) Printing can be paused to incorpo-
rate embedded electronics, or they can
be mounted afterward.

Fig. 10. The designed structure can be directly fabricated on a desktop 3D printer.

Finally, the self-folding process (IV) combined the benefits of minimal user
intervention from the 3D printing with the quicker fabrication of 2D layers.
The generated layer designs are shown in figure 11. Though user labor was
necessary to laminate the three laser-cut layers, this process was the quickest
to fabricate the mechanical body, seen in figure 12. However, the final structure
generated by the self-folded laminate occasionally had notable deviations from
the designed geometry as the self-folding process halted before achieving to it’s
final configuration. The structural elements provided excellent rigidity, coming
at the expense of less flexible compliant structures.

(a) Top cardboard (b) Shape-memory polymer (c) Bottom cardboard

Fig. 11. A three layer laminate can be assembled to form a self-folding structure that
forms the designed geometry under uniform heating.

The comparison of these fabrication methods is summarized in table 1.
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(a) Laser cut layers get assem-
bled into a self-folding laminate.

(b) Uniform heating in a toaster oven gener-
ates the desired folded geometry.

Fig. 12. Self-folding can automatically generate 3D geometry from a 2D unfolding.

Table 1. Analysis of various rapid fabrication methods

Fabrication Assembly Body Process Process
Process time time weight Strength Weakness

(I) 2 min 15 min 15.2 g Controlled compliance Flexible structure
(II) 10 min 15 min 3.6 g Low cost Labor intensive
(III) 90 min 1 min 14.9 g Structural integrity Minimal compliance
(IV) 5 min 5 min 12.2 g Construction speed Large tolerances

5 Conclusions

The key development presented in this work was a design infrastructure which
encapsulated process-independent definitions of robotic building blocks, al-
lowing custom electromechanical systems to be hierarchically designed once
for a range of fabrication methods. This was overlaid with the graphical in-
terface of ROSLab allowing for direct transcription of design ideas into mech-
anism definitions. Together, these form a process flow for personal robot cre-
ation from vision to operation that is simple and intuitive. By abstracting and
encapsulating the various stages of design, this modular pick-and-place design
environment brings custom robot design to the realm of non-expert users. Sim-
ple robots such as the Seg and the Ant require only minutes to design; more
complex robots can be hierarchically designed in similarly easy stages.

The unified design process highlighted important differences, summarized
above, between the various rapid fabrication methods used for printable robotics.
As user specifications for custom robots vary widely, so too do desired opti-
mization targets, and thus the design paradigm presented in this work provides
a valuable asset for personal robot creation.

This work suggests an important next step towards more autonomous robot
design: developing the system to guide design decisions at both ends of the
pipeline. Information about the tradeoffs among the fabrication processes can
be incorporated into the system, and a recommended fabrication method can
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be then presented based on optimization goals on a user specified design. Con-
versely, given optimization goals and fabrication constraints, components can
be suggested to generate a design based on a functional specification.

A full robot compiler can be built upon this framework, allowing casual
users to design desired robots from a very high-level functional specification
of the problems to be solved. The system presented in this work thus repre-
sents a major step forwards towards programmable cyber-physical systems on
demand.
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