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The gluing technique is used to construct hypersurfaces in Euclidean space
having approximately constant prescribed mean curvature. These surfaces
are perturbations of unions of finitely many spheres of the same radius as-
sembled end-to-end along a line segment. The condition on the existence of
these hypersurfaces is the vanishing of the sum of certain integral moments
of the spheres with respect to the prescribed mean curvature function.

1. Introduction

In [Butscher and Mazzeo 2008] we have constructed examples of constant mean
curvature (CMC) hypersurfaces in a Riemannian manifold M with axial symmetry
by gluing together small spheres positioned end-to-end along a geodesic γ. These
examples have very large mean curvature 2/r and lie within a distance O(r) of
either a segment or a ray of γ; hence we say that these surfaces condense to the
appropriate subset of γ. Such surfaces cannot exist in Euclidean space, and their
existence relies on the fact that the gradient of the ambient scalar curvature of M
acts as a “friction term” that permits the usual analytic gluing construction (akin
to the classical gluing constructions pioneered by Kapouleas [1990a; 1991]) to
be carried out. The purpose of this paper is to show the same techniques used
in [Butscher and Mazzeo 2008] can be adapted in a straightforward manner to
show that a similar construction is possible in a much simpler yet fairly general
context: that of hypersurfaces having prescribed near-constant mean curvature in
Euclidean space, in a certain sense to be explained forthwith. The essence of the
gluing construction carried out herein therefore lies in identifying and appropriately
exploiting the analogous friction term appearing in this setting.

Let F :Rn+1
×T Rn+1

→R be a given, fixed smooth function. For simplicity and
to maintain the parallel with the earlier paper, we will assume that F has cylindrical
symmetry in the following sense. Endow Rn+1 with coordinates (x0, x1, . . . , xn)

and let G ⊆ O(n+1) be the set of orthogonal transformations that fix the x0-axis.
Each rotation R ∈G acts on T Rn+1 via the differential R∗ : T Rn+1

→ T Rn+1. We
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will now demand that F(R(p), R∗Vp)= F(p, Vp) for all (p, Vp)∈Rn+1
×T Rn+1.

The prescribed mean curvature problem that will be solved in this paper is to find,
for every sufficiently small r ∈R+, a G-invariant hypersurface 6r which satisfies

(1-1) H [6r ](p)= 2+ r2 F(p, N6r (p)) for all p ∈6r ,

where H [6r ] is the mean curvature of 6r and N6r is the unit normal vector field
of 6r . Note that we are not “prescribing” mean curvature in the usual sense;
i.e., we don’t have an a priori curvature function in mind that should equal the
mean curvature of the hypersurfaces we construct. Instead, we should understand
“prescribed mean curvature” to mean that a fixed external quantity (the function F)
imposes an extra condition on the geometry of the hypersurface, which must adjust
itself in R3 in order to satisfy this condition. Consequently, we won’t know exactly
the value of the mean curvature function, but we will know that it is near-constant
and that the external condition is satisfied.

The prescribed mean curvature hypersurfaces of this paper will be built by gluing
together a finite number K of spheres of radius one (and thus of mean curvature
exactly equal to two) whose centers lie on the x0-axis using small catenoidal necks
having the x0-axis as their axes of symmetry. In order to properly state the Main
Theorem, we must make the following definition, which is meant to capture the
most important effect of the prescribed mean curvature function F on the surface
whose construction is accomplished in this paper.

Definition 1.1. Let S be a compact surface in Rn+1. The F-moment of S is the
quantity

µF (S) :=
∫

S
F(x, NS(x)) J dVolS

where NS is the unit normal vector field of S and dVolS is the induced volume form
of S, while J : S→ R is defined by J (x) := 〈∂/∂x0, NS(x)〉 for x ∈ S.

Now let p0
k (s) := (s + 2(k−1), 0, . . . , 0) and consider the spheres Sk(s) :=

∂B1(p0
k (s)). These spheres are positioned along the x0-axis in such a way that

each Sk(s) makes tangential contact with Sk±1(s). The following theorem will be
proved in this paper.

Main Theorem. Suppose that there is s0 ∈ R such that

• the F-moments of the spheres Sk(s0) satisfy
∑K

k=1 µF (Sk(s0))= 0, and

• the function s 7→
∑K

k=1 µF (Sk(s)) has nonvanishing derivative at s = s0,

then for all sufficiently small r > 0, there is a smooth, embedded hypersurface 6r

which is a small perturbation of
⋃K

k=1 Sk(s0) that satisfies the prescribed mean
curvature equation (1-1).
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It is easy to find a situation in which the conditions of the Main Theorem hold.
For example: if F( · , · ) is such thatµF (∂B1(x0, x1, . . . , xn)) is negative whenever
x0 is sufficiently negative and positive whenever x0 is sufficiently positive, the
mean value theorem asserts that the function s 7→

∑K
k=1 µF (Sk(s)) has a zero.

And if also F(x, · ) is monotone as a function of x0, this function will have nonzero
derivative.

An application of the Main Theorem, and indeed an inspiration for it, is the
earlier work by Kapouleas [1990b] on slowly rotating assemblies of water droplets.
In this case, the prescribed mean curvature function F : Rn+1

×T Rn+1
→ R takes

the form F(p, N6r (p)) := C(ω)(p0)2 where p := (p0, p1, . . . pn) and C(ω) de-
pends on the angular velocity ω. The prescribed mean curvature equation now
approximates the effect of centrifugal force on the surface 6r when ω is small.
One of the assemblies of water droplets that Kapouleas constructs is exactly as
described in the Main Theorem. (He constructs many other, more complex, and
less symmetrical assemblies as well.)

Another application of the Main Theorem is for understanding the possible
shapes an electrically charged soap film can adopt in the presence of a weak, axially
symmetric electric field. In this case, the equation satisfied by the surface adopted
by the soap film is exactly (1-1), where the prescribed mean curvature function
F : Rn+1

× T Rn+1
→ R takes the form F(p, N6r (p)) := −C〈∇φ(p), N6r (p)〉

and φ : Rn+1
→ R is the electric potential and C is a constant. We can see why

this is so by writing the total energy of the soap film as the sum of a surface area
term and a term proportional to the surface integral of φ, and then computing the
Euler-Lagrange equation for the variation of this energy subject to the constraint
that the volume enclosed by the surface remains constant. If we now assume that
φ is such that the existence conditions of the Main Theorem hold, then the Main
Theorem asserts that K spherical, electrically charged soap films connected by
small catenoidal necks can be held in equilibrium at special points in space by the
electric field.

2. The approximate solution

To construct an approximate solution for the Main Theorem, we use essentially
exactly the same procedure as in [Butscher and Mazzeo 2008, §3.1]. This will be
outlined here very briefly for the convenience of the reader. The presentation is
given for the dimension n = 2 for simplicity; everything that follows can be easily
adapted to the (n+ 1)-dimensional setting.

Endow R3 with coordinates (x0, x1, x2), and let γ be the x0-axis and γ(t) be the
arc-length parametrization of the x0-axis with γ(0) = (0, 0, 0). We will construct
an approximate solution for the Main Theorem out of K spheres of radius one as
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follows. Choose a localization parameter s ∈ R and small separation parameters
σ1, . . . , σK−1∈R+. Define s1 := s and sk := s+2(k−1)+

∑k−1
l=1 σl for k=2, . . . , K

and set pk := γ(sk) and p±k := γ(sk±1). Define the spheres Sk := ∂B1(pk). These
spheres will now be joined together according to the following three steps.

Step 1. The first step is to replace each Sk with the surface S̃k obtained by taking
the normal graph of a specially chosen function Gk over Sk \[Bρk (p

+

k )∪ Bρk (p
−

k )]

where ρk ∈ (0, 1) is a small radius as yet to be determined. The functions we use
for this purpose can be defined as follows. Let LS2 := 1S2 + 2 be the linearized
mean curvature operator of the unit sphere, let ε±k be yet-to-be-determined small
scale parameters and let Jk := 〈∂/∂x0, NSk 〉 be the sole G-invariant function in the
kernel of LS2 normalized to have unit L2-norm. Then the functions Gk should
satisfy the equations

LS2(Gk)= ε
+

k δ(p
+

k )+ ε
−

k δ(p
−

k )+ Ak Jk if k = 2, . . . K − 1,

LS2(G1)= ε
+

1 δ(p
+

1 )+ A1 J1 if k = 1,

LS2(GK)= ε
−

K δ(p
−

K )+ AK JK if k = K ,

where δ(q) is the Dirac δ-function centered at q and Ak is chosen to ensure L2-
orthogonality to Jk . (Of course Jk = x0

|Sk , the restriction of the x0 coordinate
function to Sk). Furthermore, Gk should be chosen L2-orthogonal to Jk , normal-
ized to have unit L2-norm, and to be positive in a neighborhood of p+k .

Step 2. Let 4 be the catenoid, i.e., the unique complete minimal surface of rev-
olution whose axis of symmetry is γ and whose waist lies in the (x1, x2)-plane.
The next step is to find the truncated and rescaled catenoidal neck of the form
4k := Bρ′k (p

[
k) ∩ [εk4+ p[k + (δk, 0, 0)] that fits optimally in the space between

S̃k and S̃k+1 for k = 2, . . . , K − 1. Here εk > 0 is a small scale parameter and
p[k is a point between p+k and p−k+1 that are determined by the optimal fitting
procedure while δk is a small vertical displacement parameter that takes 4k away
from its optimal location and ρ ′k is a small radius as yet to be determined. The
optimal fit is obtained by matching the asymptotic expansions of the functions
giving S̃k ∩ Bρ′k (p

[
k) and S̃k+1∩ Bρ′k (p

[
k) and 4k as graphs over the translate of the

(x1, x2)-plane passing through p[k exactly as in [Butscher and Mazzeo 2008, §3.1].
One particularly important outcome of the matching is that εk from the previous
step, as well as ε±k and p[k are all uniquely determined by σk . In fact, an invertible
relationship of the form σk :=3k(εk) holds, with3k(εk)=O(εk |log(εk)|). Finally,
we find that we must choose ρk, ρ

′

k = O(ε
3/4
k ) to ensure the optimal fit between the

necks and the perturbed spheres.

Step 3. The final step is to use cut-off functions to smoothly glue the neck 4k

into the space between S̃k and S̃k+1. In this way we obtain a family of surfaces
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depending on the σ , δ and s parameters. Denote the neck modified by the cut-off
functions by 4̃k . The interpolating region is the annulus Bρ′k (p

[
k) \ Bρ′k/2(p

[
k).

Definition 2.1. Let K be given. The approximate solution with parameters σ :=
{σ1, . . . , σK−1} and δ := {δ1, . . . , δK−1} and s is the surface given by

6̃(σ, δ, s) :=
K⋃

k=1
S̃k ∪

K−1⋃
k=1

4̃k .

3. Solving the projected problem

We now proceed to solve (1-1) up to a finite-dimensional error term by perturb-
ing the approximate solution constructed in the previous section. The required
analysis is in most respects identical to or less involved than the analysis found
in [Butscher and Mazzeo 2008, SS4–6] and will thus again only be abbreviated
here for the sake of the reader. The outcome will be a surface 6]r (σ, δ, s) sat-
isfying H [6]r (σ, δ, s)] − 2− r2 F |

6
]
r (σ,δ,s)

∈ W̃, where W̃ is a finite-dimensional
space of functions that will be defined precisely below. It arises because the lin-
earized mean curvature operator, which governs the solvability of (3-1), possesses a
finite-dimensional approximate kernel consisting of eigenfunctions corresponding
to small eigenvalues. These small eigenvalues make it impossible to implement a
convergent algorithm for prescribing the components of the mean curvature of the
approximate solution lying in W̃.

Function spaces. We first define the weighted Hölder spaces in which the analysis
will be carried out. These are essentially the same weighted spaces as in [Butscher
and Mazzeo 2008, §4], namely the spaces Ck,α

ν (6̃(σ, δ, s)) consisting of all Ck,α
loc

functions on 6̃(σ, δ, s) where the rate of growth in the neck regions of 6̃(σ, δ, s)
is controlled by the parameter ν. Choose some fixed, small 0< R� 1 and define
a weight function ζ : 6̃(σ, δ, s)→ R as

ζ(p) :=


‖x‖ for p = (x0, x) ∈ B̄R/2(p[k) for some k,
interpolation for p ∈ B̄R(p[k) \ BR/2(p[k) for some k,
1 elsewhere,

where the interpolation is such that ζ is smooth and monotone in the region of
interpolation, has appropriately bounded derivatives, and is G-invariant. Now, for
any open set U⊆ 6̃(σ, δ, s), define

| f |Ck,α
ν (U) :=

k∑
i=0

|ζ i−ν
∇

i f |0,U+ [ζ
k+α−ν

∇
k f ]α,U,

where | · |0,U is the supremum norm on U and [ · ]α,U is the α-Hölder coefficient
on U. This is the norm that will be used in the Ck,α

ν (6̃(σ, δ, s)) spaces.
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The equation to solve. Let µ : C2,α
ν (6̃(σ, δ, s))→ Emb(6̃(σ, δ, s),Rn+1) be the

exponential map of 6̃(σ, δ, s) in the direction of the unit normal vector field of
6̃(σ, δ, s). Hence µ f (6̃(σ, δ, s)) is the normal deformation of 6̃(σ, δ, s) gener-
ated by f ∈ C2,α

ν (6̃(σ, δ, s)). The equation

(3-1) H
[
µ f (6̃(σ, δ, s))

]
= 2+ r2 F ◦

(
µ f × Nµ f (6̃(σ,δ,s))

)
selects f ∈ C2,α

ν (6̃(σ, δ, s)) so that µ f (6̃(σ, δ, s)) satisfies (1-1). In addition, the
function f will be assumed G-invariant. Define the operator

8r,σ,δ,s : C2,α
ν (6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s))

by
8r,σ,δ,s( f ) := H

[
µ f (6̃(σ, δ, s))

]
− 2− r2 F( f ),

where F( f ) := F ◦ (µ f × Nµ f (6̃(σ,δ,s))). The linearization of 8r,σ,δ,s at zero is
given by

L := D8r,σ,δ,s(0)

=1+‖B‖2+ r2(D1 F(µ0, N6̃(σ,δ,s)) · f N6̃(σ,δ,s)−D2 F(µ0, N6̃(σ,δ,s)) · ∇ f
)
,

where D1 F and D2 F are the derivatives of F in its first and second slots and
B := B[6̃(σ, δ, s)] is the second fundamental form of 6̃(σ, δ, s).

The space W̃ is defined as follows. On the k-th spherical part of 6̃(σ, δ, s), the
operator L is a small perturbation of Lk :=1Sk + 2 which is the linearized mean
curvature operator of the sphere Sk . Let Jk once again be the G-invariant function
in its kernel. Now let 5ext,k : S̃k→ Sk \[Bρk (p+k )∪ Bρk (p−k )] for k = 1, . . . , K −1
and also5ext,1 : S̃1→ S1\Bρk (p+k ) and5ext,K : S̃K→ SK \Bρk (p−K ) be the nearest-
point projection mappings and define J̃k := Jk◦5ext,k . Finally, let χext,k be a smooth
cut-off function supported on S̃k and let ηk be a smooth cut-off function supported
on the transition region between the k-th neck and S̃k with the property that the
support of ∇ηk and ∇χext,k do not overlap (this technical assumption is needed in
the fine details of the analysis carried out in [Butscher and Mazzeo 2008]).

Definition 3.1. The space W̃ is defined as

W̃ := span{χext,k J̃k : k = 1, . . . , K } ∪ {χext,kLk(ηk) : k = 1, . . . , K − 1} .

We now prove the following theorem. Let ε := max{ε1, . . . , εK−1} and δ :=
max{δ1, . . . , δK−1} and we will assume that ε= O(r2) and δ= O(r), which will be
justified a posteriori.

Theorem 3.2. If r > 0 is sufficiently small, then there exists f := fr (σ, δ, s) ∈
C2,α
ν (6̃(σ, δ, s)) with ν ∈ (1, 2) so that

(3-2) 8r,σ,δ,s( f ) ∈ W̃ .
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The estimate | f |C2,α
ν
≤ Cr2 holds for the function f , where the constant C is inde-

pendent of r . Finally, the mapping (σ, δ, s) 7→ fr (σ, δ, s) is smooth in the sense of
Banach spaces.

Proof. As in [Butscher and Mazzeo 2008], we will use a fixed-point argument
to solve the equation 8r,σ,δ,s( f ) ∈ W̃ for a function f ∈ C2,α

ν (6̃(σ, δ, s)) with
ν ∈ (1, 2). The fixed-point argument follows from three steps: an estimate of
the size of 8r,s,σ,δ,s(0); the construction of a bounded parametrix R satisfying
L◦R= id+E where E :C0,α

ν−2(6̃(σ, δ, s))→ W̃; and an estimate of the nonlinear
part of the operator8r,σ,δ,s . Each of these steps is given in great detail in the paper
cited, so we just point out how the analysis there applies to the present situation.

Step 1. We begin with the estimate of |8r,σ,δ,s(0)|C0,α
ν−2

, the amount that the approx-
imate solution 6̃(σ, δ, s) deviates from being an actual solution of (3-1). This is
done by adapting [Butscher and Mazzeo 2008, Proposition 13]. In fact, by using
that proposition’s steps 1, 2 and 4 in the estimate of H [6̃(σ, δ, s)]−2 in the C0,α

ν−2
norm for ν ∈ (1, 2), together with a straightforward estimate for the C0,α

ν−2 norm of
the r2F term, we find that∣∣8r,σ,δ,s(0)

∣∣
C0,α
ν−2
≤ C max{r2, ε3/2−3ν/4, δε1−3ν/4

} ≤ Cr2

for some constant C independent of r .

Step 2. We now find a parametrix

R : C0,α
ν−2(6̃(σ, δ, s))→ C2,α

ν (6̃(σ, δ, s))

satisfying L ◦R= id+E, where E : C0,α
ν−2(6̃(σ, δ, s))→ W̃. As in [Butscher and

Mazzeo 2008, Proposition 15], this is done by first constructing an approximate
parametrix by patching together parametrices for the linearized mean curvature op-
erator of each sphere with parametrices for the linearized mean curvature operator
of each neck; and then iterating to produce an exact parametrix plus an error term
in W̃ in the limit. The difference here is that the terms coming from the noneuclid-
ean background metric in the result just cited must be replaced by the r2F term.
The same result holds because this term can easily be shown to satisfy the right
estimates. In fact, R and E satisfy the estimate |R(w)|C2,α

ν
+|E(w)|C2,α

0
≤C |w|C0,α

ν−2
for all w ∈ C0,α

ν−2(6̃(σ, δ, s)), where C is a constant independent of r .

Step 3. We define

Q : C2,α
ν (6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s)),

the quadratic (and higher) remainder term of the operator 8r,σ,δ,s , by

Q( f ) :=8r,σ,δ,s( f )−8r,σ,δ,s(0)−L( f ).
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The estimates for the C0,α
ν norm of Q can be found exactly as in [Butscher and

Mazzeo 2008, Proposition 18] with the terms coming from the noneuclidean back-
ground metric replaced by the r2F term. Then there exists C0 > 0 so that if
f1, f2 ∈ C2,α

ν (6̃(σ, δ, s)) for ν ∈ (1, 2) and satisfying | f1|C2,α
ν
+ | f2|C2,α

ν
≤ C0,

then
|Q( f1)−Q( f2)|C0,α

ν−2
≤ C | f1− f2|C2,α

ν
max

{
| f1|C2,α

ν
, | f2|C2,α

ν

}
,

where C is a constant independent of r . Once again, this works because the r2F

term can easily be shown to satisfy the right estimates.

Step 4. We can now solve the CMC equation up to a finite-dimensional error term
by implementing a fixed-point argument based on the parametrix constructed in
Step 2 as well as the estimates we have computed so far. Let E :=8r,σ,δ,s(0) and
use the Ansatz f := R(w − E) to convert the equation 8r,σ,δ,s( f ) ∈ W̃ into the
fixed point problem w−Nr,σ,δ,s(w) ∈ W̃, where

Nr,σ,δ,s : C
0,α
ν−2(6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s))

is defined by
Nr,σ,δ,s(w) := −Q ◦R(w− E).

The estimates established up to now give us

|Nr (w1)−Nr (w2)|C0,α
ν−2
≤ Cr2

|w1−w2|C0,α
ν−2

for w in a ball of radius O(r2) about zero in C0,α
ν−2(6̃(σ, δ, s)), where C is inde-

pendent of r . Hence Nr is a contraction mapping on this ball if r is sufficiently
small, and a solution of (3-2) satisfying the desired estimate can be found. The
smooth dependence of this solution on the parameters (σ, δ, s) is a consequence of
the fixed-point process. �

4. Force balancing arguments and the proof of the Main Theorem

When r is sufficiently small, we have now found a function

fr (σ, δ) ∈ C2,α
∗
(6̃(σ, δ, s))

for each (σ, δ, s) such that

H
[
µ fr (σ,δ)(6̃(σ, δ, s))

]
− 2− r2F( fr (σ, δ, s))= Er (σ, δ, s),

where Er (σ, δ, s) is an error term belonging to the finite-dimensional space W̃

depending on the free parameters (σ, δ, s). The corresponding surface that sat-
isfies the prescribed mean curvature condition up to finite-dimensional error is
6
]
r (σ, δ, s) := µ fr (σ,δ,s)(6̃(σ, δ, s)).
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To complete the proof of the Main Theorem, we must show that it is possible
to find a value of (σ, δ, s) for which these error terms vanish identically. As in
[Butscher and Mazzeo 2008, §7.2], we take cut-off functions χ ′ext,k and χ ′neck,k
supported on the k-th spherical region and the k-th neck and transition region,
respectively, and consider the balancing map Br : R

2K−1
→ R2K−1 defined by

(4-1) Br (σ, δ, s) :=
(
π1(Er (σ, δ, s)), . . . , π2K−1(Er (σ, δ, s))

)
,

where π2k+1 : W̃→ R and π2k : W̃→ R are the L2-projection operators given by

π2k(e) :=
∫
6̃(σ,δ,s)

e ·χ ′neck,k Ĩk , π2k+1(e) :=
∫
6̃(σ,δ,s)

e ·χ ′ext,k J̃k .

Here Ĩk := Ik ◦5neck,k where 5neck,k is the nearest-point projection mapping of
the perturbed k-th neck region onto the unperturbed k-th neck, and Ik is the Jacobi
field of the k-th neck coming from translation along the neck axis. This is an
odd, bounded function with respect to the center of the neck. Note that Br is a
smooth map between finite-dimensional vector spaces by virtue of the fact that
the dependence of the solution fr (σ, δ, s) on (σ, δ, s) is smooth and the mean
curvature operator is a smooth map of the Banach spaces upon which it is defined.
The following lemma proves that π(e)= 0 implies that e = 0.

Lemma 4.1. Choose e ∈ W̃ as e=
∑K

k=1 akχext,k J̃k+
∑K−1

k=1 bkLk(ηk) for ak, bk ∈

R. Then
π2k(e)= C1bk −C ′1ε

3/2
k ak, π2k+1(e)= C2ak,

where C1,C ′1,C2 are positive constants independent of r and (σ, δ, s).

Proof. In the integral∫
e ·χ ′ext,k J̃k = ak

∫
χext,kχ

′

ext,k J̃ 2
k +

k∑
`=k−1

b`

∫
χ ′ext,kχext,`L`(η`) J̃k,

the second two terms can be made to vanish by choosing the supports of χext,
χ ′ext and ηk appropriately. The remaining term has large integral because J̃k =

Jk ◦5ext,k and Jk has unit L2 norm as a function of the sphere. In the integral∫
e · χ ′neck,k Ĩk =

∑k+1
`=k a`

∫
χext,`χ

′

neck,k J̃` Ĩk + bk
∫
χ ′neck,kχext,kLk(ηk) Ĩk the first

two terms contribute quantities proportional to the volume of the transition regions
surrounding the k-th neck where χext,kχ

′

neck,k is supported. The remaining term
can be made to have large, positive and negative values (depending on the sign
of Ĩk) by choosing the supports of χext, χ

′
ext to fall where the quantity Lk(ηk) is

largest. �

We must now show that Br (σ, δ, s) can be controlled by the initial geometry
of 6̃(σ, δ, s), at least to lowest order in r . The calculations are similar to those
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found in [Butscher and Mazzeo 2008, §7.2] except with the contributions from
the ambient background geometry replaced by a contribution from the prescribed
mean curvature in the form of the F-moments of the spheres making up 6̃(σ, δ, s).

The highest-order part of Er (σ, δ, s) involves the F-moments of the spherical
constituents Sk of 6̃(σ, δ, s) as follows. Set µk(σ, s) := µF (Sk) — this depends
on s and σ1, . . . , σk because the location of the center of Sk is determined by these
parameters. Let us continue to assume that εk = O(r2) and δk = O(r) for each k.
This will be justified shortly.

Lemma 4.2. The quantity Er (σ, δ, s) satisfies

(4-2) π2k
(
Er (σ, δ, s)

)
= C1δkε

3/2
k +O(r2+2ν)

and

(4-3) π2k+1
(
Er (σ, δ, s)

)
=


C2ε1− r2µ1(σ, s)+O(r4) if k = 0,
C2(εk+1− εk)− r2µk+1(σ, s)+O(r4) if 0< k < K − 1,
−C2εK − r2µK (σ, s)+O(r4) if k = K − 1,

where C1,C2 are constants independent of r, σ, δ, s.

Proof. Set 6]r := 6
]
r (σ, δ, s) and 6 := 6̃(σ, δ, s) for convenience. Consider first

(4-3) with 0< k < K − 1. By the first variation formula and estimates of the size
of the perturbation generating 6]r from 6̃(σ, δ, s), and calculating as in [Butscher
and Mazzeo 2008, Proposition 27], we have

π2k+1
(
Er (σ, δ, s)

)
=

∫
6
]
r

(
H [6]r ] − 2− r2F( fr (σ, δ, s))

)
χext,k Jk

=

∫
∂6]∩suppχext,k

〈
∂

∂x0 , νk

〉
− r2

∫
Sk

F(x, NSk (x))Jk +O(r4)

= C2
(
εk+1− εk

)
− r2µk(s, σ )+O(r4),

where νk is the unit normal vector field of ∂6] ∩ suppχext,k in 6].
Now consider (4-2). In the neck we have H [6̃(σ, δ, s)] = 0. Using similar

estimates, we get

π2k
(
Er (σ, δ, s)

)
=

∫
6
]
r

(
H [6]r ] − 2− r2F( fr (σ, δ, s))

)
χneck,k Ik

=−2
∫
6∩suppχneck,k

χneck,k Ik +O(r2+2ν)= C1δkε
3/2
k + O(r2+2ν),

where δk is the displacement parameter of the k-th neck. This is because Ik is
an odd function with respect to the neck having δk = 0, whereas the integral is
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being taken over the neck with δk 6= 0. Hence the integral
∫
6∩suppχneck,k

χneck,k Ik

picks up the displacement of the k-th neck from its position at δk = 0. This same
phenomenon arises in [Butscher and Mazzeo 2008, Proposition 27]. �

4.1. Proof of the Main Theorem. It remains to find a value of the parameters
(σ, δ, s) so that Er (σ, δ, s) = 0. As shown in Lemma 4.1, this is equivalent to
find a solution of the equation Br (σ, δ, s) = 0. In what follows, we will continue
to assume that ε = O(r2) and δ = O(r) and this will be justified shortly. As a
consequence of Lemma 4.2, the equations that we must solve are as follows:

C1δ1 = E1(σ, δ, s),
...

C1δK−1 = EK−1(σ, δ, s),

C2ε1 = r2µ1(σ, s)+ E ′1(σ, δ, s),

C2(ε2− ε1)= r2µ2(σ, s)+ E ′2(σ, δ, s),
...

C2(εK−1− εK−2)= r2µK−1(σ, s)+ E ′K−1(σ, δ, s),

−C2εK−1 = r2µK (σ, s)+ E ′K (σ, δ, s),

where εk depends on σk in an invertible manner as indicated in Step 2 of the con-
struction of the approximate solution, and Ek , E ′k are error quantities satisfying
the bounds |Ek | = O(r−1+2ν) and |E ′k | = O(r4). We can abbreviate these equations
by introducing the matrix M :=

(
I 0
0 J

)
, where I is the (K − 1)× (K − 1) identity

matrix and J is the K × (K − 1) matrix

J :=


1
−1 1

. . .

−1 1
−1

.

The equations become

(4-4) M(C1δ,C2ε)
t
= (E, r2µ+ E ′)t ,

where δ := (δ1, . . . , δK−1), ε := (ε1, . . . , εK−1) and so on for E, E ′ and µ.
We will solve these equations in two steps as follows. Note first that the matrix

M is injective but not surjective, with vectors in the image of M satisfying the
relation (0, e) ·M(v,w)= 0 for all (v,w)∈R2K−2, where e := (1, 1, . . . , 1)∈RK .
Let ρ : R2K−1

→ R2K−2 be the orthogonal projection onto the image of M . The
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equation

(4-5) ρM(ε, δ)− ρ(E, r2µ+ E ′)= 0

can now be solved using the implicit function theorem when r > 0 is sufficiently
small if the derivative matrix in (ε, δ) of the mapping on the left hand side of (4-5)
above is nonsingular when r = 0. But this holds because the matrix ρM :R2K−2

→

R2K−2 is nonsingular and the contribution to the derivative matrix coming from the
error term ρ(E, r2µ+ E ′) vanishes when r = 0.

We thus now have a solution ε :=εr (s) and δr (s) of (4-4) for all sufficiently small
r and depending implicitly on the one remaining free parameter s. Moreover, we
see that ε = O(r2) and δ = O(r−1+2ν) = O(r) since ν ∈ (1, 2). It remains to solve
(4-5) and we proceed as follows. Once (ε, δ) satisfy (4-5), then (4-4) becomes
equivalent to 0= (0, e) ·M(ε, δ)= r2e ·µ+ e · E ′, or simply

(4-6)
K∑

k=1

µk(σr (s), s)+ E ′′(σr (s), δr (s), s)= 0,

where the error quantity satisfies the estimate |E ′′| = O(r2).
Equation (4-6) may or may not have a solution, depending on the nature of the

function
∑

k µk , which in turn depends on the specific nature of the prescribed
mean curvature function F . However, if the following two conditions are met,
then the implicit function theorem guarantees the existence of a solution. First, it
must be the case that the equation at r = 0 has a solution, in other words if the
F-moments of the spheres S1, . . . , SK satisfy

K∑
k=1

µF (∂B1(p0
k (s)))= 0

for some s, where p0
k (s) := (s + 2(k − 1), 0, . . . , 0). Second, if s0 is the solution

of this equation, then it must also be the case that the mapping

s 7→
K∑

k=1

µF (∂B1(p0
k (s)))

has nonvanishing derivative at s = s0. If these conditions are satisfied, then the
implicit function theorem implies that for r sufficiently small, there is a solution
s(r) of (4-6). This completes the proof. �
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