
A MARKING BASED INTERFACE FOR COLLABORATIVE
WRITING

Gary Hardock, Gordon Kurtenbach and William Buxton

Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S 1A4

ABSTRACT

We describe a system to support a particular model of

document creation. In this model, the document flows
from the primary author to one or more collaborators.
They annotate it, then return it to the author who makes the
final changes. Annotations are made using conventional
marks, typically using a stylus. The intent is to match the
flow and mark-up of paper documents observed in the
everyday world, . The system is very much modeled on
Wang FreeStyle (Perkins, Blatt, Workman and Ehrlich,
1989; Francik and Akagi, 1989; & Levine and Ehrlich, in
press). Our contribution is to incorporate mark recognition
into the system and to explore some novel navigation tools
that are enabled by the higher-level data structures that we
use. The system is described and the results of initial user-
testing are reported.

INTRODUCTION

Collaborative writing occurs in many different forms
(Posner, 1991). Our system supports a model of document
creation in which the document flows from the primary
author to one or more collaborators. They annotate it, then
return it to the author who makes the final changes, This
flow of the document is illustrated in Figure 1.
Annotations are created by marking-up a copy of the

document with a stylus. The intent is to match the flow
and the way paper documents are marked-up in the
everyday world.

Other systems, such as Wang FreeStyle, emulate this model
of document creation (Perkins, Blatt, Workman and
Ehrlich, 1989; Francik and Akagi, 1989; & Levine and
Ehrlich, in press). With FreeStyle, annotations are made
not only with a stylus but also by recording speech. In our
system annotations can only be made with the stylus.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

diract commercial advantage, tha ACM copyright notice and the
dtle of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .
@ 1993 ACM ().89791-62&x/93/0()1 1...$1 .SO

With FreeStyle, the copy of the document that is
distributed is only a “dumb” snap-shot of the original.
Annotations are integrated as a separate layer to the “snap-
shot.” Furthermore, there is no computer recognition of the
markings. To edit the final document, the user needs two

J%ncloal Author Col~orat@

t
Creates / Edits
document

Sends copies Annotate
to collaborators document

— —

— —

— —

Return annotated

Reviews annotations and
incorporates into document

Figure 1: Asyncluonous Collaborative Writing
Scenario

The principal author creates a document and then

sends copies of it to collaborators. The collaborators
then annotate their copies and send them back to the
principal author. The principal author then reviews the
suggestions and possibly incorporates them in the
newer version of the document.

November 3-5, 1993 UIST’93 259

versions: the “dumb” annotated copy and the original.

The system we developed is more sophisticated. The
intention is to make the task of incorporating and managing
changes to the document easier. Our system uses mark
recognition to support automatically incorporating changes
into the document, and provides novel techniques to help
an editor avoid confusion when managing and navigating
through a changed document. Mark recognition, change
management, and navigation are made possible by using a
data structure that is more sophisticated than a snap-shot of
the document. Our document data structure contains
information about the relationships between the annotations
and text of a document. In what follows we describe the
system and the results of our initial user-testing.

Goodisman and Goldberg have also built a system that
allows documents to be edited and marked-up with a stylus
(Goldberg & Goodisman, 1991; Goodisman, 1991). Their
approach is based more on enhancing the actual
manipulation of the text, whereas our approach is more
concerned with a ptiicular collaborative writing process.
Both approaches should be seen as complementary as each
addresses different issues of a much larger problem.

MATE: MARKUP ANNOTATOR TEXT / EDITOR

MATE functions in three modes, one for each step of our
model of the writing process – “edit mode”, “annotation
mode”, and “incorporation mode”. The creation of the
document can be achieved with MATE in edit mode or
another word processor. In edit mode MATE functions as
a marking-based text editor. (As a prototype, however, it is
limited in functionality. It only supports delete, move and
insert commands, as well as some novel navigation
functions. Text is entered by the keyboard. Our concern is
nainly with the other aspects o; the processing of a

This is an example of a piece of text about t(

the middle of the paragraph

%

to the end of the paragra .

J

(a)
4

This is an example of a piece of text about t(I
be moved to the end of the paragraph from I
the middle of the paragraph.

Figure 2: MATE in “Edit Mode”,

(a) A user draws a move command. (b) After lijiting the
pen, the editing command is performed.

document, as others have worked specifically on stylus-
based text editors.) Figure 2 shows an example of MATE
in “edit mode”.

Copies of this document can then be e-mailed to the
collaborators. Each reviews their copy using MATE in
“annotation mode”. In this mode a collaborator can specify
suggested changes by marking up the document. As with
paper documents and FreeStyle, markings are not
interpreted as commands. They are treated strictly as
annotations at this point in the writing process. The marks
do not necessarily have to be editing commands. For
example, a marking could be something as vague as
“reword this paragraph”. An example of various
annotations is illustrated in Figure 3.

I I This is a sample document with several

IannOtatiOnsmaKOnits‘Ot-
11annotations correspond t~ editing

II commands.

Whereas others are more general

4
3C)

comments. ~G%

Figure 3: MATE in “Annotation Mode”.

In annotation mode, users murk up a document in MATE
just as ~they were marking up a paper document.

Marked up documents are returned to the primary author,

who does the actual revisions. This is done using MATE in
“incorporation mode”. In this mode, MATE displays two
views of the document (Figure 4). The left view ;ho”ws the
marked up document received from the collaborators, with
each reviewer’s annotations appearing in a different color.
Additional marks can be made, but the underlying text does
not change, similar to annotation mode. The right view
shows the current version of the document. No annotations
are visible in this view as any marks made in this window
are immediately interpreted as commands and executed
immediately, similar to edit mode.

These two views work in concert. A user can point to an
annotation in the left view and ask the system to perform it.
The resulting changed document appears in the right view.
The important characteristics of this design are that

● the editing, annotation, viewing and incorporation tasks
are integrated in a consistent, seamless manner.

● the annotations are visually persistent, even after they
have been “executed, thus providing a mechanism to
identify and select them at any time.

260 UIST’93 Atlanta, Georgia

ANNOTATION VIEW EDIT VIEW

This is a sample document with several This is a sample document with several

k
annotations mar ‘on it. Not annotations marked on it. Note that some

annotations correspond te+ed$+c editing annotations correspond to editing command:

commands.

a

Whereas others are more general comments,

Whereas others are more general

4
Q

comments. ~%

Figure 4: MATE in “Incorporation Mode”.

In incorporation mode, a user can view the annotated document, and select which annotations to incorporate.
Annotations t(seen in the left window) that have been “executed” appear as thin lines (e.g.., “cd”). Annotations that have
not been executed appear as thick lines. Annotations are colour coded according to who made them. Annotations that
represent commands can be executed by selecting them with the stylus. Annotations that have been executed can be
“undone” by selecting them. The current state of the document appears in the right hand window. The user can
navigate (scroll) independently or synchronously in each window.

Other reasons for this split view design are identified later
when the specific design issues are discussed.

COMBINING ANNOTATIONS AND EDIT
COMMANDS

Marks have already been used extensively in annotating
documents (Chow and Kim 1989; Carr 1991, Welboum

and Whitrow 1988; Wolf, Rhyne and Ellozy 1989). They
are also being used to specify commands to computer
applications (Cam 199 1). There are several properties of
marks which make them good for each purpose

● marks are visible; they provide a high contrast between
figure – markings, and ground – text.

● people spend many years learning how to make and
understand marks

● marks allow a very flexible protccol

● marks are spatially laid out.

All of the above properties make marks well suited for
annotating documents. The fact that most people can make
and understand marks gives a compelling reason to build
mark-based interfaces to computer applications. But it is
because marks possess all of these properties that enables
the same marks to be used as both an annotation and as an
editing command.

In short, efforts in marking interfaces have been mainly
directed at human-computer interaction. Perhaps even
more important, from our perspective is their value in
computer-mediated human-human communication. (Hence
the effectiveness of FreeStyle, despite the absence of any
mark recognition.)

One way of comparing the annotation process and editing a
document on a computer is that in the frost case a prson is
communicating with another person, whereas in the second
case a person is communicating with a computer. The goal
then becomes to design a method in which a person can
communicate to both another person and to a computer
application,

The fact that marking commands to the computer
application are visible is the key. If, instead of
immediately interpreting a marking command, the
computer does not process the mark but simply leaves the
mark visible, the mark can be thought of as an annotation.
From this point of view, annotations are deferred edit
commands. In terms of the different modes of MATE,
annotation mode can also be called deferred mode, and edit
mode is immediate mode.

FUNCTIONALITY AND CAPABILITIES OF MATE

In addition to the benefits and issues concerning the use of
markings for editing and annotating, there are many
advantages and issues when both uses are combined in an
integrated system. In this section we describe some of
these.

Do by Selection:

As mentioned earlier we can select markings in the
annotation view to be performed in the edit view. The

selection is accomplished by tapping on the marking.
Feedback is provided by making the marking thinner,
indicating that it has been performed. Note that this
selection is possible only when both the user and the
computer can understand the editing command identified

November 3-5, 1993 UIST’93 261

by the marking. Figure 4 shows the result of selecting the
insert and delete annotation marks for incorporation.

History Mechanism

The feedback provided by thinning the markings which
have been performed provides a history of the annotations
which have been incorporated. However, this graphical
history mechanism is spatiat in nature, not chronological.
This is much more useful as the order of incorporating
annotations is unimportant, whereas the locations of the
annotations immediately tell us what text the commands
have been applied to. For example, in Figure 4, we
immediately notice that the insert and delete annotations
have been performed and to what pieces of text they were
applied to, but we do not know when or in what order,

Undo by Selection

Just as a mark can be incorporated by tapping on it, a mark
can also be unincorporated by tapping on it again. This is
only possible because the annotation mmks are always
visible, a result of having the two views of the document.
Note that Undo by selection is not order dependent. Figure

5 shows an example of how this works. It does not matter
whether the delete or move command was performed fwst,
either command can be directly undone. Note that the
annotations correspond to a specific piece of text, not the
position of the annotation. Such a mechanism for undoing
text-editing commands has never been built before.

Note thkn the edit vie I
(a)

I Note that in the edit view text is different. I

(b)
I 1

Note that text in the edit view is different. I
1 1

(c)

I I
Note that the text in the edit view is different. I

(d)

Figure 5: Undoing irrespective of temporal order.

The initial text is shown in (a). (b) is the result after the
deletion is performed. (c)is the result after the move is
performed. After undoing the delete command, the desired
result is (d).

Previewing

By combining Do and Undo by selection we have a method
for previewing the results of suggested annotations. If a
user wishes to preview what would happen if they

incorporated an annotation, they can Do it, examine the
results, and then Undo it. Note that because the Undo is
non-chronological any combination of annotations can be
previewed. This allows the user to try “what if’ scenarios,
with only the cost of tapping on the annotations. Note that
the user need not be the principal author. It could be used
by a collaborator wanting to see the results if the
annotations were incorporated.

Enhancement of Understanding

The ability of the system to understand the meaning of a
mark lessens the possibility of a misunderstanding between
the annotation’s writer and reader.

.

.

.

everyday use brings certain expectations, namely the
maker of the annotation expects the person interpreting
the annotation to understand the makings.

The reader may not meet the writer’s expectations in
terms of understanding the writer’s annotations.

But the computer can give immediate feedback to the
writer to verify the writer’s expectations about the

computer’s understanding.

Table 1 shows that the addition of computer recognizing
commands can aid in the communication between the
annotation’s creator and reader.

Viewing the Annotations of Several Authors

The annotations of several collaborators can be overlaid in
the annotation view. To differentiate among the various
collaborators markings, each set is displayed in a different
color. Note that this is possible because the markings are
separate from the text document, so different characteristics
can be added to each set of markings. This is analogous to
writing on a transparency overlaid on top of a paper
document and writing on the transparency. Then several
marked up transparencies can be placed over the paper
document.

A preliminary study using transparencies was conducted to
identify the issues and advantages of overlaying the
annotations. The results indicated that the usefulness of
this feature depends upon the density of annotations on the
page. In some cases a single transparency was cluttered,
and overlaying several transparencies made the annotations
illegible.

As the problems of clutter are also found in a single set of
annotations, we decided to address the more general
problem of reducing the density of the markings. This is
accomplished by providing support functions such as “Hide
Set of Marks”, “Show Set of Marks”, “Hide Mark”, and
“Show Hidden Marks”.

Broken Move, Multiple Buffers and Placeholders

As the editing marks also serve as annotations, we have
examined the markings used in the everyday marking-up of

262 UIST’93 Atlanta, Georgia

Understanding Computer

Reader Understands Does not Understand

Understands mutual understanding user will ignore computer’s computer neither aids nor

misinterpretation ~nders user interpretation

Misinterprets Computer understands, may user and computer may have
help the reader understand the different misinterpretations,
marking which may cause the user to

possibly try a different
interpretation

Does not Understand User may accept the
;omputer’s misinterpretation

Table 1: Enhancing the Understanding between the creator and reader of an annotation.
If the reader does not understand or misinterprets the meaning of a marking, the computer maybe able to understand it

paper documents to gain insights into the design of the
editing commands. One command we have “borrowed
from pen and paper is the broken move command, shown in
Figure 6. Instead using a “star’ symbol to move to and
from, we use a marking menu containing various symbols
termed placeholders.

Another way of thinking about this command, besides as a
broken move, is as two commands, move to buffer with ID,
and move from buffer with ID. This a.IIows muitiple text
buffers, each with a unique placeholder symbol to identify
it, It is important to note that the user chooses which
placeholder to move text into, thus providing a strong
connection between the placeholder and the text it contains.
Also, because the placeholders containing text are visible,
it is trivial to determine what text is contained in a
placeholder buffer.

moved to “star”.

(a)

This is the destination

which “star” is moved to..

Figure 6: Moving text across pages using “move to star”
and “move from star”.

THE SUPPORTING USER INTERFACE

The overall design of the user interface allowed the system
to provide the functionality mentioned above, but there are
several additional interface components which are needed
to support this functionality

Interacting with the Markings

We mentioned above that markings could be done and
undone by tapping on them. But other operations on the
marks are also necessary, for example, the need to hide or

erase marks. In order to provide this functionality marking
menus (Kurtenbach & Buxlon, 1991) were implemented.
This gives a logical extension to tapping on the m~k. If
the user taps on the mark, it is done or undone. If, however,
the user makes a mark starting from an existing mark it is
interpreted as a marking menu selection. Figure 7 shows
the marking menu for operations on marks. GoTo and
GoBack are discussed in the section on coordinating the
two views.

T

Erase

GoBack

&
Figure 7: Marking menu for operations on annotation
markings.

Navigation

Instead of using scrollbars, our approach to navigation was
based upon the handling of a piece of paper directly with
the pen. By holding down the middle button of the mouse

November 3-5, 1993 UIST’93 263

or the button on the pen, the user enters navigation mode.
In this mode, the “page” or window of the annotation or
edit view can be grabbed and moved. An upwards motion
moves the document forward, which corresponds to
moving the scrollbar or viewing window down. If the pen
motion is slow the document moves as if it has been
grabbed and is being pushed. If the motion is faster then
the document moves as if the user had j7icked a page
forward or backward.

Independent Direct Navigation. Navigation mode is
implemented as a modified marking menu, shown in Figure

8. Page flicks are always too fast for the menu to pop up,
but the page push commands can be selected by either the
mark or the menu. These “flicks” and “pushes” are applied
to the annotation and edit windows independent of each
other.

Figure 8: Marking menu for navigation.

Coordinating the Annotation and Edit Vie ws. Several
problems appear due to the fact that there are two views of
the same document. Some of these are

● how should scrolling and other types of navigation be
coordinated between the two views?

● what should happen, and what should appem after an
editing command is performed, or an annotation is
selected to be done or undone.?

● what support is needed to aid the user in understanding
the relationship between the two views?

Linked Direct Navigation. As the document changes, the
annotation and edit views become more and more different.
Therefore it is not always clear how each view should react
when a navigation command is performed in the other
view. One solution is to “link” the two views so that they
move equat amounts. This is accomplished by modifying
the page flicks and page pushes. If the user wants a linked
movement, he or she first makes appropriate move
command and then without lifting the pen, draws a line to
the left or right. Note that in some cases the line will look
like an “L”, thereby providing a mnemonic cue.

Context Dependent Linked Navigation

Whereas, the direct navigation mechanisms are based upon
relative movements, the context dependent navigation
atlows the user to align the two views based upon a specific
piece of text – context. This is accomplished via the GoTo
and GoBack commands.

There are two slightly different types of GoTo commands.
When GoTo Text is applied to a piece of text in one of the
two views, the corresponding piece of text is found in the
other view, and then the other view is aligned with the fwst
view. The piece of text is also highlighted.

GoTo Annotation is similar to GoTo Text, except that it is
applied only to annotations. This means that GoTo
Annotation can only be used in the annotation view. When
GoTo Annotation is applied to a mark, the mark is
interpreted, and if the interpretation is successful, the Edit
view is atigned with the annotation view and the text
affected by the command is highlighted.

INTERFACE ALTERNATIVES

The general concepts discussed in the introductory sections

could possibly be applied using interfaces other than those
based upon the pen and paper metaphor, but the property
that marks are visible and the capability to use the same
mark as both an annotation and for specifying the editing
command gives the marking-based approach definite
advantages.

GUI Interfaces

For example, a GUI type of interface with a mouse and
keybom-d could be used to enter comments and specify

commands. This was partially achieved with the

Collaborative Annotator (Koserak et. al 199?). However it
only allows annotations to be made, it is not a text editor.
The main problem with GUI type or direct-manipulation
interfaces is that there is a separation between specifying
edhing commands and specifying annotations. The actions
used in specifying editing commands, such as menu
selections, mouse movements, and button clicks do not
leave a “visible audit trail” (Kurtenbach 19??), and
therefore cannot be easily used as annotations.

Speech Interfaces

Speech is a very good means of communication among
people, therefore it makes sense to use speech as a method
of annotating a document. But speech is not visible and is
poor in specifying locations. Also, speech is good for
certain types of annotations, but poor for others. In fact,
speech is best for general comments and “wordy”
comments, exactly the types of annotations for which
mark-up annotations are poor for. Therefore, like
FreeStyle, the ideal system would use a combination mark-
based speech based interface. However, as the speech
based-interface is dependent upon the mark-based
interface, we decided to frost see would could be gained

264 UIST’93 Atlanta, Georgia

with a purely mark-based approach. A hybrid system is
left as future work.

Alternatives to the Two Views

Several problems occurred as a result of having two views
of the document, the annotation and edit views. There are
alternatives, each of which has its own advantages and
disadvantages.

One View for Each Set of Annotations. This is a good
solution for the multiple sets of annotations problem. .But
it magnifies the problems in coordinating a single
annotation view with a single edit view. Although the
benefits of multiple annotation views may outweigh the
disadvantages caused by these problems, we decided to
concentrate on the issues concerning the coordination of
one annotation and one edit view frost and leave multiple
annotation views as future work.

Sing/e View. Another alternative is to have a single view.
Although this might seem to solve the coordination
problem, it only transforms it into another related problem.
As the document in the single view changes, the
annotations will have to be modified to adapt to fit the
current version of the document. This is possible for
annotations which can be interpreted as editing commands,
but for general comments there is no way for the system to
know how they should be transformed. this is illustrated
by the example shown in Figure 9.

This wa “ “~ single paragraph.

(a)

~

The split into two separat paragraphs

This wa “ “~ single paragraph. I
(b)

Figure 9: Attempting to Update a Single View.

(a) shows the original view, before the update. (b) shows
the result of an attempted update. Such an update is very
di~cult as almost all of the marks need to be changed or
moved, including marks strictly meant to be treated as
comments. Note that the placement of “Poor” is unknown.

These aguments do not mean that the two view approach
is necessarily better. It is an alternative with its own issues
and problems. It would be useful in the fiture to design the

alternative interfaces and compare the advantages and
disadvantages to each approach.

EXPERIENCES WITH MATE

MATE is still at the preliminary design / implementation

stage but some limited user testing has been done. The
main purpose of the user testing was to determine if the
underlying concepts were valid, and to identify any major
problems with the system. Also as the navigation
command set was fully functional, it was tested in more
detail.

Five users were placed in a mock scenario, in which they
were to pretend that they were the principal author given a
marked-up document to edit. What they chose to
incorporate was entirely up to them.

The results of the study showed that users choose to
incorporate annotations by selection rather than by
manuatly doing the edit themselves. Issues concerning
histories, undo, and previewing were inconclusive as the
users did not use these features.

The task was not complicated enough to bring out the
issues regarding the coordination of the two views.
However, there was some confusion between the GoTo
Text and the GoTo Annotation commands.

The navigation testing was confounded by the stylus which
was unreliable. In particulm this made page flicks very
difficult to specify. Several users preferred to use the
scrollbar, instead of page flicks. Another problem was the
response time of the system for page movements, which
often confused users about whether it understood their
command or not. These results do not conclude that page
flicks do not work, but that more free-tuning will be needed
if they are to be useful and usable.

SUMMARY AND CONCLUSIONS

MATE was designed and built as one solution to the
asynchronous collaborative writing problem. As
mentioned above, there are several alternative approaches
and many directions for future work. MATE is intended to
be a fus.t step in identifying, and addressing some of the
problems with asynchronous collaborative writing. Atso
severat new issues and uses of marking-based interfaces
have been developed in the process.

ACKNOWLEDGMENTS

We would like to thank the members of the Input Research
Group at the University of Toronto who provided the
forum within which this work was undertaken. Primary
support has come from Digital Equipment Corp., Xerox
PARC, and the Natural Sciences and Engineering Research
Council of Canada. Additional support has been provided
by Apple Computer Inc., IBM Canada’s Laboratory Centre
for Advanced Studies, and the Amott Design Group of
Toronto. This support is gratefidly acknowledged.

November 3-5, 1993 UIST’93 265

REFERENCES

Chow, D & Kim, J. (1989). Paper-Like Interface for
Educational Applications, National Educational
Computing Conference ’89, Boston,
Massachusetts, pp. 337-344.

Francik, E. & Akagi, K. (1989). Designing a computer
pencil and tablet for handwriting, f’roceedifzgs of
the Humun Factors Society 33rd Annual Meeting,
445-449.

Carr, R. M. (1991). The point of the pen. Byte, February,
pp. 211-226.

Goldberg, D. & Goodisman, A. (1991). Stylus user
interfaces for manipulating text. Proceedings of
the Fourth ACM SIGGRAPH Symposium on User
Interface Technology (UIST’91), 127-135.

Goodisman, A. (1991). A stylus-based interface for text
Entry and Editing. Technical Report CSL-91-1O,
Xerox Palo Alto Research Center.

Hardock, G. (1991) Design Issues for Line Driven Text
Editing/Annotation Systems. In Graphics
lnte&ace ’91, Calgary, June, 1991. pp. 77-84

Kosarek, J. L., Lindstrom, T. L., Ensor, J. R., & Ahuja, S.
R. (1990). A Multi-User Document Review Tool.
In S. Gibbs, & A. A. Verrijn-Stuart (Ed.),
Proceedings of Multi-User Interfaces and
Applications (pp. 207 - 215). North-Holland:
Elsevier Science Publishers.

Kurtenbach, G. & Buxton, W. (1991). Marking Menus In
UIST: Proceedings of the ACM Symposium on
User Inte~ace Sofiware and Technology. pp. 137
-144.

Levine, S.R. & Ehrlich, S.F. (in press). The Freestyle
system: a design perspective. In A. Klinger (Ed.).
Humun-Muchine Interactive Systems. New York:
Plenum Press.

Perkins, R., Blatt, L,, Workman, D. & Ehrlich, S. (1989).
Iterative tutorial design in the product
development cycle. Proceedings of the Human
Factors Society 33rd Annual Meeting, 268-272.

Posner, LR. (1991). A Study of Collaborative Writing.

Master’s Thesis, University of Toronto.
Welbourn, L.K. & Whitrow, R.J. (1988). A Gesture

Based Text Editor, in D. Jones & R. Winder
(Eds.), People and Computers IV, Proceedings of
the Fourth Conference of the British Computer
Society Human-Computer Interaction Specialist
Group. Cambridge, Cambridge University Press,
pp. 363-371.

Wolf, C. G., Rhyne, J.R. & Ellozy, H.A. (1989). The
Paper-Like Interface, IBM Technical Report RC
14615 (64399) 2/3/89, also in Designing on Using

Human Computer Interfaces and Knowledge-
Based Systems, G. Salvendy & M,J, Smith (Eds.),
Elsevier Science Publ, Amsterdam, 1989, pp. 494
-501.

266 UIST’93 Atlanta, Georgia

