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ABSTRACT
In the context of discrete-event simulation, time resolution
pertains to the time points at which events actually occur,
whereas time precision constrains the time points at which
events may possibly occur. Time precision is generally asso-
ciated with the rounding of time values that takes place when
a simulation is executed on a computer, yet here we study pre-
cision on a theoretical level. We find that while some models
truly require a continuous representation of simulated time,
a surprisingly diverse set of continuous-time models can be
regarded as having an inherent level of time precision. We
explore this concept by introducing the notion of an optimal
time quantum, a simulation model property useful for estab-
lishing the set of durations which evenly divide all mathe-
matically possible event times. A hierarchical method is pre-
sented for deriving the optimal time quantum from a model
specification. The proposed theory complements past and on-
going research on simultaneity, time representation, and for-
mal reasoning.
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1. INTRODUCTION
This paper presents new theory for analyzing the temporal
properties of discrete-event simulation models, which are of-
ten associated with continuous time. We find that a wide va-
riety of continuous-time models feature an inherent level of
time precision such that, when models of this kind are cou-
pled, event times can only occur at multiples of some positive
time quantum. This quantization of time is not merely the re-
sult of rounding that takes place during computer execution.
Rather, a time quantum can often be derived from a model’s
mathematical specification. Such analyses reveal which pre-
cision levels, if any, result in error-free time computations.

Our contributions include the notion of an optimal time quan-
tum, as well as a hierarchical method for deriving this prop-
erty given a particular model. The analysis begins with com-
ponents at the bottom of a model hierarchy, then progresses
upward until it encompasses all models and sources of data.
When deriving the optimal time quantum of a component
model, one assumes the time points of all inputs to be quan-
tized; later, when moving up one level in the hierarchy, this
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assumption becomes a constraint on simulated time. Upon
reaching the top of the hierarchy, the overall optimal time
quantum is either (a) positive, in which case it evenly divides
all mathematically possible event times, or (b) zero, in which
case the model truly requires continuous time for exact re-
sults. After applying the method to classic examples from
Zeigler et al. [31], we find that a diverse set of simulation
models do exhibit a positive optimal time quantum despite
accepting inputs at potentially irrational time points.

The paper is organized as follows. Section 2 reviews several
decades of progress in understanding the role of time in sim-
ulation. Topics covered include the DEVS formalism, time
systems, simultaneous events, time approximation in parallel
simulation, computer representations of simulated time, and
temporal logic. Section 3 provides an informal overview of
time precision and other concepts associated with the opti-
mal time quantum. It also outlines our hierarchical method
for inferring this property. Section 4 formalizes these con-
cepts. Three mathematical tests are proposed for analyzing
time quanta inherent in atomic models from which hierar-
chies are constructed. As discussed in Section 5, the proposed
theory complements past and ongoing research on simultane-
ity, time representation, and formal reasoning.

2. RELATED WORK
The concept of time is pervasive throughout the modeling and
simulation literature. It also figures prominently in distributed
computing and mathematics. Accordingly, our work touches
on a broad range of research areas in which the role of time
has been elaborated.

2.1. DEVS
In Theory of Modeling and Simulation, Zeigler et al. [31]
explain how simulations imply an indexing of events based
on some representation of time. The representation need not
correspond to physical time (i.e. measurable in seconds); but
if it does, we refer to it as simulated time. Chapter 4 of the
book reveals how two types of simulated time durations, de-
noted e and ta(s), can be used in conjunction with the current
state s to specify the intended behavior of any discrete-event
simulation model. The associated formalism, called DEVS, is
demonstrated in the same chapter using 15 example models
chosen for their educational value. We base our method on
DEVS theory, and illustrate it using models from Chapter 4.

2.2. Time Systems
We describe a time system as a means of associating math-
ematical values, called time points, to events. Our focus is
on simulated time, but this is just one of many time systems



relevant to simulation. Rooted in the work of Lamport [16],
logical time refers to time systems which capture one or more
aspects of causality: the fact that one event may influence an-
other through a state change or message [21]. Logical time
need not adhere to simulated time. Virtual time [13] refers to
a time system used to detect conflicts between optimistically
processed events. A simple time system that accommodates
discrete-event simulation employs time points of the form
[t, c], where t is simulated time and c is an integer counter.
As explained by Nutaro and Sarjoughian [20], event times of
this form are compared lexicographically with the c elements
breaking the tie in cases where t elements are equal. In other
words, c helps maintain an ordering of events within a single
instant of simulated time. Variants of this time system, such
as the t+c = t+ c·ε notation proposed by Barros [1] and su-
perdense time applied by Lee [18], differ partly in the types
of operations that require c to be incremented.

2.3. Simultaneous Events
When simultaneous events are ordered using time point op-
erations, there is often a choice of whether to augment sim-
ulated time with an integer counter—as in the [t, c] time sys-
tems described above—or to simply offset an event time t by
some short ∆t. This choice has been observed by Kim et
al. [15], while Barz et al. [2] criticize simulated time off-
sets for their potential impact on simulation results. It is true
that an integer counter helps honor causal relationships [20,
1] and can address undesirable “chattering” conditions [18].
However, Wieland [29] argues that simulated time carries a
degree of uncertainty that can be advantageously exploited
by randomly offsetting event times. The random offsets are
bounded by a duration parameter δ, called the “threshold of
event simultaneity”, and simulations are repeated with dif-
ferent offsets in the hopes of achieving robust statistics. An
interesting comment is made that for “analytic simulations,
δ can represent the precision of the model [our emphasis]”.
Our work elaborates on the concept of model precision.

2.4. Time Approximation in Parallel Simulation
In addition to statistical benefits, Wieland [29] asserts that
exploiting temporal uncertainty by shifting event times can
improve performance in parallel and distributed simulation.
The idea is demonstrated by Zeigler et al. [30], who increase
parallelism by quantizing simulated time according to a time
granule d. Although delaying events by as much as d intro-
duces rounding error, it allows greater numbers of events to
be executed in parallel by synchronous simulators such as
those based on the Parallel DEVS formalism [4]. Fujimoto
[5] approximates time points in a similar manner to increase
concurrency in the context of asynchronous distributed sim-
ulation algorithms. In this case simulated time is not quan-
tized, but event times are independently deferred up to some
interval size based on the relative progress made by commu-
nicating logical processes. Performance is shown to improve
with interval size. Although these works explain and justify
the use of an arbitrary duration parameter such as the time
granule or the interval size, little guidance is provided on how
to choose the parameter value. We show that reasonable op-
tions may be implied by the specification of the model being
simulated.

2.5. Computer Representations of Simulated Time
A time system may have a number of plausible computer rep-
resentations, and simulated time has several. Vicino et al.
[27] observe that (a) the majority of DEVS-based simulators
use a floating-point representation, and (b) rounding errors
arising from floating-point time can cause events to be shifted
or even reordered. Varga [26] cites limited precision and non-
associativity of addition as reasons why OMNeT++ switched
from a floating-point to a fixed-point representation of sim-
ulated time. A downside to fixed-point time is the need to
prescribe a level of precision. CD++ [28], one of the few
DEVS-based simulators supporting fixed-point time, features
a 1-millisecond precision level suitable for real-time applica-
tions. In OMNeT++, the user can choose a level of precision
to be imposed on a simulation run. Our work helps reveal
which precision levels, if any, result in error-free event time
computations for a given model specification. This motivates
a discussion on the application areas which most benefit from
fixed-point time as opposed to floating-point time (see Sec-
tion 5). A third option for representing simulated time, based
on rational number data types [27], is also discussed.

2.6. Temporal Logic
Looking beyond time systems, temporal logic encompasses
theories that aid in reasoning without necessarily quantify-
ing event times. In A Catalog of Temporal Theories, Hayes
[7] presents a taxonomy of time-related concepts including
“tense”, “time interval”, “temporal position”, and notably
“time quantum”. Portions of the associated theory have been
applied in a context closely related to simulation [19]. A
classic essay by Lamport [17] advocates the use of temporal
logic for reasoning about concurrent programs. Although we
forgo temporal logic and focus little on concurrency, Lam-
port’s work is relevant to our own for two reasons. First,
the desire for a hierarchical method shapes the entire the-
ory. Second, we take inspiration from the philosophy that for-
mal methods can be applied manually—or automatically once
suitable tools are available—to better understand the behav-
ior of a system. Techniques exist for analyzing the temporal
behavior of discrete-event simulation models; one example is
the exploration of temporal structures by Traoré [24]. The
temporal property we introduce is unusual in that it can be
calculated without a formal representation of state, at least
for many common models. Thus given only a partial model
specification, a degree of formal reasoning becomes practical.

3. CONCEPTUAL ANALYSIS OF TIME PRECISION
This section explores how simulation models can have inher-
ent levels of precision. We begin by contrasting time preci-
sion with the related concept of time resolution. The defini-
tions below are identical except for the phrases in bold.

Time resolution characterizes the frequency of time points
at which similar events occur1. In discrete-time simulation,
time resolution may be expressed using a fixed time step that
separates consecutive events times. A simulation with a 5-
second time step has a 5s time resolution. The longer the
time step, the coarser2 the resolution and the larger the dis-
cretization errors.



Time precision characterizes the frequency of time points to
which event times are rounded. In discrete-event simulation,
time precision may be expressed using a fixed time quantum3

that evenly divides all event times. A simulation with a 1-
nanosecond time quantum has a 1ns time precision. The
longer the time quantum, the coarser the precision and the
larger the rounding errors.

Notes:
1By similar events, we mean all events which affect a particular state variable

or other time-varying observation.
2The phrase higher resolution is confusing because it corresponds to a

shorter time step; we prefer the phrase coarser resolution (the opposite be-
ing finer resolution), and the same applies to precision.

3Our definition of time quantum is not be confused with the Global Virtual
Time computation algorithm of the same name [3], which temporally parti-
tions events using numbers attached to messages.

In short, time resolution is often associated with time steps
and discretization error, whereas time precision pertains to
time quanta and rounding error.

If a time duration ∆t has a particular time precision, one that
is associated with finite positive time quantum δt, then ∆t is a
multiple of δt. Importantly, there are two ways that a nonzero
δt can arise. First, it can be imposed by a simulator that uses
a fixed-point representation of simulated time; that is, a repre-
sentation where all time values can be expressed as m·δt for
some integer multiplier m and some preselected δt. Alterna-
tively, δt may be implied by the specification of a simulation
model. We refer to this second type of δt as a conformant time
quantum, and we call its associated precision level a confor-
mant time precision. If a fixed-point representation is based
on a conformant time quantum/precision, then the durations
encountered in a simulation may be free of rounding error.

A conformant time quantum divided by a positive integer is
also a conformant time quantum of the same model. We call
a model’s longest such quantum the optimal time quantum,
and the associated precision is the optimal time precision.
A fixed-point time representation based on an optimal time
quantum δt not only conforms with the model specification,
but also minimizes the multiplier component m of all time
values m·δt. Once we have determined a model’s optimal
time quantum, we can obtain a (likely complete) set of con-
formant time quanta by dividing by positive integers.

To obtain a model’s optimal time quantum, a number of as-
sumptions are necessary. Before listing them, let us distin-
guish among three types of time durations: elapsed durations,
planned durations, and duration parameters. An elapsed du-
ration ∆te is the finite amount of simulated time separat-
ing two consecutive events of the same model instance. A
planned duration ∆tp is the possibly infinite amount of simu-
lated time separating one event from the same instance’s most
imminent scheduled event. If the scheduled event occurs, the
preceding ∆te and ∆tp are equal. If the scheduled event is
preceded by an incoming message, then ∆te ≤ ∆tp. The
third type of time duration is a duration parameter, which is
known at the outset of a simulation and affects the elapsed
and planned durations encountered during the simulation. A
fixed time step is one of many types of duration parameters.

When seeking a model’s optimal time quantum, our assump-
tions are as follows:

Assumption 1: All duration parameters represent a rational
number of seconds. Note that we are not referring to rational
number data types, as in [27], but rational numbers in a math-
ematical sense. Thus even the computed value sqrt(7.0)

is rational, since floating-point numbers have a finite num-
ber of binary digits. We assume neither rational elapsed du-
rations, as in Rational Time-Advance DEVS (RTA-DEVS),
nor rational planned durations, as in RTA-DEVS and Finite
& Deterministic DEVS (FD-DEVS) [12]. If the optimal time
quantum turns out to be positive and rational, then all elapsed
durations and finite planned durations will be rational as well,
but this is something we must calculate on a per-model basis.

Assumption 2: All model instances undergo an initialization
event at simulated time point t = 0. This assumption is not
fundamental to the proposed theory, but rather a matter of
convenience. It guarantees that if all elapsed durations and
finite planned durations are multiples of some δt, then so are
all event times. In the future, our method could be generalized
to accommodate other initialization conventions.

Assumption 3: The model hierarchy encompasses all sources
of time-varying data, including input sequences or informa-
tion received in real-time from an embedded system or inter-
active user interface. This assumption can be seen as a step
in the direction of the “model everything” philosophy [25].
Although it is good practice to keep a domain-specific model
separate from any associated experimental frame [31], we as-
sume the frame is itself a component in an upper level of the
model hierarchy. In future work, the domain-specific model
and the experimental frame can be explicitly differentiated.

There is a fourth assumption, but it applies only in the context
of a particular model and a potential time quantum. Since it
enables further reasoning, we refer to it as the Premise.

Premise: When considering whether some time quantum
δt conforms with a model specification, the simulated time
points associated with inputs are assumed to be multiples of
δt/j for any positive integer j. This concept is best explained
in steps. First, choose any j ∈ {1, 2, . . .}. Second, assume
input times are multiples of δt/j. It follows from Assump-
tion 2 that elapsed durations are also multiples of δt/j. Now
we ask whether all finite planned durations are guaranteed to
be multiples of δt/j. If the answer is yes for all j, then δt is
a conformant time quantum.

In short, the Premise assumes input-associated event times
are quantized so that one can determine if all other event times
will be quantized. The rationale is similar to that underlying
Lamport’s temporal logic [17]: to enable hierarchical anal-
ysis. Instead of considering a complex hierarchical model
as a whole, the Premise allows an optimal time quantum to
be determined for each component in a bottom-up fashion.
When analyzing a single component, one temporarily ignores
the temporal properties of any source of time-varying data.
These data sources are themselves components on account of
Assumption 3, so their temporal properties will eventually be
accounted for as part of the encompassing analysis.



Figure 1. A hierarchy of model instances labeled A through K. Time steps ∆ts for [reactive] generators and response durations ∆tr for processors are indicated.

Let us illustrate the hierarchical method with an example.
Figure 1 shows a model hierarchy consisting of 11 model
instances labeled A through K. Three of these are instances
of coupled models: Instance A at the top of the hierarchy;
Instance B one level down; and Instance C nested within B.
Each of these levels contains instances of atomic models: D is
an instance of the Generator model; F, G, and J are instances
of the Reactive Generator model; and E, H, I, and K are in-
stances of the Processor model. These three classic examples
of atomic models are described below.

Generator: This model produces outputs at regular intervals
spaced according to the time step duration parameter ∆ts.
The temporal behavior of a generator is described by a DEVS
model in Chapter 4 of Theory of Modeling and Simulation
[31]. We assume the first output occurs at t = ∆ts, one time
step beyond the initialization event. This convention is typical
of DEVS model implementations, conveniently ensuring all
events times are divisible by the time step.

Reactive Generator: This model (a) produces outputs at reg-
ular intervals according to time step ∆ts, and (b) can accept
an input at any time to influence subsequent output values.
An example of a reactive generator is the “ramp” model in
Chapter 4 of [31]. Again, we assume the first output occurs
at t = ∆ts. This ensures that each planned event—an event
triggered by the elapsing of a planned duration (and possibly
associated with an output)—occurs at a time point divisible
by the time step. However, each unplanned event—an event
triggered by an “unplanned” input—may occur at any real-
valued point in simulated time.

Processor: This model either (a) waits indefinitely for an in-
put to process, or (b) produces an output in response to an
input after a delay equal to the response duration parameter
∆tr. As in Chapter 4 of [31], we assume that after a wait-
ing processor receives an input, all subsequent inputs are ig-
nored until the output is produced and the processor returns
to a waiting state. We further assume a processor is initially
waiting. In the case of a processor model, both planned and
unplanned events may occur at any real-valued point in sim-
ulated time.

A reactive generator’s unplanned events and all of a proces-
sor’s events occur at real-valued time points that need not ad-
here to any particular level of precision. Yet when they serve
as components in a model hierarchy such as that of Figure 1,

the overall model may feature a time quantum. Figure 1 in-
dicates the values of the duration parameters ∆ts and ∆tr of
all atomic model components. In milliseconds, the parameter
values are 60000, 960, 720, 9000, 75, 100, 3600000, and 125.
The greatest common divisor of these values is 5. We observe
that a duration of 5ms will evenly divide all event times for
this model hierarchy, including those associated with the pro-
cessor instances and with the inputs of the reactive generators.
We consider 5ms to be the optimal time quantum of the over-
all model, while 5ms, 5

2ms, 5
3ms, 5

4ms, etc., are conformant
time quanta that will also divide the event times evenly.

The example reveals that after coupling atomic models which
individually permit real-valued event times, we may counter-
intuitively end up with a hierarchical model that constrains
event times to some inherent level of precision. In the case of
Figure 1, we observe an optimal time quantum of 5ms.

In practice, model hierarchies may be broader and deeper
than that in Figure 1, and atomic model components are of-
ten much more complicated than generators, reactive gener-
ators, and processors. Thus rather than analyzing the entire
composition of a model as a whole, we should seek a hier-
archical method which starts at the atomic components and
progresses upward until all atomic and coupled models have
been included in the analysis.

For each of the three particular atomic models in Figure 1,
we assert that its optimal time quantum is simply its dura-
tion parameter. Thus the optimal time quantum of Reactive
Generator G is 9 seconds, and that of Processor H is 75 mil-
liseconds. For any coupled model in general, we adopt the
heuristic that the optimal time quantum is the greatest com-
mon divisor (GCD) of that of its components. So the optimal
time quantum of C is the GCD of 720ms and 9s, which is
360ms. The optimal time quantum of B is the GCD of 360ms,
60s, and 960ms, which is 120ms. Finally, The optimal time
quantum of A is the GCD of 120ms and the duration parame-
ters of H through K, which yields 5ms as expected. This hier-
archical method is compelling in its simplicity, but of course
we must justify the fact we used the duration parameters as
the optimal time quanta of the atomic models.

Consider Reactive Generator G. We assert that its optimal
time quantum is 9 seconds. Yet we can see that it will re-
ceive an input from Reactive Generator F after 720ms. Thus
G will undergo an unplanned event at t = 720ms, which is



not evenly divisible by its 9s optimal time quantum. This is
where the Premise comes into play. We ignore all sources of
time-varying input data on the grounds that such sources will
be treated separately. When analyzing G, we ignore F. The
Premise allows us to assume the inputs of G will arrive at
time points evenly divisible by 9/j seconds for any positive
integer j. We can prove that the output times will then also be
divisible by 9/j seconds, and so we accept 9 seconds as the
optimal time quantum of G (see proof in next section). Once
we discover that the optimal time quantum of F is 720ms, we
should realize that only time quanta of the form 360/j mil-
liseconds conform with both components. Hence 360ms, the
GCD of 9s and 720ms, is the optimal time quantum of C.

In preexisting work, the GCD is applied in a similar manner
to planned durations known to be quantized [8] or rational
[12]. Our theory accommodates model specifications where
planned durations may be irrational. Although the GCD can-
not be applied directly to the planned durations of continuous-
time models, it can operate on positive optimal time quanta.

Not every atomic model has an optimal time quantum equal to
its duration parameter. One can imagine a generator in which
each time step is randomly selected from two duration pa-
rameters 〈∆ts〉a and 〈∆ts〉b. In that case the GCD of 〈∆ts〉a
and 〈∆ts〉b is the optimal time quantum. A time series can be
regarded as a specialized generator in which outputs are sep-
arated by irregular yet predetermined durations. The GCD of
these durations is the optimal time quantum of the time series.

For some models, all finite positive durations are conformant
time quanta. One example is a processor with a response du-
ration of zero. Another common example is a queue model,
assuming it has no internal delays. We consider the optimal
time quantum of such a model to be ∞. If it appears as a
component in a model hierarchy, it has no effect on the con-
formant/optimal time precision of the encompassing model.

Some models have no conformant time quanta at all. Exam-
ples include (a) a variant of the generator in which delays be-
tween outputs are randomly selected from a continuous prob-
ability distribution (e.g. exponential), or (b) a quantized inte-
grator as defined in Chapter 16 of [31]. On a theoretical level,
such a model truly requires continuous time. It has an opti-
mal time quantum of zero, and imposes this property on all
encompassing coupled models. A hierarchy with an optimal
time quantum of zero is all but certain to produce temporal
rounding errors, yet Section 5 explains how the proposed the-
ory may still be useful for analyzing a subset of the hierarchy.
Furthermore, the theory could be extended to include explicit
levels of time precision aimed at controlling rounding error.

4. FORMAL ANALYSIS OF TIME PRECISION
This section provides a formal theory to analyze the time pre-
cision inherent in atomic models from which hierarchies are
constructed. We previously asserted that generators, reactive
generators, and processors have optimal time quanta equal
to their respective duration parameters: ∆ts, ∆ts, and ∆tr.
Here we prove the assertion for reactive generators.

Our work is greatly influenced by DEVS theory. In particu-
lar, elapsed and planned durations ∆te and ∆tp are essen-

tially e and ta(s) from DEVS [31]. Yet we use our own
notations, partly to emphasize the fact that a comprehensive
model specification is not a prerequisite for our method. It is
good practice to start with a DEVS model, but it is not cru-
cial for our purposes. More importantly, while the concept of
state is relevant to us, the conventional state representation s
is not needed in our formulas.

Our conventions are as follows. Every instance undergoes an
initialization event at t = 0. This yields a state, which we
ignore, and planned duration 〈∆tp〉0. From here on the in-
stance undergoes only planned and unplanned events: a total
of n where n ≤ ∞. Every new event (planned or unplanned)
is separated from the previous event (planned, unplanned, or
initialization) by an elapsed duration 〈∆te〉i. The new event
produces a new state and a new planned duration 〈∆tp〉i+1. If
the new event is planned, the previous planned duration must
have elapsed, so 〈∆te〉i = 〈∆tp〉i. If the new event is un-
planned, it is possible that a shorter duration of time elapsed,
so 〈∆te〉i ≤ 〈∆tp〉i. The constraints below apply to all mod-
els. Note that whenever we include i, the formula must hold
for all i ∈ N<n. The subscript i + 1 appears in (1) because
there are n elapsed durations and n+ 1 planned durations.

〈∆tp〉0, 〈∆tp〉i+1 ∈
(
R≥0 ∪ {∞}

)
(1)

〈∆te〉i ∈ R≥0 (2)
〈∆te〉i ≤ 〈∆tp〉i (3)

We now offer three tests to determine whether a time quantum
δt is conformant with a model specification. Recall that the
Premise allows us to assume δt/j evenly divides all elapsed
durations 〈∆te〉i. The question is whether δt/j evenly di-
vides the resulting planned durations as well. Wherever we
include j, the formula must hold for all j ∈ N≥1. In some
cases, δt/j can be replaced with δt without affecting the im-
plications of a formula, and so we omit j when possible.

Base Condition: Formula (4) is part of all three tests below.
It checks that the first planned duration 〈∆tp〉0 is a multiple
of δt, which is required if 〈∆tp〉0 is finite.

〈∆tp〉0
δt

∈
(
N ∪ {∞}

)
(4)

Zero-Step Test: Formula (5) extends the Base Condition by
testing the remaining planned durations 〈∆tp〉i+1. It is an
extremely conservative test. That is, any δt that passes the test
is a conformant time quantum, but there may be conformant
time quanta which fail the test.

〈∆tp〉i+1

δt
∈
(
N ∪ {∞}

)
(5)

One-Step Test: Formula (6) extends the Base Condition
by testing remaining planned durations while applying the
Premise to each event in isolation. We assume the planned
and elapsed durations preceding an event are quantized, then
require that the next planned duration is also quantized. If this
holds for every event, δt is a conformant time quantum. The
One-Step Test is conservative. It may reject a δt that is in fact
conformant, but it will accept all δt that pass the Zero-Step



Test and will often find additional conformant time quanta.(
〈∆tp〉i
δt/j

∈
(
N ∪ {∞}

))
∧
(
〈∆te〉i
δt/j

∈ N
)

⇒
(
〈∆tp〉i+1

δt/j
∈
(
N ∪ {∞}

)) (6)

General Test: Formula (7) extends the Base Condition
by testing remaining planned durations while applying the
Premise to the entire history of the system. The history in-
cludes all elapsed durations 〈∆te〉k for k ≤ i. This test can
be regarded as a formal definition of a conformant time quan-
tum. It is essentially the Premise description from Section 3,
translated into mathematical notation. Unfortunately, it is dif-
ficult to prove (7) directly. The One-Step Test happens to be
a proof of (7) by induction, and some generality is lost.

∀j ∈ N≥1, ∀i ∈ N<n,(
∀k ∈ {0, . . . , i} , 〈∆te〉k

δt/j
∈ N

)
⇒

(
〈∆tp〉i+1

δt/j
∈
(
N ∪ {∞}

)) (7)

To apply the theory to a particular model, one may begin with
a partial model specification that includes only the relation-
ships among the various types of durations. The relationships
are defined as a set of simulated time constraints, and below
we give the constraints associated with the reactive genera-
tor model. As indicated by (8), we require the time step to
be positive. As in (9), the first planned duration is always
one time step. Formula (10) covers the two cases in which
corresponding elapsed and planned durations are equal: first,
an input may be triggering an unplanned event at the end of
the time step, in which case the next planned duration is zero
to produce an immediate planned event; second, a planned
event may be occurring, in which case a future planned event
is scheduled after another time step. Finally, (11) covers the
case of an input received in the middle of a time step, in which
case the elapsed duration must be subtracted from the planned
duration to effectively reschedule the planned event.

∆ts ∈ R>0 (8)
〈∆tp〉0 = ∆ts (9)
〈∆te〉i = 〈∆tp〉i ⇒ 〈∆tp〉i+1 ∈ {0,∆ts} (10)
〈∆te〉i < 〈∆tp〉i ⇒ 〈∆tp〉i+1 = 〈∆tp〉i − 〈∆te〉i (11)

Now we are ready to pursue the optimal time quantum of the
reactive generator. We begin with the Base Condition (4),
but using (9) we substitute the time step for the first planned
duration.

∆ts
δt
∈
(
N ∪ {∞}

)
(12)

The only δt that satisfy (12) are of the form ∆ts/j, and the
longest is ∆ts. So the time step might be the optimal time
quantum, but we must confirm this with one of the tests. The
Zero-Step test will simply reject ∆ts, since the subsequent
planned durations 〈∆tp〉i+1 may be less than the time step.

And so we select the One-Step Test, and prove it as follows.(
〈∆tp〉i
δt/j

∈
(
N ∪ {∞}

))
∧
(
〈∆te〉i
δt/j

∈ N
)

(13)

⇒
(
〈∆tp〉i
∆ts/j

∈
(
N ∪ {∞}

))
∧
(
〈∆te〉i
∆ts/j

∈ N
)

(14)

⇒
(
〈∆tp〉i
∆ts/j

∈ N
)
∧
(
〈∆te〉i
∆ts/j

∈ N
)

(15)

⇒
(
〈∆tp〉i
∆ts/j

∈ N
)
∧
(
〈∆tp〉i − 〈∆tp〉i+1

∆ts/j
∈ N

)
(16)

⇒ 〈∆tp〉i+1

∆ts/j
∈ N (17)

⇒
(
〈∆tp〉i+1

∆ts/j
∈
(
N ∪ {∞}

))
(18)

⇒
(
〈∆tp〉i+1

δt/j
∈
(
N ∪ {∞}

))
(19)

Let us explain the above proof. We begin with the left-hand
side of (6), then substitute ∆ts for δt since we are testing the
time step. In (15), we exclude {∞} on the grounds that (8)–
(11) disallow infinite planned durations. At this point we ac-
knowledge that if 〈∆te〉i = 〈∆tp〉i, as in (10), then 〈∆tp〉i+1

is either 0 or ∆ts and in either case we arrive at the right-hand
side of (6) quite trivially. For this reason the proof follows the
〈∆te〉i < 〈∆tp〉i case, and we arrive at (16) with a substitu-
tion based on the right-hand side of (11). The simplification
to (17) is a key step in the proof, and it is based on a prop-
erty of subtraction: if ∆ts/j evenly divides both 〈∆tp〉i and
〈∆tp〉i − 〈∆tp〉i+1, then it must evenly divide 〈∆tp〉i+1 as
well. From here we generalize the expression by including
{∞}, then substitute δt for ∆ts to arrive at the right-hand
side of (6). Thus ∆ts passes the One-Step Test and is neces-
sarily a conformant time quantum. Since the Base Condition
has already informed us there is no coarser conformant preci-
sion, we conclude that the optimal time quantum of a reactive
generator model is equal to its time step.

The same theory can be applied to the generator and proces-
sor models. The generator is a trivial case. Its simulated time
constraints include (8), (9), and 〈∆tp〉i+1 = ∆ts. The time
step ∆ts passes both the Base Condition and the Zero-Step
test, and is the optimal time quantum. The processor’s simu-
lated time constraints permit infinite planned durations, since
a processor may “wait”. Yet one can prove, in a manner quite
similar to the (13)–(19) analysis, that ∆tr is the longest dura-
tion that passes the Base Condition and the One-Step Test. In
other words, the optimal time quantum of a processor model
is its response duration.

Such proofs are tedious, but one develops an intuition that a
model’s optimal time quantum is likely either (a) its sole fixed
delay of whatever type, or (b) the GCD of all possible delays.

5. DISCUSSION
Our theory complements past work in a number of areas re-
lated to simulation and time. Exploring these areas reveals
potential applications and opportunities for future research.



5.1. Simultaneity
Optimal time quanta may be useful in the selection of statis-
tical and concurrency-related duration parameters such as the
threshold of event simultaneity δ of Wieland [29] or the time
granule d of Zeigler et al. [30]. Wieland’s δ threshold has
two possible effects. If δ is extremely short, it will order si-
multaneous events randomly instead of imposing an arbitrary
order. If δ is somewhat longer, it may reverse the supposedly
unreliable order of nearly simultaneous events. The optimal
time quantum is significant in this context, as it seems to sep-
arate the two effects. Choosing δ less than the optimal time
quantum overwhelming affects simultaneous events, whereas
a δ greater than the quantum will tend to encompass and re-
order events with different simulated time points. With regard
to Zeigler et al.’s time granule d, the optimal time quantum
establishes a threshold below which d will have virtually no
effect. Experimentation is needed to evaluate how well any d
balances parallelism gains with sacrificed accuracy. Our the-
ory suggests an obvious set of d values to test: multiples of
the optimal time quantum, if it exists. The same heuristic may
be useful for investigating the interval sizes of Fujimoto [5].

5.2. Time Representation
To some extent, our work supports the arguments of Varga
[26] and Vicino et al. [27] against floating-point time val-
ues. A floating-point representation has no quantum, and may
therefore cause temporal rounding errors even for a model
with an inherent precision level. By contrast, a simple fixed-
point representation based on a conformant time quantum δt
can express all theoretically possible event times in the form
m·δt with no rounding error. The use of an optimal time
quantum is not critical, but will minimize the multipliers m.

Multiscale modeling and education are two areas where tem-
poral rounding errors should cause concern. When integrat-
ing models of multiple scales, rounding errors associated with
long durations (from a large-scale model) may be harmful in
the presence of short durations (from a small-scale model).
Thus a multiscale simulation should use a very fine time pre-
cision, as in OMNeT++ [26], or a mechanism is needed to
combine scale-dependent precision levels. Progress has been
made for diverse time steps (resolution) [6], but less so in
the context of time quanta (precision). When educating do-
main experts about DEVS and other formalisms, it helps to
present a simulator producing exact results. Fortunately, if a
fixed-point time representation is used, simple models often
do permit exact event times. In fact, all 15 example models
in Chapter 4 of [31] have a positive optimal time quantum.

The relationship between our theory and rational number data
types, as in [27], is complicated. If a model has a positive, ra-
tional, but unknown optimal time quantum, then a rational
data type should automatically conform to any duration or
event time. On the other hand, if the optimal time quantum is
known, then the overhead of a rational data type seems unjus-
tified since integer multipliers should suffice. It is important
to recognize that a set of time values which share a quan-
tum are not necessarily rational, and a set of time values that
are rational do not necessarily share a quantum. Consider
a nonterminating simulation with rational but quantum-less

planned durations 〈tp〉i = i
i+1 . As the durations are accumu-

lated, a fixed-point current time variable will incur rounding
error, but this may be preferable to the unbounded memory
growth of an exact rational number representation. One com-
promise is the C++ Chrono Library [14], which combines ra-
tional precision levels resolved at compile time with integer
multipliers computed at runtime.

5.3. Formal Reasoning
Let us illustrate how a formal analysis of model behavior may
be pursed using the proposed theory. Consider Instance J of
Figure 1, and suppose we wish to know if its inputs alternate
between the two sources H and I in an HIHIHI pattern. Pro-
cessors H and I are triggered simultaneously from B, and the
H output will precede the corresponding I output by 25ms.
The question is whether H and I might receive inputs during
this 25ms period, as this could disrupt the alternation pattern.
Instead of considering the internal structure of B, we simply
observe that its optimal time quantum of 120ms is greater
than the response duration of I. After triggering both proces-
sors, B lacks the time precision necessary to intervene, so H
and I outputs will alternate. Now suppose the response dura-
tion of E is increased from 960ms to 1s. In that case the op-
timal time quantum of B decreases to 40ms, and we lose our
guarantee that H and I outputs alternative. In fact, experimen-
tation confirms that this small change causes an occasional
HH pattern. Note that our analysis focuses on a subset of the
model hierarchy, and does not require downstream compo-
nents such as J and K to have any conformant time quanta.

The omission of s, or any other formal representation of state,
simplifies the analyses in this paper. That said, incorporating
state into our theory is a promising future direction that could
build on advancements in time-state representation for vali-
dation [9], verification [10], and general purposes [11]. Even
in its current form, the theory may expand the utility of ex-
isting model-checking and behavior analysis techniques. The
Figure 1 example shows how atomic models with real-valued
durations and infinite state sets can form a hierarchy with ra-
tional durations, as assumed by RTA-DEVS [22], and a finite
number of states, as required by FD-DEVS [12].

6. CONCLUSION
Recent work by Sarjoughian and Sundaramoorthi [23] on vi-
sualizing superdense time attests to the enduring importance
of time representation in discrete-event simulation. Super-
dense time allows events to be ordered even if they share the
same simulated time point t. Our work shows that when t
does increase from one event to the next, the duration be-
tween the events is surprisingly often constrained—on a the-
oretical level—to be a multiple of a quantum δt. In fact, all 15
example models in Chapter 4 of Theory of Modeling and Sim-
ulation [31] feature an inherent level of precision in the form
of a positive optimal time quantum. We define this property
such that it can be (a) derived formally from an atomic model
specification, and (b) analyzed hierarchically to determine if
a complex model treats time as quantized. The theory has
several potential applications, including behavioral analyses
that can be used even when some components feature opti-
mal time quanta of zero and thus require continuous time.
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