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ABSTRACT 

 

As more and different services appear over the Internet, there is a need to have a 

brokerage architecture that abstracts complexity from the user and is scalable 

enough to be internet-wide deployed.  

 

We present an architecture for the deployment of service brokers over the Internet. 

We have done this by merging SLP and AS1 and adding our own design elements. 

The design considerations for the work presented were (1) high variability of usage, 

(2) high diversity of services and resources, (3) no single point of failure,  and (4) 

network awareness. In addition, we decoupled the notion of agent, service, and 

resource in three separate logical components and we illustrate how SLP and AS1 

behave fundamentally different in their perception of them.  

 

In the proposed architecture, a service broker optimizes resource consumption by 

deciding to reproduce or aggregate based on the demand of their services and the 

consequent load they experience. A service broker can also “reincarnate” the 

functionality of another service broker who ceased to function. 

 

We implemented Joxer, a proof of concept prototype. To measure its  effectiveness, 

we defined a benefit/cost metric called Effective Resource Usage Metric (ERUM). 

We defined ERUM as the inverse of bandwidth utilization times average CPU load 

consumed by active Service Brokers. 
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Introduction 
Along with the explosive growth of the Internet, there has been an explosion of 

architectures intended to give some kind of coherence to such chaotic growth. Recently, 

one particular area of study has gained more interest within the research and industry 

communities, service brokerage (SB). Service brokerage is a mechanism that allows a 

user to request and access a specific service. Service brokerage can be done in different 

contexts. It may be as simple as redirecting a client to the first service that matches a 

request or it may involve more intelligent mechanisms in order to decide which service to 

choose.  

 

Another important aspect of a SB is the set of discovery algorithms necessary for 

building and updating a repository of services currently available in a network. Many 

solutions have been proposed to improve such algorithms [1,2,4]. Closely related to this 

issue but much less studied is the question of how service brokerage mechanisms, seen as 

another type of service, could be deployed in a scalable way, adapting to the demand they 

experience. That is, extend existing service brokerage architectures to include the service 

broker deployment. 

 

As more and different services appear over the Internet, there is a need to have a 

brokerage architecture that abstracts complexity from the user and is scalable enough to 

be internet-wide deployed. The solution should meet the following general criteria: 

 

- Scalability 

 

- Robustness 

 

- Security 

 

 

1.1 Objectives 

This document presents an architecture and proof of concept implementation for the 

deployment of service brokers over the Internet. As we will see in Chapter 4, we will 

expand these general criteria to a more specific set of measures in the context of service 

brokerage.  

 

We believe that an important factor for a successful deployment of service brokers is the 

degree of network awareness available in the system. As part of the architecture that we 

propose in Chapter 5, we describe how service brokers decide to reproduce or aggregate 

based on the demand of their services and the consequent load they experience. We 

believe that such decisions can be more accurately taken by considering in addition, 
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conditions external to the service broker, such as link speed, bottlenecks, latency, and hop 

proximity between users and services.  
 

Finally, this work has been done in adherence to existing frameworks that, from our 

perspective, provide partially a deployment architecture for service brokers. In particular, 

we will use two existing architectures, Service Location Protocol (SLP) [1] and Active 

Services (AS1) [3]. We argue that each of them separately provides interesting 

characteristics for a service brokerage architecture over the Internet. Thus, we will use 

them as a starting point for our own design.  

 

1.2 Limitations 

This document does not address the decision-making processes for identifying the 

services other than the service broker. Also, although we consider security a critical 

factor for the effective deployment of any service brokerage architecture over the 

Internet, we focus in this document only on scalability and robustness. We believe that 

our proposal can be complementary to the security components of existing service 

discovery efforts such as [13] and therefore take advantage of them as they grow.  

 

 

 

1.3 Remainder of this Document 

In Chapter 2 we outline relevant aspects of SLP with respect to service brokerage, 

including its implementation over wide area networks. Similarly, in Chapter 3 we outline 

AS1. Chapter 4 compares these two frameworks. In Chapter 5 we propose our own 

solution. In Chapter 6 we present experimentation results for a subset of the SB problem 

space. Chapter 7 presents a final summary and future work.  
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2 Service Location Protocol 
 

SLP provides a framework for the discovery and selection of network services. The key 

idea behind this protocol is to allow a device to transparently make use of network 

services with little or no static configuration. This is done by using a lightweight session 

approach in a network under “cooperative administrative control”. The use of 

technologies such as multicast IP prevents SLP from being scalable over the entire 

Internet. As we will see later on, there are other reasons why SLP, in its current state, 

cannot be deployed over the Internet. 

 

2.1 SLP Basic Mechanisms 

We first define the basic elements that compose SLP: 

 

- User Agents  (UA) who act on behalf of a client application to contact a service. 

 

- Service Agents (SA) who act on behalf of one or more services to advertise them. 

 

- Directory Agents (DA) who collect information about services advertised. 

 

For an example of the basic elements of SLP, see Figure 2-1 below. 

 

Within this context, a UA issues a service request specifying the characteristics of the 

service that the client application requests. There are two methods to issue such request, 

depending on whether there is a known DA or not. If there is a known DA that can 

service the request, unicast is used. The UA will receive a service reply from the DA 

specifying the location of all the services in the network that satisfy the request. If there is 

no known DA, multicast is used to contact all possible SAs. Each SA that matches the 

service request will individually issue a service reply containing only its own 

information.  

 

Figure 2-1. SLP Elements 
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Moreover, whenever there is a DA, SAs will periodically register (refresh) their services 

with it. DAs can be assigned to a SA statically or dynamically (DHCP). More 

interestingly, SAs and UAs can discover the existence of a DA in at least two ways. First, 

when SAs and UAs startup, they will multicast a directory service request. Second, the  

DA will send an unsolicited advertisement infrequently. In either case UAs and SAs will 

receive an advertisement from the DA.  

 

 

 

 

 

 

 

2.2 Wide Area SLP 

Wide Area SLP extends [9, 10] SLP version 1 beyond the local area network space by 

adding the following components: 

 

- Broker Agents who selectively collect information about services offered in other 

SLP domains (SLPD) 

 

- Advertisements Agents  who selectively advertise information about services 

offered within a  specific SLPDs 

 

The exchange of information between different SLPD’s is based solely in using multicast 

techniques. In addition, there is no hierarchy within the domain distribution, which 

potentially means a large bandwidth overhead and emergence of bottlenecks in 

information transfer. These two factors limit Wide Area SLP from being used Internet-

wide. 

 

2.3 SLP version 2 

SLP v2 redefines the use of scopes to very much resemble the Wide Area SLP Domains 

mentioned in Section 2.2. More formally, a scope groups together services under some 

specific criteria (administrative, geographic, service type, etc.). In SLPv2, SAs and DAs 

are always assigned to a scope. An agent, in general, communicates only with other 

agents sharing the same scope. These and other changes make SLPv2 more  scalable. In 

addition, security improvements made in this version make the deployment in an open 

network more feasible. However, the reasons exposed in Section 2.2 hold true in SLPv2 

preventing its Internet-wide applicability.  
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3 AS1 
 

Similar to how active networks inject user-defined computation into the network, 

allowing certain type of applications to improve their performance, AS1 targets a subset 

of problems to be solved by active networks by restricting its design space to the 

application layer.1 

 

Furthermore, in a more aggressive way than SLP, AS1 is also deployed and maintained 

by using a lightweight-session approach, where ideally all announce-listen 

communications are based on multicast IP, and state is preserved by using soft state 

tables in every entity. As explained in the next section, AS1 presents what we call an 

“implicit service brokerage”. In this way, by using a highly distributed and loosely 

coupled approach, AS1 achieves great robustness against failures with the price of a large 

bandwidth overhead and limited intelligence for choosing the best service for a specific 

request. 

 

 

3.1 AS1 Basic Mechanisms 

AS1’s most important components can be classified in the following way: 

 

- Clients, who similarly to UAs in SLP, announce their service request to a “well-

know point-of-contact” (normally a multicast address).  

 

- Host Managers (HM) who rendezvous with clients and service their requests by 

deploying the appropriate servents. 

 

- Servents who are launched by a host manager on behalf of the client who 

requested their services. 

 
 

When a client makes a service request, a pool of HMs will respond to this request using a 

technique called multicast damping. That is, every HM on their own will setup a random 

time-out period to wait until it deploys a servent to service the request. At the same time, 

every HM will also listen for announcements of a servent deployed by some other HM 

who timed out  earlier. When this happens, the HM will avoid  deploying any servent at 

all, and instead register in a soft state table that this request has been serviced already. In 

this way, every future announcement made by the client will be ignored as long as the 

servent keeps announcing its existence.  

 

                                                 
1 The reason exposed by the authors of AS1 [3] behind this decision is to preserve compatibility and to 

facilitate its incremental deployment.  
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This situation is nonexistent in SLP because even in the case of not having a DA, no 

matter how many service replies a UA may receive, these are only notifications of the 

existence of a service, and not the provision of the service itself. Therefore, in SLP the 

final decision for choosing a service remains always in the user side, avoiding a possible 

contention between more than one SAs contending to provide the same service. 

 

Figure 3.1 shows a multimedia transcoding application of AS1, the Media Gateway 

(MeGa). In this simplified MeGa example, a servent is casted as a video gateway. This 

gateway performs transcoding services for a video client that, due to its own limitations 

(it cannot support a specific video format) or because of network limitations (link 

bandwidth too slow), requires some kind of manipulation for the video streams it wants 

to receive.  

 

In addition, under AS1 a pool of HMs can achieve some degree of load balance by 

having each HM accept or ignore a service request, considering also its own current CPU 

load. This mechanism provides an implicit load balancing functionality2. In the case of 

SLP such functionality does not exist. However, as we will see in Chapter 5, it could be 

easily integrated on top of a DA, given its coordination role.   

 

Another important element within the AS1 architecture is the soft state gateway (SSG) 

providing compatibility for networks with no multicast support. SSG joins a multicast 

session on behalf of a client with no multicast support. In this way, all communication 

between SSG and client is unicast while the SSG will convert to multicast when 

necessary and forward the client packets. As a reminder for the case of SLP, UAs and 

SAs initially find a DA by one of three possible ways: static pre-configuration, DHCP, or 

multicast. After that, unicast communication will be used. In AS1, multicast is always 

used as there is no specific centralizing entity. In either case, when there is no multicast 

support, a static configuration (or even DHCP in the case of SLP) must be used, which 

limits its scalability. 

 

 

 

 

                                                 
2 Unfortunately, at least in mash version 5.01b this functionality was non-existent or disabled. 

Figure 3-1  Mega Service in AS1 
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Finally, AS1 is an implicit service brokerage mechanism because brokerage of services is 

achieved without the need of an explicit broker – each member of a pool of host 

managers decides internally what request it should service. 

3.2 Agent/ Service/ Resource Decoupling 

Similar to the way that java applets are launched on a virtual machine to perform a 

specific action,
3
 AS1 provides a metaphor where the type of service provided to a user is 

decoupled from the actual resource providing it. That is, the resource can be running 

multiple types of services as long as it can access and execute the code for such services. 

For instance, a pc managed by an HM running different transcoding servents. This is 

fundamentally different from SLP where there is no notion of an HM that could 

potentially launch SAs in reply to UA’s demand. Instead, as services represented under 

SLP are usually stationary – such as printers and faxes – and their creation on demand is 

not evident (at least not today!), the type of services that a SA represents is always static. 

On the other hand, in AS1 there is no distinction between the service agent and the 

service itself (not the resource). That is, once an HM launches a servent to perform a 

service, the servent also becomes its own agent. Figure 3-2 outlines these relationships in 

SLP and AS1, respectively. 

 

 

Figure 3-2  Agent/Service/Resource Decoupling in SLP and AS1      

                                                 
3 A more specific example, which is specially related to the design domain of AS1, could be the use of 

delegates within CMU’s Network Resource Management project, Darwin. 
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4 Extending the Design Criteria for a Service Brokerage 
Architecture 

 

In our goal of finding the best deployment architecture for service brokerage we now turn 

to the task of taking the AS1 and SLP frameworks and examine them in terms of how 

well each approach meets the criteria of scalability and robustness. Furthermore, we 

decompose scalability and robustness into the following design considerations: 

 

- High variability of usage  

 

- High diversity of services and resources  

 

- No single point of failure 

 

- Network awareness 

 

4.1 High Variability of Usage 

Any service brokerage architecture intended to be used Internet-wide should obviously be 

able to service a very large number of users. However, provisioning for a large demand 

of users should not include wasting resources when demand is low, or manually 

configuring the decrease or increase of such resources available.  

 

As described in Chapter 3, AS1 provides a highly distributed and loosely coupled 

architecture. However, compared to a centralized approach there is an overhead penalty 

that can be significantly large as the number of entities increase or as they become more 

“separated” from each other. Figure 4.1 illustrates the problem where, every node 

multicasts its information to every other node, resulting in an increase in bandwidth 

consumption that is in theory n times larger than in the centralized approach, where n is 

the number of participants in the session (HMs, servents, clients).  

 

 

 

We must mention that the evaluation of these sub-criteria is subjective and qualitative. 

Because SLP and AS1 are quite different in their approaches, it would not be possible or 

useful to carry out a full quantitative comparison. Thus, we used these criteria to give our 

analysis a common focus implementing specific key testing scenarios, rather than to do a 

complete side-by-side objective comparison.  
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Similar to other protocols such as SAP [11] and RTP [12], AS1 regulates the control 

bandwidth by causing the refreshment period to increase as the number of entities 

increases. For instance, if the main control channel is set to 20 kbps, and there is a total of 

10 host managers and servents, each of these entities will transmit their control 

information at 2Kbps. The danger of this approach is that if the refresh is too infrequent, 

the information used by HMs and servents could be stale and provoke undesired 

behaviors (e.g. having a HM to launch a duplicate gateway because it didn’t know that 

one was already lunched). This imposes an inherent limit in the number of session 

members (around 300 according to AS1 authors). 

 

While SLP can be configured to work in a similar way to AS1 using solely multicast 

communication (no DA), we have already seen that this could only be feasible within 

small service environments. Larger environments under this many-to-many control 

communication become less and less efficient. This is where the notion of a DA becomes 

more useful, where service requests and service advertisements are efficiently centralized 

through a single entity. Furthermore, by introducing the notion of scopes, multiples DA 

can exist (one for each scope), scaling even more. However, another problem arises as 

the service environment keeps growing and scopes multiply without any structure, DAs 

may become soon a bottleneck of information. Other mechanisms are needed to scale the 

number of users to Internet proportions.  

 

 

 

Figure 4-1 Communication Overhead in AS1 
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4.2 High Diversity of Services and Resources 

As the number of services and resources (service sites) increase, it is impractical to think 

that a single service broker will be able to maintain state over all the services available 

over the Internet. A service brokerage architecture should be able to rearrange itself 

according to some kind of organization (e.g. type of service, region). This rearrangement 

could be done in a hierarchical fashion. 

 

In the case of AS1 there is no explicit reference in the literature to hierarchical 

organization of HMs. The closest thing we found is a reference to service composition. 

Although there is no specific design description, the hierarchical chain of servents 

referred to could possibly be used for a hierarchical setup of services. We can also 

imagine having different pools of HMs specialized according to some defined category 

(e.g. each category could be a different multicast address). However, unless there are 

other mechanisms besides those exposed in the AS1 architecture, such approach would 

still provide a flat arrangement of service categories that cannot scale beyond a small 

number. 

 

SLP provides two orthogonal means to deal with service diversity. The first of them is the 

definition of the service itself within a service advertisement. Services belong to a unique 

service type. Moreover, service types can themselves belong to an abstract service type. 

Conversely, one service can have attributes that differentiates it from other similar 

services. The second mean is the concept of scope that allows to group services under a 

common administration domain. DAs can be configured to selectively listen to service 

advertisements; however, there is a common default scope that every DA listens to. 

Furthermore, although scopes provide some degree of scalability, they are not 

hierarchical which is one reason why SLP could not be deployed over Internet where 

potentially hundreds or thousands of scopes would be available.  

 

4.3 No Single Point of Failure 

Service brokers should not represent a single point of failure to a client requesting a 

service. Moreover, as explained in 4.1, to avoid a large overhead, the number of service 

brokers available to a client should depend on the current demand experienced. Statically 

allocating service brokers is not a scalable solution.  

 

SLP avoids a single point of failure. In case of a DA failure, user agents and service 

agents can potentially multicast among each other to communicate. Similarly, AS1 

avoids a single point of failure by always staying in this multicast-based communication 

scheme. However, we have already seen the inconvenience of this approach in large 

service environments. 

 

In addition, when a service broker reincorporates after a failure (or just starts functioning 

for the first time), it should do it in a seamless way with respect to the other entities it 

communicates (e.g clients, services, other brokers). A commonly used technique to 

achieve such functionality is the lightweight session model.  
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Both SLP and AS1, use the lightweight session model where each entity maintains a soft 

state of other existing entities. Although adjustable, the maximum timeout periods of the 

refreshments are normally set quite large under SLP to avoid excessive overhead. 

However, as the service request rate increases, stale information can become a problem. 

AS1 timeouts are also adjustable, however the MeGa implementation maintains a very 

small refreshment period with the subsequent penalty in bandwidth overhead. 

 

Using soft state becomes critical in a very large loosely coupled architecture (such as the 

one we propose in Chapter 5), where the system as a whole is trying to adapt quickly to 

the demand of services requested and  service brokers are born or die incessantly.  

 

 

4.4 Network Awareness 

The degree of network awareness within a SB architecture can drastically improve the 

efficiency in resource utilization, making the SB deployment more scalable. Specifically, 

decisions of when to perform SB reproduction or SB aggregation can be more accurately 

taken by considering aspects such as: 
 

- Link speed 

 

- Bandwidth bottlenecks 

 

- Latency 

 

- Hop proximity with users and services 

 

Moreover, while we focus only in the deployment of services brokers, the planning and 

decision layer which sits on top of our proposed architecture -and out of the scope of this 

document- can greatly benefit too from being network aware. For instance, tradeoffs 

between bandwidth and CPU cycles, or  bandwidth and delay,  could be considered, and 

provide a more accurate quality of service that includes a more efficient use of resources. 

 

Neither SLP nor AS1 involve network-aware elements in their architectures. One 

exception is the auto-regulation mechanism for the control bandwidth available in both, 

SLP and AS1, –as well as in RTP/RTCP– where there is a limit in the overall control 

bandwidth induced by all entities within a service environment. The limit for the control 

bandwidth is represented as a percentage of the total bandwidth assigned. However, 

unless there is an external mechanism such as a network administrator who manually 

configures this percentage according to the total available bandwidth, bandwidth 

assignments are done arbitrarily as there is normally no way to detect even the immediate 

link speed
4
.  

                                                 
4 Some applications estimate the total bandwidth available between two points from the round trip time. 
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Network awareness should be applied in all layers. In fact, its effective inclusion in any 

application environment not only involves applications that are prepared to “suck” 

information from the network but also networks that are capable of providing such 

information. Today we are not at this point yet. However, we believe that along with 

other research and commercial efforts, network awareness will play a more important 

role to provide richer services over the Internet in the future. 

 

Based on the evaluation of our criteria we see that the search for a scalable and robust 

solution has serious limitations and compromises that should be considered.  
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5 Proposed Solution 
 

We are now ready to propose an architecture for the deployment of services brokers over 

the Internet by merging SLP and AS1 and adding our own design elements. 

Of the two frameworks studied so far we will take SLP and build from there on with 

design concepts from AS1 and our own. The justification for the use of SLP is twofold: 

(i) it is a known Internet standard, (ii) it provides a basic service brokerage functionality 

that we can extend more logically to our design needs.  

 

5.1 Design Goals 

As is clearly stated in SLP version 2,  

 

SLP has been designed to serve enterprise networks with shared services, 

and it may not necessarily scale for wide-area service discovery 

throughout the global Internet, or in networks where there are hundreds of 

thousands of clients or tens of thousands of services. 

 

Table 5.1 shows our criteria defined in Chapter 4 compared against SLP.  

 
CURRENT STATE OF SLP 

Adapt to High Usage Variability No 

Adapt to High Service Diversity No 

No Single Point of Failure Yes 

Network Awareness No 

Table 5-1 Design Criteria and SLP    

 

 

 

If we could extend SLP by addressing each of the criteria shown above, we will be closer 

point to an ideal solution. As described earlier, a service brokerage architecture is 

composed of two layers: service discovery and service selection. The design we will 

propose is along the lines of the former. However, we extend the concept of service 

discovery to the brokerage service itself by proposing a deployment architecture of 

service brokers over an open network environment. In addition, similar to AS1, we 

extend SLP’s notion of services by decoupling them from the actual resources or service 

sites that provide them. 

 

Accordingly, we first cast a Directory Agent under SLP as a raw service broker and we 

then define three services: reproduction of service brokers, aggregation of service 

brokers, and reincarnation of service brokers. 
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5.2 Reproduction of Service Brokers 

Reproduction of service brokers occurs when the current SB population cannot fulfill the 

demand for services. One way to achieve this is to make an SB aware that a bottleneck is 

emerging. Bottlenecks could be measured in different ways, each of them requiring 

different levels of knowledge about the environment surrounding the SB. Simple 

measures could be the CPU load of the SB hosting machine. Other measures could be 

added such as  some degree of network awareness (e.g. adjacent link bandwidth 

consumption).  

 

Once an SB decides to reproduce we imagine two approaches for how to make this 

reproduction to happen: 

 

- Increasing the level of service categorization  

 

- Increasing the level of locality 

 

 

5.2.1 Increasing the level of service categorization 

We propose to subcategorize the type of services a SB brokers. Once an SB decides to 

reproduce, the services it was brokering before reproduction will now be distributed 

among itself and the new SBs. This means that certain users will be redirected to a 

different SB. 

 

In SLP, there is the notion of abstract service type, service type, service, and service 

attributes. Under the approach we propose, this classification could be repurposed in 

order to categorize services and redistribute them among the SBs resulting after 

reproduction. However, a more scalable solution would inevitably involve redefining the 

current service naming in SLP allowing for hierarchies of services to exist and grow or 

shrink on demand.  Such new naming structure would have no fundamental need for a 

priori knowledge of the service categorization. Instead, the actual information taken at 

runtime from the service requests is used to categorize. This means that as the number of 

users increases, the hierarchy depth could increase too. For instance, an SB for an video 

streaming service could then specialize on video on-demand. 

 

As shown in Figure 5.1 a typical SB deployment scenario could require a user to maintain 

a relationship with different service brokers. Resource owners (represented by SAs in 

SLP) could also subscribe their services with different SBs, however, the decision for 

reproducing should consider actual demand. In other words, we do not want to utilize 

service brokerage resources just because more services are being subscribed when there 

are no users demanding their services. Similarly, in order to avoid underutilized SBs, 

reproduction should not necessarily be symmetrical. That is, reproducing could mean 

having one very specialized SB (where demand has increased) and one more general SB. 
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5.2.2 Increasing the level of locality 

Another criterion to achieve SB reproduction considers the administrative differences 

among users. In this way, SBs would reproduce by increasing the level of locality within 

the service environment they are deployed. Figure 5.2 illustrates reproduction of SB by 

locality. Again, network awareness can play an important factor in achieving the most 

efficient way to reproduce an SB on a localization basis. 

 

 

 

 

Figure 5-1 User Maintaining a Relationship with Two SBs 

Figure 5-2 SB  Reproduction by Locality 
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5.3 Aggregation of Service Brokers 

Similar to how an SB can detect an emerging bottleneck, awareness of underutilized SB 

resources could be detected to enable an aggregation process. Once an SB has decided to 

combine with another, the first aggregation candidate to consider should be its other half 

SB (after reproduction). If there is no recollection of the other half, or it is unreachable, a 

SB discovery process can take place similar to how UAs and SAs discover DAs.  Such 

discovery process should be done incrementally by looking up in the service hierarchy. 

The actual look up mechanisms depends on whether the current stage of discovery is 

using a service type categorization or locality criteria. In either case, the discovery 

process continues until another SB is found or until the point where the SB would find 

itself being the unique general broker within the service environment perceived. This 

mechanism is not only useful when adapting to network partitions, more importantly, it is 

a key concept for being able to deploy a self-regulated network of service brokers that 

always will tend to broker every possible type of service.  

 

In the case that another SB has been found, aggregation can be attempted according to the 

following steps: 

 

1. Exchange of resource usage information  

 

2. If at least one of the SBs can handle the other’s load continue, otherwise abort 

 

 

3. Migration of state may occur to accelerate aggregation, however it is not 

necessary as future refreshments will eventually build the original soft state  

 

4. Redirection of users and services to new aggregate SB 

 

 

The last step is different for each group of users and services. Those entities who’s SB 

will no longer exist should be redirected with the address and new scope of the aggregate 

SB. Entities who were already communicating to the aggregate SB should only be 

notified of its more general service scope. 

 

 

5.4 Reincarnation of Service Brokers 

Assuming that the entities the service broker communicates with (other SBs, services 

themselves, and users) can detect its failure, these other entities could potentially 

“reincarnate” the service broker functionality. To avoid confusion among all the potential 

reincarnating entities, a well understood set of steps should follow to define who should 

reincarnate the dead SB. We call this set of steps a reincarnation protocol. This protocol 

can be quiet simple, again using existing techniques such as soft state and  multicast 

damping. In particular, we propose that every entity should maintain state about every 

other entity which it can potentially reincarnate. Moreover, as this state would be kept in 

a soft state table, time-outs would be proportional to the level of proximity between the 
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two entities. Ways to measure proximity include whether the two entities share  the same  

service type, belong to the same administrative domain, or have the same role (SB, 

service provider, customer). Thus, when a SB dies, “closer” entities will timeout first and 

begin reincarnation before others. Still, entities within the same proximity group could try 

to reincarnate simultaneously. Similar to how AS1 tries to avoid multiple launchings of 

the same servent, the reincarnation behavior could include a mechanism similar to 

multicast damping
5
. Therefore, every entity will introduce a random factor for when to 

actually timeout and begin  reincarnating the dead SB. Finally, whenever an entity begins 

reincarnation, it will announce this information so that all other entities listening will 

“damp” themselves from beginning an additional reincarnation process.  In the case of 

simultaneous launchings, a conflict resolution mechanism must be introduced. 

 

The mechanism above described has a potential restriction about how entities 

communicate among each other. That is, in order to have the reincarnated SB make the 

other entities aware of its existence, there must be a well-known point of contact that the 

reincarnated SB can utilize. We could imagine this happening in at least two ways: (1) 

through a multicast address that all entities knew before as the point of contact for SB 

announcements, or (2) by having the reincarnated SB to be aware of  the entities that the 

dead SB was communicating with. The former should be preferred whenever multicast is 

available, as the latter can have a huge impact on the amount of information that every 

entity has to maintain. Although we believe that multicast is a necessary technology, the 

complexity it involves affects the chances it has of being fully deployed over the Internet 

in the near future. In Section 5.7, we will elaborate the mechanisms for whenever 

multicast is only partially available. 

 

5.5 Other Considerations 

In a real world environment we expect to have more complex scenarios than the ones we 

have described. For instance, we can easily imagine that different ISPs could impose 

limits to the deployment of SBs within their domains. In addition, there are some services 

such as printing where their service environment is inherently local and there would be 

no apparent reason to change that. Conversely, some other services will tend to have a 

more remote service environment, e.g. media compression services in remote congested 

links. More formally, we can classify a service with respect to the entity issuing the 

request in the following way: 

 

 

- Local 

 

- Remote 

 

- Ubiquitous  

 

The category where each service falls plus the administrative boundaries imposed by 

ISPs will determine how a SB for such service should be reproduced or aggregated. 

                                                 
5 This mechanism was first introduced in Multicast IP, although  under a different context 
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Figure 5.3 illustrates a more complete scenario under such conditions. Notice how the SB 

in the center is servicing users that are in other administrative domains. This could be 

possible as long as the SB has the appropriate security requirements, which is outside of 

the scope of this document. Still, crossing administrative regions is a factor to consider in 

the decision making process. For instance, we can imagine a service broker giving a 

higher weight to a service provider in its own administrative region. 

 

 

 

5.6 Implications of Centralizing Information into a Single Broker 

We have previously referred to the overhead saved by having a single broker centralizing 

information within a service environment, compared to a decentralized scheme where all 

entities communicate among each other. Another advantage of a centralized approach is 

the degree of intelligence that an SB can potentially manifest.  By centralizing 

information from the service environment where it is deployed, an SB could make more 

sophisticated decisions concerning how to map service requests to services. Even in the 

case of having a decentralized architecture that could achieve the same degree of 

intelligence, it may imply replicating such intelligence in each service entity with the 

consequent impact in resource utilization.  

 

In reality, replicating SB intelligence across services entities does not necessarily 

consume n times more computations cycles compared to a central one, where n is the 

number of entities. Decentralized architectures are typically more CPU efficient - they do 

consume more CPU in aggregate but usually not n times more. However, they have 

Figure 5-3  Administrative Boundaries 
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access to n times more CPU resources - which makes them faster. This is a driving force 

for why the desire to parallelize things in general. Conversely, a central scheme can 

potentially achieve a much greater level of SB intelligence with much less overall 

resource consumption but with the potential penalty in speed (e.g. response time).  

 

5.7 The Effective Resource Usage Metric 

 

 

To measure the effectiveness of our designs, we define a benefit/cost metric called 

Effective Resource Usage Metric (ERUM). An appropriate metric for the benefit would 

be the responsiveness of the system, i.e. how quickly can the SB satisfy a request.  

However, since we did not measure the response time, we will approximate the response 

time by the inverse of the average CPU load on the service brokers
6
.    Since a higher 

load will translate into a slower response time, that should be a reasonable 

approximation.  For the cost, we will use the bandwidth consumed by each SB.  We 

could also include the number of SBs used in the cost function, but since a larger number 

servers results in a higher network load, this effect is already captured indirectly.  We end 

up with the following definition of ERUM: 

 

bandwidthLoadCPU
bandwidthCPULoadERUM

×
=

1
),(  

 

Equation 5-1 

More generally, assuming there are other resources in the system that significantly affect 

response time, and need to be minimized, we can extend the notion of resources   to 

include other aspects such as data storage. Equation 5.2 represents a large number of 

resources.  
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6 Another approximation could be to use the distance to the SB, which in some cases could be more 

reflective of response time than BW or CPU.   
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ERUM is merely reflecting the benefit/cost tradeoffs in a SB deployment architecture for 

the distribution of resources. In Chapter 6 we use ERUM to measure the effectiveness of 

different architectures, however, ERUM could also be used within one particular 

architecture  as a tuning aid to find the number of SBs that will yield the optimal 

allocation of resources (highest benefit). To further develop this idea is  food for future 

work. 

5.8 Multicast Availability 

Although we believe that multicast technologies in the network layer are crucial for the 

scalability of any service broker architecture in general, we are aware of the complexity 

involved in its deployment and further maintenance. Taken from the AS1 framework, we 

propose the use of soft state gateways that participate in a multicast session on behalf of 

the unicast-connected entity. We recognize however that such scheme works only over 

networks that are at least partially multicast enabled. 

 

5.9 Regulation of Service Resources Population 

Similarly to SB reproduction and SB aggregation, we can imagine mechanisms that 

would allow an SB to grow or shrink a service population according to the demand of 

users. AS1 already provides an equivalent mechanism although the target population 

number is static
7
 and launching new host managers occurs only when one of them fails or 

when the initial population is below the target. 

 

 

 

                                                 
7 As of mash version 5.01b 
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6 Experimental Design 
 

To evaluate the design, an experiment is performed where a subset of the proposed 

architecture is implemented and tested.  We created a prototype called Joxer. In 

particular, we focus on the adaptive characteristics that allow an SB to reproduce or 

aggregate on demand. The success criterion used is ERUM, which has been defined in 

Chapter 5.  

 

6.1 Implementation 

The Joxer prototype runs in a network testbed consisting of four service brokers and a 

load generator. The service brokers and load generator are PCs running FreeBSD.  

 

To develop the service broker code, we modified the original highly decentralized MeGa 

service –built on top of the mash toolkit. We were not interested in the MeGa transcoding 

service per se, but instead in the AS1 mechanisms, which we extended to fit our design  

needs. Therefore, we constrained our modifications to the active services control protocol 

(ASCP), leaving the other protocols involved in the MeGa service (RTP/RTCP, SCUBA, 

etc) intact. 

 

6.2 Experimental Setup 

We propose the following 3 service brokerage scenarios to compare under an identical set 

of service requests across time:  

 
 

- Centralized SB 

 

- Statically distributed SBs 

 

- Dynamically distributed SBs 

 

 

In all three scenarios, we inject into the system an equal number of service requests for a 

period of 61 seconds. The service requests were evenly distributed during that time 

period. In addition, every SB periodically sends two types of multicast updates. The first 

is an announcement of its services  to potential customers. The second type of update is a 

report sent to other SBs about the services offered and the customers being attended at 

that moment. The reports are used by the SBs to maintain soft state tables as explained in 

Chapter 5.  Service requests vary in the level of specialization required to broker them. 

When an SB receives a service request it must be specialized to broker it. If the service 

broker doesn’t have the appropriate specialization it will need to acquire it. In the Joxer 

testbed, we assume that specialization is obtained from a well-known point-of-contact. 

Moreover, on each specialization acquired by a SB, CPU load and bandwidth is affected.  
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Suppose a service request is constructed in the following way: 

 

/generic/audio/mp3/ 

 

Each of these subdivisions implies a level of specialization required in the SB. That is, in 

order to have an SB to broker this request, it must have obtained the generic 

specialization (e.g. bandwidth, cycles), the audio specialization (e.g. knowledge of 

compression algorithms, tradeoffs among them), and the mp3 specialization (e.g. 

copyrights permissions). In our experiment, each specialization builds on top of the ones 

below to assure a full end-to-end quality of service. However, as explained in Chapter 5, 

we imagine that each level of specialization by itself can provide a brokerage service to 

certain type of applications. There will be applications asking only for bandwidth and 

cycles.  Furthermore, certain service may require more than one path of specialization 

below them, for instance, videoconferencing may require both video and  audio 

specialization. In this way a broker can specialize in several areas at the same time.  

 

 

6.3 Centralized SB 

In the case of a centralized SB, there is only one service broker that is trying to service all 

incoming requests, see Figure 6.1. Multicast announcements are sent by the SB to 

announce its presence to potential customers.  Multicast reports to other SBs are sent too, 

despite there is only one SB in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Centralized SB 

 

 

 

6.4 Statically distributed SBs 

In this scenario, the population of service brokers is maintained static across time. Each 

SB specializes differently according to the requests it services, see Figure 6-2. Moreover, 

assuming we maintain all other variables equal, if two service brokers receive a service 

request (/generic/video/videoconferencing/) and one has no specialization and the other is 
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specialized in /generic/video/videoconferencing/, the later should service this request –

being the “expert”. In the case that both SBs have the same specialization, we chose the 

CPU load as the selection criterion. However, if the CPU loads of both SBs is above an 

arbitrary defined threshold of 0.7, a third SB, with a lighter CPU load, will service the 

request. 

 

Figure 6-2 Statically Distributed SBs 

 

 

 

 

 

 

 

6.5 Dynamically distributed SBs 

Starting as a centralized service brokerage (see Section 6.1), SB reproduction –and 

subsequent aggregation– takes place according to the demand of service requests. We 

apply the criteria described in the statically distributed scenario to determine which SB 

services a request when two or more are present. In addition, if a SB has a CPU load 

above the load threshold (0.7) and doesn’t detect any other SB with a CPU load below 

the threshold, the reproduction process will be triggered, spawning a new SB, see Figure 

6-3. 
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Figure 6-3 Dynamically Distributed SBs 

 

 

6.6 Measures 

In the experiments only CPU load and bandwidth are considered. Each time an event 

occurs, we log it. For the sake of simplicity, we assign certain values for CPU and 

bandwidth consumption for each type of event (service hit, update report, and 

specialization). Each event is assigned a duration of 1.0 second. See Table 6–1. CPU load 

assigned to an event is given as a fraction of the total system CPU cycles (used and idle). 

In addition, if an SB gets a service hit and decides to service it, additional CPU cycles are 

assigned for processing the request. The additional increase in CPU load will remain 

effective for a time dependent on the type of service being brokered. The more complex 

the service is, the more the time we assign to broker the request. In addition, a factor is 

introduced to represent load-dependent differences in the duration of the request being 

processed. Table 6-2 shows the list of hypothetical service requests used in our 

experiment along with the values for CPU load we assigned them. 

 

CPU  
(fraction of total cycles)  

 BW  
(Kb/s)  

Receiving a service hit  0.01  Service  hit 1 

Sending an update report 0.01  Update report 1 

Receiving an update  report 0.01  Specialization 5 

Specializing 0.05    

Table 6-1 Resource Consumption per Type of Event 
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Service 

CPU 
(fraction of total 

cycles) 

/generic/films/starwars/episode3/ 0.2 

/generic/disted/ 0.1 

/generic/disted/unext/mba/finance/ 0.2 

/generic/news/cnn/  0.2 

/generic/films/independent/happytexas/ 0.2 

/generic/banwidth/ 0.2 

/generic/videoconferencing/highquality/ 0.3 

/generic/films/starwars/episode3/spanish/ 0.3 

/generic/advertisement/poland/class1 0.2 

/generic/sports/worldcup/1986/final/ 0.1 

/generic/news/tf1/  0.1 

/generic/cpu/500mhz/  0.1 

/generic/bandwidth/t1/ 0.2 

/generic/videoconferencing/highquality/ 0.3 

Table 6-2. Hypothetical Service Requests Used 
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7 Measurements 
It is important to remark that the experiments focused on measuring how the dynamically 

distributed scenario, implemented upon our proposed service brokerage framework 

(Chapter 5) compares against scenarios 1 (centralized) and 2 (statically distributed). Our 

comparisons measures are overhead bandwidth and incurred CPU load levels.As shown 

in Figure 7.1, a centralized scenario (dotted line) will consume the least amount of 

bandwidth because overhead bandwidth due to multicast announcements and reports is 

minimum, as there is only one SB.  

 

 

Figure 7-1 Bandwidth Consumption 

 

 

 

 

Also, because there is only one SB in the centralized scenario, the bandwidth penalty 

incurred when acquiring a specialization happens only once and further requests for the 

same service don’t involve any new intelligence to be acquired, which is depicted by the 

a heavier bandwidth consumption in the beginning. Scenario 2 and 3 present no great 

difference when SB population is similar (shadowed section), otherwise the statically 

distributed scenario is more bandwidth intensive as the SB population doesn’t shrink and 

state maintenance becomes more expensive to maintain as service requests decrease. 

 

Conversely in Figure 7.2, as there is only one SB who is receiving the entire load, the 

centralized scenario presents the highest consumption in CPU cycles. The distributed 

scenarios present a much lower average CPU consumption as there are more SBs sharing 

the load. Of the two distributed scenarios, the static one presents the least CPU 

consumption per SB due to the fact that there are always four SB active–as opposed to 

starting with one SB in the dynamic scenario and reproducing and aggregating SB as 

necessary.  

 

 

As explained Section 5.7, we did not include response time in our measurements, 

however, as the response time is mostly a function of precisely CPU load and bandwidth 
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utilization, we argue that minimizing response time is addressed by minimizing cpu load 

and bandwidth. For instance, as described in Section 6.4 and Section 6.5, in the two 

distributed systems (static and dynamic), an SB that has reached 0.7 in CPU load will  

first let other SBs service a request (even if it has all the necessary  specialization to 

service it). Therefore one  could argue that when compared  to the centralized scenario, 

these two scenarios are preventing an SB from incurring large response times. In Figure 

7-2, the high CPU load in the centralized scenario suggests a long response time relative 

to the other two scenarios .  

 

 

 

 

 

 
 

 

Figure 7-2 CPU Load Consumption 

 

 

 

 

Finally, using ERUM, the benefit/cost metric we defined in Section 5.7, we can see that 

the dynamically distributed scenario behaves similar to other two scenarios, which is 

exactly what we wanted, see Figure 7-3. This is because both, centralized and statically 

distributed, are ideal scenarios respectively when CPU cycles and bandwidth are 

abundant. However, they do not scale to large numbers of service requests -centralized- 

or large numbers of SBs -statically distributed- as cost becomes excessively high if not 

impossible to maintain. By dynamically reproducing and aggregating SBs we can 

preserve a similar value of ERUM in an organic fashion. 
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Figure 7-3  ERUM 
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8 Summary and Future Work 
 

As more and different services appear over the Internet, there is a need to have a 

brokerage architecture that abstracts complexity from the user and is scalable enough to 

be internet-wide deployed.  

 

We have presented an architecture and proof of concept for the deployment of service 

brokers over the Internet. We have done this by merging SLP and AS1 and adding our 

own design elements. The design considerations for the work presented were (1) high 

variability of usage, (2) high diversity of services and resources, (3) no single point of 

failure,  and (4) network awareness. 

 

In addition, we decoupled the notion of agent, service, and resource in three separate 

logical components and we illustrate how SLP and AS1 behave fundamentally different 

in their perception of them.  

 

In the architecture proposed, a service broker optimizes resource consumption by 

deciding to reproduce or aggregate based on the demand of their services and the 

consequent load they experience. A service broker can also “reincarnate” the 

functionality of another service broker who ceased to function. 

 

To measure the effectiveness of our designs, we defined a performance metric called 

Effective Resource Usage Metric (ERUM). We defined ERUM  as the inverse of 

bandwidth utilization times average CPU load, consumed by active SBs  

8.1 Future work 

 

We have provided arguments to validate what we consider a promising architecture; 

however, future work should focus on testing different service loads as well as measuring 

different resources besides CPU load and bandwidth consumption, like storage or 

response time. In addition, there are a number of areas related to the deployment of a 

service broker where we can extend the work here presented. We explain briefly three of 

them: weighted ERUM, intelligent multicasting, and specialization of service brokers. 

 

8.1.1 Weighted ERUM 

An area of future research is to extend ERUM to represent the  impact that each resource 

has in the response time by assigning weights to them. Weights can be used for 

representing network conditions, which convert one resource more significant than 

another one. Equation 8-1 represents a weighted ERUM for a potentially infinite number 

of resources: 
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Equation 8-1 

Where en  is the weight assigned  to rn . Thus, the more significant a resource is –higher 

en–, the less it should be consumed in order to maintain a similar value of ERUM.  

 

Equation 9-1 has the limitation that rn must be always be greater or equal than 1. If rn  is 

smaller than 1, the effect of en will be inversed.  Another option would be:  
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However, in this case, small values of rn would be overwritten by the 1 in the equation. 

Other options need to be considered. 

 

8.1.2 Considerations on Service Broker Specialization 

Another open issue is the case when an SB reaches its CPU load threshold and a service 

request arrives for which the SB is the only one with the appropriate specialization to 

broker the request. Normally, one of two things could happen, a less loaded –but less 

expert- SB will service the request or, if all SBs are at their maximum load, a 

reproduction process will take place spawning a new SB. In either case, there is a cost for 

the specialization of the new SB that needs to be considered, which could lead the 

specialized but overloaded SB to service the request, despite the potential delay. Besides 

CPU load and bandwidth consumed, this consideration has implications in two variables, 

storage of the SB specialization and response time to service the request, which are food 

for future work. 

8.1.3 Intelligent Multicasting 

As mentioned in Chapter 5, maintaining state among SBs is achieved by multicast 

technologies when available. Our experiments used a multicast address where all SBs 

subscribe and share information among each other. When a service request is submitted 

into this shared space, every SB will know who should be the most appropriate to broker 

such request (the most expert, the less loaded, etc). Even under a dynamic distribution of 

SBs, this solution imposes a heavy overhead on each request hitting every SB and every 

SB communicating a potentially large amount of information to every other SB. Another 

solution could be to have different multicast addresses for different specializations areas. 

This implies having a large number of multicast addresses. However, the overhead is still 

heavy because specialized brokers will now subscribe to many multicast addresses. In 

this subsection we explore the possibility of using what we call intelligent multicasting.  
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Intelligent multicasting would require only one multicast address, but that address would 

carry hierarchical information in it. The idea is that if a service broker could send its 

degree of specialization with the request its subscription to a multicast address, service 

requests could potentially be routed based not only in the address but in the specialization 

too. This is not that same as having multiple multicast addresses, each representing a 

degree of specialization. Instead, it is a hierarchical array of virtual multicast addresses 

contained within one physical multicast address. In this way, a service request would 

initially touch only those SBs who are prepared to respond, reducing the bandwidth and 

CPU overhead For instance, consider a service request that arrives at the root of a 

multicast tree,  

 

/generic/audio/mp3/ 

 

Assuming a generic multicast protocol for session management, a router would normally 

forward a multicast packet based on the existence of subscribers to that multicast address. 

In this case, a router will have some degree of intelligence about the SBs down the 

multicast tree in order to reduce the number of interfaces to which to forward the service 

request.  

 

Having multicast routers to be able to understand beyond the multicast address implies 

introducing more intelligence in a router who’s primary objective is to move packets 

around fast. Still, we believe that a service brokerage network such as the one proposed 

herein should be supported even in the routers, seen as a meta service that is general 

enough to enclose any type of service and therefore, its importance should be perceived 

by a router in terms of the amount of resources that would be used otherwise, including 

resources in the same routers (maintaining several multicast address, forwarding more 

packets ). 

 

This technique doesn’t intend to find a unique service broker, but instead, to reduce the 

overhead bandwidth by reducing the number of services brokers that will listen to a 

service request. Using an expanding ring search technique, as the same request arrives for 

the second time to a router, the router can relax the criteria to forward the service request 

(e.g. by neglecting the deepest level of expertise). Therefore, the request will now be 

forwarded to a broader audience of service brokers. 

 

In our experimentation we didn’t consider an intelligent multicast scenario such as the 

one here described, however, figure 8-1 extrapolates our simulation to a scenario where 

intelligent multicasting is deployed. The extrapolation criteria were very basic, as it 

assumed that all requests were serviced in the first transmission and only one SB would 

receive the request. However, despite the rather simplistic assumptions, we strongly 

believe the results represent an ideal case that is meaningful enough to be presented.  For 

instance, both scenarios with intelligent multicasting present in general a higher ERUM. 

It is interesting to notice that during the last period of the experimentation, the statically 

distributed scenario with intelligence multicasting achieves by far the highest value of 

ERUM.  One reason for this is because during the last period the frequency of service 

requests is still constant but demand for specialization is considerably lower. Therefore, 
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the bandwidth penalty for having every active SB to receive a request has been reduced 

by sending the service request to one SB always. Figure 8-1 is not definitive because the 

original bandwidth penalty has not disappeared but instead transformed into a CPU load 

on every multicast router, which is not represented here. Still, the significantly high value 

of ERUM gives us an important argument for doing more research. 

 

 

 

Figure 8-1 Performance of ERUM using Intelligent Multicast  
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