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ABSTRACT

In designing a general modeling formalism for domain experts, a key challenge is to support a broad selection
of their preferred paradigms yet minimize their exposure to complexity. With this aim, a formalism called
Symmetric DEVS is proposed for specifying models that incorporate elements of discrete event simulation,
dataflow programming, and agent-based modeling. Symmetric DEVS is based on the Discrete Event System
Specification (DEVS) formalism, but differs in that atomic and composite nodes for discrete events are
complemented with function and collection nodes for dataflow and agents. Like DEVS, nodes communicate
over simulated time via message ports, but they also feature flow ports accommodating initialization and
finalization operations. To minimize conceptual complexity, specifications are pared down to the essential
elements and formulated to exhibit a high degree of symmetry. This paper defines the mathematical elements
of Symmetric DEVS and presents an example of each of the four types of nodes.

1 INTRODUCTION

The appeal of the Discrete Event System Specification (DEVS) lies in its ability to represent almost any
time-dependent behavior (Vangheluwe 2000), as well as its hierarchical approach to model development. It
is worth noting, however, that certain types of model hierarchies pose challenges for the original formalism.
In particular, Classic DEVS does not support a type of composition ubiquitous in agent-based modeling
(ABM), where the number of instances of an agent model is arbitrary and permitted to vary over the
course of a simulation. A number of dynamic structure DEVS variants have therefore emerged which
allow changes to a model hierarchy to unfold over simulated time. Another concern is how to make DEVS
approachable to domain experts, who may perceive the formalism as unfamiliar and complex.

Although dynamic structure variants of DEVS provide comprehensive support for ABM and other
simulation techniques, they unfortunately introduce a significant number of additional elements into model
specifications. The added complexity may further discourage adoption by domain experts. This motivates
the search for a middle ground between Classic DEVS and its full-fledged dynamic structure variants, a
solution that accommodates ABM while minimizing conceptual complexity. Because agents may need to be
created and terminated during a simulation, one implication of ABM is that the initialization and finalization
of model instances becomes a key concern. To handle these operations, our proposal incorporates a paradigm
that is gaining traction among end-user programmers in a variety of fields: dataflow programming. Dataflow
nodes are symmetric in form, a quality we attempt to infuse into DEVS-inspired nodes.

In this paper we introduce Symmetric DEVS, a set of conventions designed to yield minimal model
specifications while supporting discrete event simulation, dataflow programming, and agent-based modeling.
Symmetric DEVS models are defined by formally specifying and linking nodes of four types: atomic
nodes, which are similar to Classic DEVS atomic models; function nodes, which we borrow from dataflow
programming; composite nodes, which combine Classic DEVS coupled models with dataflow; and collection
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nodes, which we introduce to accommodate arbitrary numbers of agents of the same type. We have observed
that in many virtual experiments, a considerable amount of code is dedicated to pre-computations that help
initialize simulation models. Furthermore, there are usually operations to perform at the conclusion of a
simulation run. Symmetric DEVS nodes include flow ports to aid in the specification of these initialization
and finalization procedures. Atomic, composite, and collection nodes also retain the message ports of
Classic DEVS. The four types of ports—flow input (P;), message input (P,;), message output (Pp,), and
flow output (P,)—exhibit a symmetry that is intended to make the formalism more approachable and
easier to recall. Symmetry is also emphasized in the names and symbols of the four main event handling
functions (finit» fus fp» fhina)> the two types of durations (Af., At,), and the macro and micro levels (Wy,
W),) of composite and collection nodes.

Symmetric DEVS is designed to serve not as a rigid standard for model specification, but rather as an
option for modelers who wish to formally express agent creation/termination and/or initialization/finalization
operations in conjunction with discrete event behavior. Our philosophy is that the formalism should be
extended as needed, and thus we present only the most essential elements. We exclude state sets, for
example, which are implicit in the Symmetric DEVS event handling functions. We also exclude the Classic
DEVS tie-breaking function, proposing instead a non-deterministic interpretation of simultaneous event
ordering. If desired, we encourage modelers to expand their specifications by adding state sets, tie-breaking
functions, and other elements on a per-application basis.

This paper (a) describes the main concepts underlying Symmetric DEVS and their relationship to
prior work, (b) defines the mathematical elements of the formalism, and (c) presents an example of each
of the four types of nodes. The examples have been tested using the SyDEVS library, an open source
implementation of Symmetric DEVS developed in C++.

2 BACKGROUND AND RELATED WORK
2.1 DEVS and Approachability

The Classic DEVS formalism was invented in the 1970s to allow the behavior of essentially any time-varying
system to be represented in a common form. Systems are formally described as atomic or coupled models
containing the elements in (1), where X, Y, S, D, EIC, EOC, and IC are mathematical sets, Oex¢, Oints 4, 4,
and Select are functions, and M, is a DEVS model. Zeigler et al. (2000) provide the complete definition.

(X,Y,S, 8exis O, A, 1a) Classic DEVS atomic model ]
(X,Y,D,{My}, EIC, EOC, IC, Select) | Classic DEVS coupled model M

Although DEVS offers domain experts a scalable approach for model development, its nomenclature and
intentional de-emphasis of the simulation procedure are unfamiliar to most programmers. Hence numerous
efforts have been undertaken to make DEVS more approachable and encourage its adoption. Such efforts
involve the development of visual modeling interfaces, particularly 2D network editing interfaces for
coupled models as seen in GVLE (Quesnel et al. 2009) and many other graphical DEVS-based simulation
environments. Some packages, such as CD++Builder (Bonaventura et al. 2013) and MS4 Me (Seo et al.
2013), provide state diagram editors as a visual alternative to traditional code for defining atomic models.
Another strategy is to promote DEVS ideas in the layout of a simulation environment, an example being
the separation of model and simulator reflected in the DesignDEVS interface (Goldstein et al. 2018).

To make the formalism more intuitive, DEVS terminology is sometimes modified. Such modifications can
be as simple as replacing the term “coupled model” with “composite model”, as in CoSMoS (Sarjoughian
and Elamvazhuthi 2009), avoiding the possible misinterpretation that “couple” implies there only two
components. Alternatively one can replace the entire vocabulary, as in OMNeT++ (Varga and Hornig
2008), which is essentially a DEVS-based tool even though it is not framed as such. Maleki et al. (2015)
propose a comprehensive set of alternative terms that describe DEVS but are intended to map more closely
to concepts familiar to modern-day end-user programmers. Any decision to depart from conventional
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nomenclature involves a trade-off: on the one hand, inconsistencies may be introduced into the literature;
on the other hand, terms observed to be potential sources of confusion can be replaced.

A final strategy for making DEVS more approachable is to emphasize various symmetries inherent in
the theory. In general, it is observed that symmetric forms receive more attention than asymmetric forms
and are more easily recognized and recalled (Lidwell et al. 2010). An example of symmetry can be found
in the user manual of DEVS++ (Hwang 2007), where the atomic models of (1) are re-expressed as in (2).

(X,Y,8, 50,7, &, o) ‘ DEVS++ atomic model )

In (2), the Classic DEVS functions A and &, have been merged into a single function 6y Combining
functions does not by itself produce a simpler formalism, since the resulting function may be more complex
than either of the original two. However in this case, the merging, renaming, and reordering of elements
establishes a symmetry between the input/output sets X, Y and the associated transition functions Jy, &,. It
is thus likely that a domain expert without prior exposure to DEVS would find the atomic model of (2) more
approachable than that of (1). On the other hand, specifications based on (2) contrast with the literature
and may be less convenient to check for certain mathematical properties. Nevertheless, if the formalism is
expanded to include initialization elements—an example being the initial state sy in (2)—and many more
elements associated with ABM, the benefits of symmetry become worthy of serious consideration.

2.2 DEVS and Dataflow Programming

At its simplest, dataflow programming implies the use of a directed graph in which every node represents
a function and links direct data from the output of one node to the input of another (Davis and Keller
1982). The paradigm is often implemented in conjunction with visual programming environments that allow
end-user programmers to navigate and edit dataflow graphs in 2D. The popularity of dataflow programming
environments is explored by Doore et al. (2015) as an opportunity to introduce modeling and simulation
into academic programs such as multimedia where discrete events, state transitions, and other foundational
concepts have traditionally received little attention.

There are several ways to combine discrete event simulation and dataflow programming, a number of
which are demonstrated by the Ptolemy II framework (Lee et al. 2004). In Ptolemy II, a dataflow graph can
be used as a function to specify how a discrete event model responds to inputs. In this approach, neither
paradigm need be substantially altered. Another option is to define a Ptolemy II discrete event model
using a dataflow component with a nonzero period parameter, which imposes a fixed time step between
transitions regardless of the timing of the inputs. This paradigm-mixing approach contrasts sharply with
DEVS, where delays between inputs and outputs depend on the definition of the fa function.

Maleki et al. (2015) propose a visual interface that combines dataflow and discrete event elements into
a single graph, yet separates the execution of the graph into dataflow and discrete event phases. First, an
initialization phase based on dataflow programming incorporates parameters and prepares the simulation.
Second, a simulation phase based on DEVS processes all timed events. Third, a finalization phase reverts
to dataflow to gather information from the simulation and compute statistics. In essence, all static data is
handled by dataflow programming and all time-varying data is handled by discrete event simulation.

2.3 DEVS and Agent-Based Modeling

Yilmaz and Oren (2009) distinguish between simulation for agents and agents for simulation, only the
latter of which encompasses agent-based modeling. To illustrate, consider a simulation of customers waiting
in a queue. Suppose the queue is represented as a DEVS model, but the customers are tracked only via state
variables and messages. This could be considered an example of “simulation for agents”—or multi-agent
simulation—assuming the customers are interpreted as agents regardless of how they are modeled. The
example is not, however, a case of “agents for simulation”—and hence not an example of ABM—since
there is no single-customer model that drives agent behavior. But now suppose the simulation is modified
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such that an additional queue is generated, by instantiating the single-queue DEVS model, whenever the
existing queues are all full. For our purposes, this enhanced version is an example of ABM in which the
queues are modeled as agents. From an ABM perspective, the customers are not agents at all.

Classic DEVS offers very limited support for ABM as defined above. This is partly because coupled
models tend to involve a small number of explicitly named components, but more fundamentally because
the number of components remains constant throughout a simulation. In order to treat the components of a
coupled model as agents, dynamic structure is required. The original means of achieving dynamic structure
in DEVS is to incorporate links and components into the time-varying state of an encompassing model called
the network executive (Barros 1995; Zeigler et al. 2000). Subsequent developments have followed one of
two strategies: distributed or centralized (Barros 2014). The distributed approach omits the executive and
instead requires all changes to a network to be initiated by its components (Hu et al. 2005; Muzy and Zeigler
2014). The centralized approach retains the network executive, as in the HyFlow formalism (Barros 2016),
or reformulates it and the components as macro-level and micro-level communicating instances with their
own interfaces, state sets, and behavior. In the multi-level modeling formalism ML-DEVS (Steiniger et al.
2012; Steiniger and Uhrmacher 2016), an example of a centralized approach that reformulates the network
executive, communication occurs through port-to-port links as well as separate upward (micro-to-macro)
and downward (macro-to-micro) interaction mechanisms.

Regardless of which variant is used, introducing dynamic structure into DEVS coupled models entails
a large and possibly intimidating set of mathematical elements. Are there simpler ways to make DEVS
amenable to ABM? Exploring this question, we first observe that most programming languages provide
compositions and collections as separate data types (e.g. a C++ class vs. an array), and that the run-time
creation and termination of agents would most easily be achieved using a collection data type. The analogous
approach in DEVS would be to leave the composite (coupled) model as a static entity, and introduce a
separate collection model containing a variable number of instances of an agent model. Managing links
to newly created agents is known to be a difficult challenge (Steiniger and Uhrmacher 2016), yet one can
dispense with links and transfer messages to/from agents by associating them with agent IDs. The invention
closest to this idea is Vectorial DEVS (Bergero and Kofman 2014), which includes arrays containing an
arbitrary but fixed number of DEVS model instances. A more versatile collection model would be needed
to permit the mid-simulation creation and termination of agents and thus improve support for ABM.

3 OVERVIEW OF SYMMETRIC DEVS

Symmetric DEVS is based on Classic DEVS, but features a more symmetric set of mathematical elements
accommodating not only discrete event simulation but also dataflow programming and ABM. Instead of
atomic and coupled models, Symmetric DEVS specifications consist of atomic, function, composite and
collection nodes. The main elements of all four types of nodes are illustrated in Figure 1.

It is in the atomic nodes that the symmetry which characterizes the formalism is most noticeable. Ports
are classified as either flow or message ports, and also as input or output ports. Combining these attributes
yields four types of ports. When representing nodes visually, as in Figure 1, we always position each
type of port on a particular side of the node: left/right for flow input/output ports; top/bottom for message
input/output ports. Each type of port is associated with its own event handler: initialization/finalization
for flow input/output ports; unplanned/planned for message input/output ports. All event handlers except
initialization depend on the elapsed duration measured since the preceding event. All event handlers except
finalization supply a planned duration measured until the next scheduled planned event. Function nodes
are also highly symmetric, but feature only flow input/output ports and a single event handler for dataflow
events. The flow/dataflow elements involve neither state transitions nor the advancement of simulated time,
and are hence unrelated to the flow values of the HyFlow formalism where state is omnipresent.

Composite and collection nodes share the same external interface as atomic nodes, with the four types
of ports, but differ internally. They both support hierarchical model design by encapsulating components
or agents described by node specifications of any type.
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Figure 1: The four types of Symmetric DEVS nodes: atomic, function, composite, and collection.

The composite nodes are based on the work of Maleki et al. (2015) and feature two overlapping networks.
The dataflow network is a horizontally oriented directed acyclic graph that guides information through
the composite node’s flow ports and the flow ports of all component nodes. The simulation network is a
vertically oriented directed graph (cycles permitted) that guides information through the composite node’s
message ports and the message ports of a subset of the component nodes (the “simulation components” in
Figure 1). Depending on the design of the dataflow network, the flow input/output ports of the simulation
components may have a one-to-one correspondence with those of the surrounding composite node, or they
may be completely different. By separating the inner and outer interfaces in this fashion, the dataflow
network allows the structure of the composite node to be fully encapsulated.

The collection node borrows ideas from a number of sources. As in Vectorial DEVS (Bergero and
Kofman 2014), agents are nodes that share a single specification but may be assigned different parameter
(flow input) values. All agentinteractions are achieved via the juxtaposition of agent IDs with the information
to be communicated. Unlike Vectorial DEVS, but similar to ML-DEVS (Steiniger and Uhrmacher 2016),
the micro-level behavior of the agent nodes is complemented with macro-level behavior associated with
the collection as a whole. The macro-level behavior is described by event handlers similar to those of the
atomic node, but (a) renamed with the prefix macro, (b) extended with a micro planned event handler, and
(c) enhanced to specify the creation of, interaction with, and termination of agents. The upper-level event
handlers allow the agent IDs, and hence the structure of the collection node, to be encapsulated.

While the diagrams in Figure 1 depict the most prominent elements of the four types of Symmetric
DEVS nodes, Section 4 presents the complete set of elements along with their proposed notations and an
informal description of their semantics.
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4 FORMAL DEFINITION OF SYMMETRIC DEVS NODES
4.1 Common Definitions

A number of mathematical elements are common to most if not all types of Symmetric DEVS nodes.
These common elements include the functions below, which define a node’s ports by mapping each port’s
identifier (ID) to the set of values that can be communicated through the port.

Pa, Puiy Pros Pro ‘ port definition functions
P;(pidg) = X5 pidy is a flow input port ID; Xj is the set of values for port pidg
Pri(pidi) = X | pid,,; is a message input port ID; X,;; is the set of values for port pid,,;
Poo(pid,,) = Xy | pid,,, is a message output port ID; X, is the set of values for port pid,,,
Pro(pidy,) = Xgo pidg, is a flow output port ID; Xy, is the set of values for port pid,

There are also elements that exist only during a simulation. These include the states and time durations
associated with intervals between events. As indicated below, state and duration elements are often grouped
together. There are also values that become available on individual message ports. Such values are often
grouped with the port ID.

[s, At ] s is the state leading up to an event; Az, is the elapsed duration since the previous event
[s', At,] s' is the state following an event; Af, is the planned duration until the next planned event
[pid i, Xmi] | Xmi is @ value on message input port pid,;; Xni € Pi(pid,;)

[Pid, o, Xmo] | Xmo 1S @ value on message output port pid,,,; Xmo € Pmo (pid,,)

Unlike messages, which become available on individual message ports, flow values tend to become
available on all flow input or flow output ports. Functions are therefore used to map flow port IDs to values.

Xii, Xto ‘ port value functions
Xq(pids) = xq | xg is a value on flow input port pidy; x5 € Ps(pids)
Xio(pidy,) = x50 | g0 18 a value on flow output port pids,; xg, € Pro(pid,)

The expression D(f) represents the domain of function f. For example, D(P;) is a mathematical set
containing a node’s flow input port IDs. Port and component IDs are symbols enclosed in double quotes.

4.2 Atomic Node Definition

Atomic node specifications consist of four port definition functions, as in Section 4.1, plus the four
event handling functions elaborated below. The eight elements exhibit a symmetry mirroring that of the
corresponding diagram in Figure 1.

W = (P, Pni, Pmo» Pro> finits fu> fps final) ‘ atomic node definition
Fie(Xg) =[5, Aty] initialization function
fulls, Ate], [pid. i, xmi]) = [s', At,] unplanned event function
folls, Ar]) = [[s', Aty ], [pidyng, Xmo]] | planned event function
Sanal([s, Afe]) = X0 finalization function

The simulation of an atomic node begins when the initialization function fi,; takes the flow input
(parameter) values in X5 and produces the initial state and the planned duration Az,. If a message input
value xp,; is received on any message input port pid,; either when Af, elapses or at an earlier time, the
unplanned event function f, is invoked to update the state and supply a new planned duration. If Az,
elapses before an input is received, the planned event function f, is invoked to update the state and planned
duration, and possibly to send a message output value x;,,, on message output port pid,,,. If pid,, = @,
no message is sent. At the end of a simulation, or if the atomic node is an agent being terminated, the
finalization function f,, is invoked to produce the flow output (statistic) values in Xg,.
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4.3 Function Node Definition

Function node specifications consist of the two port definition functions associated with dataflow program-
ming, plus a single event handling function.

Y = (P, P, f) ‘ function node definition
f(X5) = Xz, ‘ flow event function

When the flow input values in X become available, f may be invoked to produce the flow output values
in Xj,. Invocation occurs during the initialization or finalization phase of an encompassing composite node.
It is possible to specify pure dataflow networks using composite or collection nodes with no atomic nodes
at any depth in the hierarchy. Such composite/collection nodes essentially act as function nodes.

4.4 Composite Node Definition

Both composite and collection nodes support hierarchical specifications by encapsulating other nodes of any
type. In this context the symbol M indicates macro-level elements associated with the overall composition
or collection, whereas the symbol u indicates micro-level elements associated with the component or agent
nodes. The component function y),, which includes a subscript i to associate it with the lower level, maps
the ID of each of a composite node’s components to the specification of the component.

Yy ‘ component function
Yy (cid) =¥, ‘ cid is a component ID; ¥, is the definition of component cid

Composite node specifications consist of all four port definition functions, the component function
described above, and six sets of links. The link elements include sets of inward (macro-to-micro), inner
(micro-to-micro), and outward (micro-to-macro) links for both the dataflow network (L, Lgy, Lg,) and the
simulation network (i, Ly, Limo)-

Ym = (Pi> Puis Pros Pros Wi Lty Ly, Loy Limi, Linge, Limo) ‘ composite node definition

Lg ={..., [pid, [cid, pidg]], ...} set of inward flow links

Ley = {..., [[cid, pidy, ], [cid, pidg]], ...} set of inner flow links

L ={..., [[cid, pid, ], pid, ], - ..} set of outward flow links
Ly ={..., [pid,y, [cid, pid;]], - ..} set of inward message links
Ly ={..., [[cid, pidy, ], [cid, pid,;;]], ...} | set of inner message links
Lo ={..., [[cid, pid,, ], pid.,o ], - - -} set of outward message links

Composite nodes feature three distinct types of components. An initialization component (a) is a function
node or acomposite/collection node that contains no simulation components/agents, and (b) is not downstream
of any simulation component. A simulation component is an atomic node or a composite/collection node
that contains at least one simulation component/agent. A finalization component (@) is a function node or
a composite/collection node that contains no simulation components/agents, (b) is downstream of at least
one simulation component, and (c) is not upstream of any simulation component.

Composite nodes are executed in three phases. In the initialization phase, the initialization components
are executed whenever they receive all flow input values through their incoming flow links. The simulation
components are then initialized. In the simulation phase, the simulation components’ planned and unplanned
event functions are invoked as simulated time advances. If a message input value is received, it is propagated
via the inward message links to the components, triggering unplanned events. Otherwise, if a planned duration
elapses for any component, it undergoes a planned event. Any message produced by that component gets
propagated along the inner message links to other components, triggering unplanned events. The message
may also be directed out of the composite node via an outward message link. In the finalization phase, the
simulation components are finalized, then the finalization components are executed whenever they receive
all flow input values through their incoming flow links.
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4.5 Collection Node Definition

Whereas composite nodes contain a fixed number of components but permit an assortment of component
specifications, collection nodes contain an arbitrary and time-varying number of agents but permit only a
single agent specification. Collection nodes introduce a number of elements, including the following.

aid | an agent ID
W), | the definition of all agents in the collection node
F | asetof IDs of agents to be terminated and removed from the collection node

Agents in a collection node cannot exchange data directly with one another. Instead, all communication
occurs between the macro (collection) and micro (agent) levels using the four elements below.

Uiy Hinis Mmos Mfo ‘ micro port value elements

U (aid) = Xél X# is the flow input port value function of new agent aid
Umi(aid) = [pidii, Xffn] xii is a value on message input port pidii of existing agent aid
Umo = [aid, [pid™ ., xmo]] | xho is a value on message output port pid™ | of existing agent aid
Uio(aid) = Xfl; Xf‘:) is the flow output port value function of existing agent aid
Collection node specifications consist of all four port definition functions, the agent specification, and
five event handling functions.

Ym = (Pis Puis Pros Pros Wi R f; , fév[ o) ‘ collection node definition

f‘il:gt(Xﬁ) =[[s, Aty ], [ s, Himi]] macro initialization function
M, Ate], [pid., xmil, o) = [[ 5, At, ], F, [ ug, pmi]] macro unplanned event function
frfl([s, Ate ], Umos Heo) = [[s', Aty ], [pid o, Xmo ], Fy [ Mg, mi]] | micro planned event function
ffl,w([s, At ], o) = [[s', Aty ], [pid g, Xmol, B, [y Mmi]] macro planned event function
(s, Ate], i) = Xro macro finalization function

The simulation of a collection node begins when the macro initialization function takes the flow input
values in X and produces the initial state and Az,. This function can also create and send messages to
agents, in that order, using U and W,;. If a message input value x,,; is received on any message input
port pid,; either when Az, elapses or at an earlier time, the macro unplanned event function is invoked to
update the state and supply a new Az,. The macro unplanned event function can also terminate, create, and
send messages to agents, in that order, using F, ug, and py,;. If Az, elapses before an input is received,
the macro planned event function is invoked to update the state and Af,, and possibly to send a message
output value x;,,, on message output port pid,,, (unless pid,,, = @, in which case no message is sent). The
macro planned event function can also terminate, create, and send messages to agents. At the end of a
simulation, or if the collection node is itself an agent being terminated, the macro finalization function is
invoked to produce the flow output values in X,.

There is also a micro planned event function, invoked after an agent sends a message during its planned
event. The message is made available via p,,,. Apart from how it is triggered, a micro planned event is
similar to a macro planned event. It updates the state and supplies a new planned duration, it may send a
message out of the collection, and it may terminate, create, and send messages to agents. If tied, macro
unplanned events occur before micro planned events, which occur before macro planned events.

When an agent is terminated, its flow output values must be available to the collection node. Yet L,
provides flow output values for every agent that might get terminated during an event. Implementations of
Symmetric DEVS can make use of two-way communication between macro- and micro-level events; an
agent can provide its flow output values only if its termination is signaled. But in a mathematical context,
dependent events are handled strictly in sequence, so flow output values must always be available for all
preexisting agents. Because agents in [ are terminated before agents in Llg are created, it is impossible to
create and terminate an agent in a single event and thereby render its flow output values inaccessible.
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5 EXAMPLES

Here we provide a simple example of each of the four types of nodes.

For the atomic node, we specify a queueing_node which receives job IDs on the jid;, message input
port, queues them, processes the first job for a fixed service duration, then outputs the ID of the completed
job on the jid,, message output port. The node accepts the service duration At as a flow input. It
produces the idle duration Atq, the total time that the queue is empty with no job being processed, as a
flow output. The complete formal specification is below.

quueueingmode = (Pﬁa Pmiy Pmoa Pfoa finita fua fpa fﬁnal)
13 2 (3 2 + (I35 2 (Y354 2
Pﬁ( Al‘serv ) = Pfo( Atidle ) = RO; Pmi( ]ldin ) = Pmo( ]ldout ) =N

finit(Xﬁ) = [[Atserva Qa Al‘idlea Atp]v Atp]
Atgery = Xﬁ(“Atserv”); Q= [], Atige = 05 Atp =00

Ful[[Atiery, Q, Atigie, Aty 1, At ], [“idyy”, jid]) = [[Atgery, ©, Atiaie , Ay, Aty ]

. 5 . A, if #0=0 b | At if #0' =1
= . . = 3 + . . —
Q Q ” [_]ld], Atldle Al‘ldle { 0 if #Q N Al‘p Alp —Ale if #Q, > 1

fp([[Atservy Q, Atigie, Atp]v Ate]) = [[[Atserva le Atigle, Atp,:la Atp,]7 [“jidout”7jid]]
. r_
0' = 0: (1.40): Azp':{ if #0'=0

(0,0]
Aty if #0'>0

fﬁnal([[Atserva Qa Atidle7 Atp]7 Ate]) = Xfo
. Ar, if #0=0
Xio (“Atigie”) = Atigre + { ¢ ?

0 if#0>0

The state variable Q is the vector of job IDs in the queue. It is initially empty (Q = []), grows as new
job IDs (jid) are received (Q' = Q || [jid] appends an ID; the notation A || B represents the concatenation
of vectors A and B), and shrinks as jobs are completed (Q’ = Q: (1..#Q) removes the ID at index 0; the

notation A : (b..c) represents a slice of vector A corresponding to the range of zero-based indices i for
which b < i < ¢; the notation #A represents the length of vector A).

For the function node, we specify a plus_node which simply adds the real numbers it receives on
flow input ports a and b and places the sum on flow output port c.

lelusmode = <Pﬁ7 Pro, f)
Pﬁ(“a”) — Pﬁ(“b”) — Pfo(“C”) — R

S(Xh) = Xeo
a=Xs(“a”); b=X("b"); c=a+b; Xp(“c”)=c

Our composite node example is a two_stage_queueing_node consisting of two queueing_node
components connected in series. The interface is the same as the queueing_node, but the behavior differs
as a job must pass through both internal queues (queue, and queueg) before it is fully processed. The
service duration parameter Af, is directed via inward flow links to both internal queues. However the
idle duration statistics Afige produced by queue, and queueg are propagated via inner flow links to a
plus_node finalization component, which adds them together. The total idle duration is then directed out
of the composite node via an outward flow link. The specification thus features both a simulation network



Goldstein, Breslav, and Khan

transporting job ID messages, and a dataflow network handling static parameters and statistics.
ltho,stage,queu(-:ing,node = (Pﬁ’ Pmi’ Prnm Pfou ll/,uv Lﬁ) I[‘f/.la ILfov ]Lmia ]Lrn,uv Lmo)
X3 2 (13 2 + (135 2 ‘4" 2
Pﬁ( Afgery ) = Pfo( Atigie ) =Ro; Pui ( id;, ) = mo( dout ) =N
l//,I.L(“queueA”) = W/.L( queueB ) quueuenglodee I[/H(“plus ) lelus _node

IL’ﬁ = {[“Atserv”v [“queueA”a “Atierv”]] [“Atﬁerv”a [“queueB”a “Atserv”]]}
= {[["queue,”, “Ariq”], [“plus”, “a”]], [[“queueg”, “Atiqic”], [“plus”, “b"]]}
Lf {[[“plus”, “c”], “Atiqie” ]}
L {[ dm”v[ queueA”7 “]ldm ]]}
Lmu = {[[“queue,”, “jidoy"], [“queueg”, “jid;,”]1}
Lino = {[[ ‘queueg”, “jidyy ] Jid oy ]}

Our collection node example is a parallel_queueing_node that at first contains one queue, but creates
an additional parallel queue whenever a job is received while the existing queues are all full. The internal
queues, defined as queueing_node agents, are considered full if they contain ny,, jobs, where ny, is a
parameter. The specification makes use of L to create queues, Uy, and U, to exchange messages with
them, and py, to obtain idle durations. The macro-level state variable N keeps track of the number of jobs
in each queue. It is intended that low-fidelity whole-system representations such as N be employed at the
macro level, duplicating some but not all of the high-fidelity micro-level information. Note that find e
yields either (a) the index of the first queue with space for another job, or (b) the index of a new queue.

M M M4 M M
lPparallel,queueing,node = (Pﬁa Pmi7 Pm07 Pfoa lP/.La finita fu ) fp ) fp ) fﬁnal)
(13 2 (13 2 + (3 2 + (1 2 (1354 2
Pi(“Atgery”) = Pro(“Atigie”) = Ro5 Pi(“max”) = N7 P (“id;,”) = Pro(“idoy”) = N
lP/.t = ‘Pqueueing,node

M
finit(Xﬁ) = [[[Atserva Nmax, N]: OO], [.uﬁv Umi]]
Atgery = Xﬁ(“Atserv” 5 NMmax = Xﬁ(“nmax”); N = [O], .uﬁ(o) = Xél; Xgl(“Atserv”) = Atgery

M

fu ([[AISCYV’ nmaxa N:|7 Ate:|7 [‘fiidin”hiid]? nLl’fO) = [[[AIQCTV’ nmaxv N,]? ] [:""ﬁ? I’l’ﬁll]]

d = : Vi) = if N( ) < Amax
aid —ﬁnqueue(N ” [0]’ 0)’ ﬁndque“e(N7 l) - { ﬁndqueue(N i+ 1) if N( ) = Pmax
. . . N(aid) +1 if aid < #N
Vie(ov)~{aiay)(N'(i) = N(i)); N'(aid) = { 1 Y

if aid = #N
aid =#N = pg(aid) = Xy Xy (“Ater,”) = Atsery
Umiaid) = [“id,,”, jid]

fél([[Atserw Nmax N], Ate]a Hmo, .ufo) = [[[Atserva Mmax N,]v 00]7 [“jidout”>jid]> @, [.uﬁ> .umi]]
[aid, [“jidout”vjid;l] = Hmo ,
Y ie(D(V)-{aiay) (N (i) = N(i)); N (aid) = N(aid) -1

fﬁMnal([[AtserVa Nmax N:|7 Ate]a .ufo) = Xfo
Xio (“Atqre”) = ZieD(N) (o (1)) (“Atigre™) Note: D(N) is the domain of N

Since all events in this example are triggered either by an external message or by an agent, the planned
durations are always oo. It follows that the macro planned event can never be invoked, and so it is left
unspecified. Another simplification is that the internal queues, once created in response to a high volume
of incoming jobs, are never terminated—not even if they become underutilized. As a result, [ is always
the empty set @, and there is no need to query Uj, until the macro finalization event occurs.
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6 DISCUSSION AND FUTURE WORK

The atomic, function, composite, and collection node examples in Section 5 have been coded, tested, and
packaged with the SyDEVS library (https://autodesk.github.io/sydevs), an open source implementation of
Symmetric DEVS in C++. As is typical of such a framework, SyDEVS deviates from the underlying theory
in a few places. For instance, SyDEVS allows collection node event handlers to create, send messages
to, and terminate agents in any order; in the formalism, such events occur strictly in sequence (e.g. agent
sends message — micro planned event — agents terminated — agents created — agents receive messages).
Users can choose to make use of the implementation’s flexibility or adhere strictly to the formalism.

In paring down node specifications to the essential elements, the Classic DEVS state set S and tie-
breaking function Select have been omitted. For Symmetric DEVS atomic and collection nodes, one may
derive S as the set of all states that can result from any of the event handling functions. One can also
add S to these nodes on a per-application basis, but we prefer not to make this a requirement. Similarly,
one may add a Select function to composite and collection nodes, but we propose a non-deterministic
interpretation of simultaneous event ordering. If multiple components or agents are scheduled to undergo
a planned event at the same time, and if no tie-breaking rule is given, then any ordering of the events
should be considered consistent with the specification. Dijkstra (1975) showed that programs with non-
deterministic conditional and repetition structures can yield elegant proofs. It is worth exploring whether
non-deterministic tie-breaking can lead to shorter or more robust simulation model specifications.

To conclude, the Symmetric DEVS formalism extends Classic DEVS with collections, which support
agent-based modeling, and dataflow elements, which initialize and finalize agents and other DEVS model
instances. The approach offers a middle ground between static and dynamic structure variants of DEVS. To
control conceptual complexity—a key challenge in promoting the adoption of scalable modeling practices
by domain experts—we propose specifications involving minimal sets of mathematical elements exhibiting
high degrees of symmetry. Future work includes formal simulation semantics and closure under coupling
mappings that express composite and collection nodes in the same form as atomic or function nodes.
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