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Task-based analysis is a common and effective way to measure expertise

levels of software users. However, such assessments typically require in-

person laboratory studies and inherently require knowledge of the user’s

task. Today, there is no accepted method for assessing a user’s expertise

levels outside of a lab, during a user’s own home or work environment

activities. In this article, we explore the feasibility of software applications

automatically inferring a user’s expertise levels, based on the user’s in situ

usage patterns. We outline the potential usage metrics that may be indica-

tive of expertise levels and then perform a study, where we capture such

metrics, by installing logging software in the participants’ own workplace

environments. We then invite those participants into a laboratory study

and perform a more traditional task-based assessment of expertise. Our

analysis of the study examines if metrics captured in situ, without any

task knowledge, can be indicative of user expertise levels. The results

show the existence of significant correlations between metrics calculated

from in situ usage logs, and task-based user expertise assessments from our

laboratory study. We discuss the implications of the results and how future

software applications may be able to measure and leverage knowledge of

the expertise of its users.

1. INTRODUCTION

A well-recognized property of interactive systems is that its users will have a

range of expertise levels. Early studies in human–computer interaction (HCI) have
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told us that it can take a long time before users master the offered functionality of

a software system (Nilsen et al., 1993). Typically, a software application has little

or no awareness of where the user is along this progression. But understanding a

user’s expertise could have important implications. For example, help systems could

be tailored to meet a user’s level of experience (Hurst, Hudson, & Mankoff, 2007;

Paris, 1988), information delivery could be personalized (Heckerman & Horvitz,

1998; Teevan, Dumais, & Horvitz, 2005), and interfaces could adapt to provide more

advanced features or flexibility to its expert users (Findlater & McGrenere, 2007,

2010; Gajos, Everitt, Tan, Czerwinski, & Weld, 2008; Shneiderman, 2003).

Despite such motivations, little attention has been given to measuring software

expertise, in situ, in a user’s own home or office environment. Typically, a user’s

efficiency or expertise with a software application is assessed using a task-based or

GOMS analysis (Bhavnani & John, 1998; Nilsen et al., 1993). These forms of analysis

capture and compare a user’s performance when completing a predetermined task,

typically to a model of optimal error-free performance of that task. Such studies are

valuable for academic purposes of understanding skill development and how expert

and novice users differ. However, this methodology is not practical for the purpose of

in situ expertise assessment for two reasons. First, task-based analysis requires the user

to perform tasks in a laboratory setting. Second, user performance is evaluated against

models that are task dependent. In real-world settings, a software application is not

aware of the specific task the user is trying to accomplish, which makes task analysis

not possible. For example, the system cannot compare the user’s task performance

to an error free GOMS model, because the task is unknown.

Initial attempts to automatically detect expertise have been made in recent

research literature (Ghazarian & Noorhosseini, 2010; Hurst et al., 2007; Masarakal,

2010). However, such work is limited to tasks where a user can transition from novice

to expert within minutes, such as the speed at which users make selections from a

menu. Furthermore, those techniques have been validated only in a laboratory setting.

An important and open research issue is determining if there are metrics that can be

captured from in situ software usage, which can be used to infer the level of expertise

of the user.

It is common for this form of high-level software expertise levels to be informally

defined along a single dimension, ranging from novice to expert (Dreyfus, Anthana-

siou & Dreyfus, 2000; Norman, 1991; Rasmussen, 1987). However, if a software

application is ever going to truly adapt to a user’s level of expertise, then tagging a

user along a unidimensional spectrum may not be sufficient. For example, two users

may both be considered intermediate users but may differ greatly in their skills and

deficiencies with the software, and thus differ in how the software should adapt to

their usage.

Instead of focusing on elemental tasks within a software application, we consider

an application-level definition of software expertise. Ericsson (2006) defined expertise as

‘‘the characteristics, skills and knowledge that distinguish experts from novices and

less experienced people’’ (p. 3). Thus, our definition of software expertise is as follows:
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Definition (Software Expertise). The characteristics, skills, and knowledge that dis-

tinguish experts from novices, considered across the entire scope of functionality

that the software provides.

This definition is with respect to a specific software application. Within this

definition, the ‘‘entire scope of functionality’’ can refer to a multitude of components

of that piece of software, such as individual user interface (UI) elements, executable

commands, or higher level workflows that the software supports. As such, this

definition can be considered multidimensional in its nature, as a user’s skills and

knowledge can vary independently from one aspect of the software to another.

In this article, we make two significant contributions to the existing body of

research related to detection of software expertise. First, based on a survey of rele-

vant literature, we introduce a multidimensional framework for organizing potential

in situ metrics of software expertise. This framework will contribute to our field’s

understanding of software expertise, and we demonstrate how it can be used to

identify new classes of expertise, such as isolated experts, and naïve experts. This

leads to our second main contribution, a formal study with AutoCAD, where we

evaluate the relevance of these metrics, our ability to measure them in situ, and

their correlation with task-based analysis and assessments from two expert judges.

A thorough analysis of the data demonstrates a number of interesting patterns in

the data and provides evidence that indicators of software expertise levels can be

captured in situ. We believe both of these contributions will help develop and

improve existing software techniques that measure and leverage the knowledge and

skills of users’ expertise levels. We conclude by discussion how future software

applications may be able to measure and leverage knowledge of the expertise of

its users.

2. RELATED WORK

In this section we review the work related to our research efforts of understand-

ing metrics for software expertise. A broad survey on expertise and user modeling in

general is beyond the scope of this article. We direct the reader to some of the seminal

references on this topic (Anderson, 1983; Anderson & Lebiere, 1998; Ericsson, 2006;

Ericsson & Lehmann, 1996; VanLehn, 1989). Next we provide only a brief outline

of some of the most relevant work from the cognitive psychology literature. We then

discuss the literature that will be most relevant to understanding software expertise

metrics from an HCI perspective.

2.1. Cognitive Psychology Theories of Expertise and Skill Acquisition

VanLehn (1996) discussed some of the important differences between novices

and experts. In particular, novices focus their attention on solving problems, whereas
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experts can carry out necessary tasks based on their existing knowledge. More formally,

VanLehn identified three stages involved in cognitive skill acquisition (VanLehn,

1996): (a) the learning of an individual principle; (b) the learning of multiple principles

and understanding how to apply them in new combinations; and (c) continued

practice, which increases speed and accuracy of performance. This theory of cog-

nitive skill acquisition correlates with the existing frameworks of software learnability

(Grossman, Fitzmaurice, & Attar, 2009), where challenges include understanding how

to use individual commands, understanding how to use commands in combination to

accomplish higher level tasks, and transitioning to more efficient behaviors.

Anderson, Corbett, Koedinger, and Pelletier (1995) provided a model of ac-

quisition of expertise based on the ACT* theory of learning and problem solving

(Anderson, 1983). The theory is based on the principle that cognitive skill is based

largely on units of goal-related knowledge and that cognitive skill acquisition is derived

from the formulation of thousands of these rules and associated task states. Of

particular relevance is the distinction between declarative knowledge and procedural

knowledge. Declarative knowledge relates to knowing about something and can

generally be obtained directly from observation and instruction. Procedural knowledge

relates to knowing how to use or do something. Cognitive skill is required to convert

declarative knowledge into goal-specific production rules that represent procedural

knowledge. Anderson et al. (1995) presented a technique for incorporating such

a model of cognitive skill acquisition into an intelligent tutoring system for LISP,

geometry, and algebra.

Relating this model to software expertise, a novice user may have declarative

knowledge related to knowing about individual commands, whereas a more expert

user with advanced cognitive skill would have greater procedural knowledge, man-

ifested as an ability to know how to choose which commands to use to complete

higher level workflows appropriately and how to use those commands.

In terms of how expertise is actually obtained, Ericsson, Krampe, and Tesch-

Romer (1993) showed that expert performance can be a result of prolonged deliberate

practice that is designed to optimize improvement and that individual differences can

often be accounted by different practice habits, rather than being a reflection of innate

talent. However, Ericsson also provided a nice review of literature (Thorndike, 1921)

that has shown ‘‘adults perform at a level far from their maximal level even for tasks

they frequently carry out’’ (Ericsson et al., 1993, p. 365) and argued that ‘‘the belief that

a sufficient amount of experience or practice leads to maximal performance appears

incorrect’’ (Ericsson, Krampe, & Tesch-Romer, 1993, p. 366). The implication to our

work is that it cannot be assumed that software expertise will correlate to the amount,

or number of years, of experience a user has.

Finally, Ericsson and Williams (2007) discussed some interesting issues related

to methodologies for measuring expertise. They argued that ‘‘one of the central

challenges to studying highly skilled performance in the laboratory is methodological’’

and that ‘‘it is necessary to develop standardized methods that allow investigators to

make experts repeatedly reproduce their superior performance in the laboratory’’
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(p. 115). They discussed the expert-performance approach, where performance is

initially captured and elicited in the laboratory using tasks representative of core

activities in the domain. Although their work is in the context of expertise in the

general domain of cognitive psychology research, there is a relevance to our own

work. In particular, there has been little agreement among HCI researchers as to the

appropriate metrics and methodologies for measuring expertise, in particular outside

of a laboratory setting. In our work, we apply the expert-performance methodology

to capture software expertise in a laboratory, and we correlate those measurements to

software usage in situ.

2.2. Human–Computer Interaction Research on Expertise

GOMS Models

Some of the fundamental research done in the HCI literature looks at the issue

of user expertise. Most notably, research on GOMS modeling decomposes tasks

into component activities and considers the expertise level of a user completing those

activities (Card, Moran, & Newell, 1983; Gray, John, & Atwood, 1992; John & Kieras,

1996).

A common example is to consider a user who needs to move a phrase in a

manuscript using a text editor. This type of example task can be modeled using the

KLM variant of GOMS (Card et al., 1983), with a sequence of actions, such as mentally

preparing to move the cursor, moving the cursor to the beginning of the phrase, and

clicking the mouse button. Guidelines exist for assigning times to each of these

component actions and summing them provides a total predicated time for the task.

Typically the models assume error free performance, and in some cases assume

that the user has ‘‘extreme expertise’’ (John & Kieras, 1996), for which both me-

chanical and mental operations are performed optimally. As such, a user’s actual

performance can be compared to the GOMS model to obtain an approximation of

the user’s expertise level. We refer the reader to the work of John and Kieras (1996)

for a thorough review of GOMS decompositions. The most important issue is that

GOMS cannot be used for the detection of expertise in situ, because it requires

knowledge of the user’s task.

Acquisition of Expertise

An important study on the acquisition of expertise was conducted by Nilsen et al.

(1993), where the researchers followed a group of users over a 16-month period. Both

quantitative and qualitative aspects of skill development were measured and compared

to a benchmark set by expert users. Although the skills that the users were learning

were acquired in the user’s own workplace, the testing was done in the laboratory,

using traditional task-based analysis. Our goal is to identify measurements that could

be made outside a laboratory setting.
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Particularly relevant to our work is a long line of work by Bhavnani and colleagues

that explored expertise in computer-aided drafting and its application to other complex

computer systems. Bhavnani classified expertise levels by distinguishing between users

with and without strategic knowledge (Bhavnani & John, 1996). Users without strategic

knowledge tend to rely on more familiar but less optimal strategies. Although such

users may be able to execute basic, and sometimes even complex, commands rapidly,

they do not exhibit strategies to decompose a task so that unnecessary steps can be

avoided (Bhavnani & John, 1996).

Bhavnani also used GOMS decompositions to show how strategic workflows

can result in more efficient behaviors (Bhavnani & John, 1998). This decomposition

separates a workflow into four layers: a task layer, an intermediate layer, a command

layer, and a keystroke layer. This formalization helps reveal why some users do not

transition to use strategic knowledge. The cause of this is argued to be the qualitative

difference of acquiring the strategic knowledge in the intermediate layer, where the

user chooses what combination of commands to use to complete a task (Bhavnani &

Bates, 2002; Bhavnani & John, 2000). Bhavnani’s distinction of strategic knowledge

is similar to Anderson’s model of procedural knowledge. This distinction will be

incorporated into our framework of software expertise metrics.

Bhavnani observed that efficient strategies involve the use of workflows that

aggregate operations and aggregate the elements on which they operate (Bhavnani &

John, 1998). Although it was suggested that user behavior could thus be described

by the presence or absence of commands that are known to be used for aggregation,

this behavior was not investigated by them. Their observations lead us to look at

the possibility of classifying expertise on a basis of the types of commands a user

works with.

Furthermore, Bhavnani noted that the final quality of a user’s work is not

necessarily related to a user’s level of strategic knowledge, as there may be no visual

indication if a drawing had been created with a suboptimal strategy (Bhavnani & John,

1996). However, if someone else begins to work with such a drawing, deficiencies in

the workflows may become apparent—for example, if a polygon had been created

with multiple individual lines, it could make it difficult to select the entire polygon

(Bhavnani & John, 1996). Thus, when judging expertise from the quality of a user’s

content, the content’s visual appearance should not be the only consideration.

Consistent with the cognitive psychology research, Bhavnani observed that even

users with formal training and many years of experience may not exhibit strategic

knowledge (Bhavnani & John, 1996, 1997). Bhavnani referred to work by Nilsen

et al. that found that ‘‘skilled novices’’ could execute commands just as fast as experts

but took twice as long to complete tasks because of the methods being used to

complete the tasks (Nilsen et al., 1993). Bhavnani developed a specific training course

that targeted strategic knowledge and found that this type of training successfully

allowed users to recognize opportunities for efficient usage of CAD (Bhavnani, John,

& Flemming, 1999). Later, it was shown that teaching of strategic knowledge can be

paired with teaching of command knowledge, without harming command knowledge

or taking excessive time.
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In addition to Bhavnani’s work, other research in HCI has described the dif-

ferences between novices and experts based on their knowledge. Kolodner (1983)

stated that ‘‘experts are more knowledgeable about their domain and an expert knows

how to apply and use his knowledge more effectively than does a novice’’ (p. 497).

LaFrance (1989) provided a set of high level differences between novices and experts,

such as ‘‘Experts’ knowledge is more complex than novices’ knowledge’’ (p. 9).

Measurable Factors of Software Expertise

When considering how expertise should be measured, it is useful to review what

specific factors researchers have identified when discussing software expertise. It

should be noted that these measureable factors of software expertise do not describe

expertise at the application level but may serve as important building blocks. For low-

level features, the power law of learning (Card, English, & Burr, 1987) is often used

to model progress in expertise, where at some threshold, the user crosses over from

novice to expert. Scarr, Cockburn, Gutwin, and Quinn (2011) incorporated such

learning curves into a framework of intra- and intermodal expertise development,

which expose the factors that affect a user’s transition to expert performance.

Nielsen (1994) described a higher level learning curve, applied to overall profi-

ciency with an application. Whereas psychology research has shown that higher level

learning and expertise can be decomposed as the learning of individual component

skills (Lee & Anderson, 2001), it is not clear that continuous learning curves apply to

application-level software expertise. In particular, users often fail to switch to expert

interface methods (Scarr et al., 2011).

Usage of UI Components

At the lowest level, expertise has been defined based on usage of individual

UI components to access application features. Kurtenbach (1993) defined expert

behavior with UI components as ‘‘terse, unprompted and efficient actions’’ (p. 2).

Hurst classified this type of expertise as ‘‘skill’’ (Hurst et al., 2007). Scarr et al.

introduced several recent techniques that have aimed to support expert performance

during command access in GUI applications (Scarr et al., 2011, Scarr, Cockburn,

Gutwin, & Bunt, 2012).

Command Efficiency and Vocabulary

A larger amount of work has been aimed at defining expertise based on command

or command usage. Bhavnani’s framework of expertise has a strong dependence

on software commands. An expert, with strategic knowledge, understands how to

choose and use commands to efficiently complete tasks, whereas a ‘‘skilled novice’’

may also be efficient with individual commands but not be efficient at completing

tasks.

Expertise has also been defined based on a user’s command vocabulary. In

particular, Linton introduced the skill-o-meter, which compared a user’s command
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usage patterns to the aggregate of a selected user community (Linton, Joy, Schaefer,

& Charron, 2000). McGrenere and Moore (2000) also profiled user’s command

vocabulary, but their goal was to evaluate the associated software, not the user’s

expertise levels. Greenberg and Witten (1988) also examined frequencies of command

invocations and demonstrated that such frequencies can vary greatly, even within

groups of users having similar needs. Pemberton and Robson (2000) conducted a

questionnaire and found that only low-level features of spreadsheet software was

being commonly utilized, concluding that targeted training is required for users

to advance their own expertise levels. Lawson, Baker, Powell, and Foster-Johnson

(2009) found that expert users used advanced commands in Microsoft Excel more

frequently.

Task Skill

At a higher level, expertise could consider a user’s ability to complete tasks with

the system. Ghazarian and Noorhosseini (2010) defined task skill to indicate the skill

level of a user in performing a specific task in an application. Masarakal (2010) defined

expertise as ‘‘the ability of a user to complete a task’’ (p. 2). Heckerman and Horvitz

(1998) considered expertise to be defined by sets of competency tasks completed

successfully. Hurst used the word ‘‘expert’’ to refer to mastery of an activity or task

(Hurst et al., 2007).

In a study of spreadsheet software, Lawson compared the spreadsheet practices

of beginner and expert users (Lawson et al., 2009). Certain tasks were carried out

differently between the two groups. For example, the expert group separated formulas

from data input more consistently. As such, task performance should be considered

as a metric for software expertise.

In Situ Identification of Expertise

Although the preceding factors may help guide metrics that can be used for

expertise, it is still unclear how expertise could be measured in situ.

To identify expertise during actual software usage, Linton compared a user’s

command usage pattern to a community of users (Linton & Schaefer, 2000). However,

the assumption that command usage patterns map to expertise levels has not been

validated.

In recent work by Hurst et al. (2007), skilled use of an application was detected

based on low-level mouse and menu data. Masarakal (2010) used similar features

to classify expertise in Microsoft Word. Ghazarian and Noorhosseini (2010) built

automatic skill classifiers for desktop applications. Common among these projects is

that they focused on repetitions with specific tasks and UI components, where users

could transition from novice to skilled behaviors in the span of minutes. Furthermore,

classes of expertise were labeled either based on self-assessment (Masarakal, 2010), or

by labeling initial trials as novice behavior, and final trials as expert behavior (Hurst

et al., 2007). Thus, this type of work may accurately identify short-term learning
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effects, but their validity in terms of higher level learning for complex applications is

still unknown.

In the domain of web search behaviors, White, Dumais, and Teevan (2009)

characterized the nature of search queries and other search session behaviors by

experts and nonexperts. The measurements were captured in situ and allowed the

authors to develop a model to predict expertise based on search behaviors. To

test their model, experts were separated from nonexperts based on whether they

had visited specific predetermined websites (such as the ACM Digital Library for

the domain of computer science). This method of separation (using predetermined

websites) is not possible for assessing software expertise. As such, we develop a new

methodology where we link in situ observations to laboratory expert judgments.

2.3. Summary of Literature Review

In summary, there is a long line of research in cognitive psychology to help us

understand the nature of expertise and how it is acquired. Whereas Bhavnani’s line

of work provides an excellent resource for understanding difference in novice and

expert software practices, there are still open questions. In particular, although it is

clear that many factors are at play, there is no consensus on what metrics should

be used to measure software expertise. Furthermore, although methods to identify

expertise exist, we have found no previous attempts to measure expertise in real-world

usage settings.

3. SOFTWARE EXPERTISE METRICS

In this section, we provide an organizing framework around metrics for software

expertise. The main goal of this framework is to establish the methods for which

software expertise can be measured. As presented in our introduction, we establish

an application-level definition of software expertise:

Definition (Software Expertise). The characteristics, skills, and knowledge that dis-

tinguish experts from novices, considered across the entire scope of functionality

that the software provides.

To provide formal grounding to this broad definition, we developed a framework

of metrics that could be used to assess software expertise, consisting of low-level and

high-level metrics (Figure 1). Although our eventual goal is to detect expertise outside

of a lab environment, the metrics that our framework encopasses may not all be

directly measurable in situ. In our study, we investigate how reliably these metrics can

be determined in situ and which, if any, correlate to in-lab assessments of expertise

levels.
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FIGURE 1. Our framework of software expertise metrics, and examples of how the dimensions

of the framework may manifest into behaviors of novice and expert users.

3.1. Low-Level Metrics

A common theme among the psychology literature we reviewed is that the

building blocks for high-level expertise can be based on core individual component

skills (Lee & Anderson, 2001). For this reason, we include low-level metrics of

software expertise, representing the building block component skills. We distinguish

between such component skills by establishing a Scope dimension. In addition, we

introduce a Measurement Type dimension, which considers how a user’s skill within any

of these scopes could be measured. Last, a Component Relevance dimension distinguishes

between components of the software that are relevant and irrelevant to a user with

respect to their usage domain.

The top section of Figure 1 illustrates our framework of low-level software

expertise metrics, across the three dimensions. This framework combines the three

dimensions to generate 18 unique metrics of software expertise. For example, one
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metric within the UI Expertise Scope would be ‘‘Familiarity with highly relevant UI

components.’’

Scope

The first low-level dimension of the framework is the Scope, which includes UI

Expertise, Command Expertise, and Task Expertise.

UI Expertise. In this scope, we consider the user’s expertise level with operating

the user interface components (Hurst et al., 2007; Kurtenbach, 1993), such as menu

systems, independent of the commands to which they provide access. For example,

in an application with a ribbon, we may consider the user’s expertise with using the

ribbon mechanism, such as how quickly they locate and click on the bold icon. For

an application that used marking menus (Kurtenbach, 1993), we would consider the

user’s expertise with the marking menu, such as how quickly they select second level

items from the menu.

Command Expertise. At the command level, we consider the user’s expertise

levels with individual features of the system (Bhavnani & John, 1996; Linton &

Schaefer, 2000). Such features may be referred to as commands or tools. For consistency,

in this article we refer to individual features as commands.

For example, in an image editing application, we may choose to consider how

many blur commands the user knows, or how efficient the user is with individual

drawing commands. In some applications, there are commands that can be executed

by clicking a single button in the UI, such as the bold command in a document

editor. In such cases, command expertise could be based on a user’s awareness of the

command or how often they use it. The actual selection of the command from

the interface would relate to UI expertise. In other cases, individual commands can

have complex usages, such as a gradient command in an image editor. For such

commands, Command Expertise would additionally relate to how efficiently the user

works with the command.

Task Expertise. We also want to consider a user’s expertise when performing

actual tasks (Bhavnani & John, 1996; Ghazarian & Noorhosseini, 2010; Heckerman

& Horvitz, 1998; Hurst et al., 2007; Masarakal, 2010). A task can be defined as

a target goal that a user wishes to accomplish. Typically the goal is to achieve a

desired effect on the application content or environment, and the user must choose

an appropriate method (or workflow) to accomplish this goal, made up of a sequence

of actions (Card et al., 1983). Task Expertise refers to a user’s ability to carry out a

selected method to achieve a goal. In particular, a user who can efficiently complete

a given sequence of actions efficiently would be demonstrating Task Expertise. For

example, their performance level may be close to the time predicted by a GOMS

decomposition of the chosen sequence of actions.



76 Grossman and Fitzmaurice

Measurement Type

To better understand each of the aforementioned scopes of expertise, we need

to consider how each scope is measured. The measurement subdimension is applied to

each of the previously described scopes and provides a framework for how expertise

at each of these levels can be assessed. The levels of this subdimension include

Familiarity, Frequency, and Efficiency.

Familiarity. This metric considers what level of knowledge a user has. For

Command Expertise, one may consider an expert someone who knows about every

command available in an application, regardless of how often he or she uses it

(McGrenere & Moore, 2000). For Task Expertise, this provides a metric of a user’s

awareness of the limits and capabilities of a software application.

Frequency. This metric considers the frequency of actual usage. Command

frequency has been used previously to profile user expertise (Li, Matejka, Grossman,

Konstan, & Fitzmaurice, 2011; Linton & Schaefer, 2000; Matejka, Li, Grossman, &

Fitzmaurice, 2009; Rooke, Grossman, & Fitzmaurice, 2011). For UI Expertise, a

higher frequency of usage with modifier hotkeys may be a sign of a higher level

of expertise (Grossman, Dragicevic, & Balakrishnan, 2007). Or, for Task Expertise,

a user who more frequently performs advanced tasks, such as dividing spreadsheets

into integrated modules (Lawson et al., 2009), may be considered to have higher

expertise.

Efficiency. The efficiency metric considers the user’s actual performance levels.

Typically, this would mean how quickly the user interacts with the system—whether it

be interacting with UI components (Hurst et al., 2007; Kurtenbach, 1993), executing

individual commands (Bhavnani & John, 1996), or completing entire tasks (Bhavnani

& John, 1996; John & Kieras, 1996). For Command Expertise, efficiency is only a

relevant measure for the commands that have nontrivial usages, beyond selecting

them from the UI; the act of selecting such commands from the UI would fall within

the category of UI Expertise.

Component Relevance

Research on complex applications has shown that any individual user may only

use a subset of a software application’s commands (McGrenere & Moore, 2000), and

some commands have higher relevance to users than others (Li et al., 2011; Matejka

et al., 2009). We define component relevance as the level of importance that a component

of a software application has to a user, based to that user’s day-to-day tasks. For

example, the 3D tools in a drafting application have a high level of relevance to a 3D

modeler but a low level of relevance to someone who creates only 2D drafts. As such,

if a user is observed as having poor performance with these 3D tools, it might be

important to first consider how relevant those tools are to the user before assessing

the user’s expertise level.
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3.2. High-Level Dimensions

Although the low-level dimensions are important to consider, a user’s true

expertise, at the application level, is more than the sum of these parts. From our survey

of related work, we identified three important high-level dimensions that relate to a

holistic consideration of software expertise (Figure 1, bottom). It is interesting to note

that these high-level metrics may not be as easily quantified or directly measured as the

low-level metrics described previously. In Section 5 we study potential correlations

between the low-level metrics and high-level assessments of software expertise.

Appropriateness of Workflows

We define a workflow as a method, or sequence of operations, to complete a goal

task. Previous research has shown that a distinguishing factor of expert users is that

they have the ability to choose appropriate workflows (or methods) to accomplish

their tasks (Bhavnani & John, 1996; Kolodner, 1983; Rasmussen, 1987).

It is important to note that Appropriateness of Workflows is distinct from Task

Expertise. For example, consider a user who needs to add five rows to a table in a

document editor. The user may choose to do this by adding one row at a time, and

perform the sequence of operations to do so very efficiently. However, there may

have been an alternative workflow, or sequence of operations, that would have been

a more appropriate. The user, in this example, would be demonstrating task expertise

but not higher level strategic knowledge or Appropriateness of Workflows.

Quality of Content

Another important factor to consider, when assessing software expertise, is the

actual quality of the work produced when using the system. It would certainly be

hard to label a user as an expert, if that user could not produce high-quality results.

However, in some cases, such requirements may not be placed on an ‘‘expert.’’ For

example, an instructor may have the skills to teach students about the software but

may not have adequate ‘‘Contributory Expertise’’ (Collins & Evans, 2002) to produce

high-quality results with using the software.

Bhavnani (Bhavnani & John, 1996) has noted that content created with an

inefficient workflow may be visually indistinguishable from content created more

efficiently by a user with strategic knowledge. As such, when considering content

quality, a deeper understanding of quality, beyond the content’s surface appearance,

should be considered.

Domain Knowledge

Our final consideration of software expertise is the domain knowledge possessed

by the user. Domain knowledge has been previously identified as an important aspect

to software learning, and as such should also be considered when discussing expertise

(Cote-Munoz, 1993; Grossman et al., 2009; Nielsen, 1994). In some cases, the quality
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of work may be dependent on domain knowledge. For example, in a sketching

application, a user may have strong expertise with the software application but may

create poor content because of a lack of the associated domain knowledge and skill

of artistic sketching (Fernquist, Grossman, & Fitzmaurice, 2011).

3.3. Summary

Figure 1 provides a summary of the related literature that led to the derivation of

each of the dimensions we have discussed. It is interesting to note that researchers have

previously discussed almost all combinations of our multidimensional framework,

with the exception of Familiarity and Frequency within UI Expertise, and Famil-

iarity within Task Expertise. This exposes new potential ways to consider software

expertise and could potentially allow the generation of new metrics related to expertise.

Figure 1 also provides examples of how each dimension of the framework

manifests into user behaviors, both at a novice and expert level. These examples may

help designers identify techniques to help users shift from novice to expert behaviors,

specific to each form of expertise.

For brevity, the Component Relevance dimension is aggregated within each metric

of the table, for the example user behavior manifestations. In essence, each of the

examples provided could be within the scope of components that are either relevant

or not relevant to the user.

It can also be noted that some of the dimensions of our framework may interact

with one another. For example, a user with high command expertise with a certain set

of tools may be more likely to also exhibit a high level of UI expertise for accessing

that set of tools. Alternatively, it may be the case that a user is efficient when using a

tool but uses inefficient UI mechanisms to access that tool.

4. CLASSIFICATION AND MEASUREMENT OF

SOFTWARE EXPERTISE

4.1. Classes of Expertise

A main contribution of the aforementioned framework is that it organizes

possible metrics of software expertise into a coherent structure. This can serve as

a reference for researchers or practitioners when attempting to measure the expertise

levels of software users. An additional contribution of the framework is that it can

serve as a tool to provide new classifications of software expertise levels, beyond the

traditional unidimensional spectrum ranging from novice to expert.

By just considering the low level metrics of the framework, we obtain a multidi-

mensional definition of expertise based on the familiarity, frequency, efficiency, and

relevance of the entire application space (Figure 2). Next we sample some possible

categories of expertise that can be represented using this framework.
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FIGURE 2. A conceptualvisualization of how low-level metrics can result in different expertise

profiles.

Note. The x-axis represents the entire space of the application functionality. This space is

divided into areas that are and are not relevant to the user, and also divided into spaces that the

user uses efficiently, is familiar with, and is not familiar with.

Core Expert. Findlater and McGrenere (2010) described core task performance

as performance of completing known or routine tasks. Using our framework, we could

define a core expert as someone who demonstrates efficient performance with the

commands and tasks that are most relevant to them but may also exhibit a high level

of performance with functionality of the application that aren’t necessary for their

day-to-day tasks. Users could have good performance with less relevant functionality

if they have a high level of knowledge of how the application works, prior experience,

or a deep understanding of the interaction metaphors of the application.

Isolated Expert. An isolated expert is only familiar with the limited area of

the software that is relevant to their domain of usage. Such a user may demonstrate

expertise within this scope of the application space but has little knowledge or usage

experience in other areas. Unlike a core expert, who may have enough knowledge

to complete tasks outside their main usage domain, an isolated expert would likely

struggle with tasks outside of their normal usage patterns.

Naïve Expert. Previous research has shown that even experienced users may be

unaware of areas of an application that are relevant to their usage domain (Grossman

et al., 2009). We define a naïve expert as a user who has high efficiency with

the commands that he or she uses frequently but is unaware of other commands
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that are relevant to the work (Figure 2c). This is in contrast to core experts and

isolated experts, who are familiar with the majority of commands relevant to their

work. Naive experts would be good targets for learning aids that promote feature

awareness, such as command recommenders (Linton & Schaefer, 2000; Matejka et al.,

2009).

Knowledgeable Expert. A user who has high familiarity at each level of Expertise

Scope regardless of his or her ability to actually use the system could be classified as

a knowledgeable expert (Figure 2d). This is directly related to Collins and Evans’s

(2002) distinction of Interactional Expertise, which is defined as enough expertise to

understand and interact within the domain but not necessarily enough to contribute

to the domain. Within the realm of software, this type of profile may be possessed

by product support specialists, or technical writers that document the system.

4.2. Methodologies for Assessing Expertise

One of our motivations for developing a framework of expertise is to eventually

enable software applications to identify the expertise levels of its users. Earlier we

defined various classes of software expertise that could be identified. But there is

still the problem of how such classes of expertise can be identified. From our review

of related work, we have identified four potential methodologies for determining

software expertise at the application level, which are described next.

Self-Assessment. Users rank their own expertise through questionnaires or di-

alogs in an application (Masarakal, 2010). This method is commonly used in usability

studies to correlate the primary results of the study to user expertise levels. This

method has an advantage that it is easy to perform and can be done outside of a

laboratory, but it may not be reliable (Nisbett & Wilson, 1977).

Expert Assessment. A potentially more reliable method to assess expertise levels

is to have one or more judges observe and rate a user’s level of expertise (Einhorn,

1974). It would be assumed that such judges would require expertise in the software

themselves, particularly in the high-level dimensions of our framework. The drawback

of this technique is that it is impractical to perform outside of a lab.

Laboratory Tasks. With this methodology, user’s perform controlled tasks in a

laboratory setting, and metrics from those tasks are collected and analyzed (Ghazarian

& Noorhosseini, 2010; Hurst et al., 2007; Masarakal, 2010). This method has already

been shown to be reliable for shortterm learning effects and could potentially identify

higher level expertise. As with the expert assessment, the drawback is that the

methodology cannot be used in situ.
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In Situ Measurements. The collection and analysis of usage metrics from search

engines and web browsers are commonly used to understand how people use online

systems (Adar, Teevan, & Dumais, 2008; e.g., Teevan, Dumais, & Liebling, 2008,

2010). Numerous recent research projects have also looked at capturing usage logs

during software application usage (Akers, Simpson, Jeffries, & Winograd, 2009;

Lafreniere, Bunt, Whissell, Clarke, & Terry, 2010; Li et al., 2011; Linton & Schaefer,

2000) and lower level input activities (Chapuis, Blanch, & Beaudouin-Lafon, 2007;

Evans & Wobbrock, 2012; Gajos, Reinecke, & Herrmann, 2012; Hurst, Mankoff, &

Hudson, 2008). These previous projects have discussed the benefits and challenges

of capturing data from in situ usage logs. In particular, it may be possible that some of

the metrics traditionally captured from laboratory tasks could be inferred from these

usage metrics—for example, the time required to access menu items. This approach

has a significant advantage that it does not require any action on the part of the

user, aside from logistical considerations such as installing plug-ins or uploading data

logs. However, it is unknown how reliable such metrics would be for indicating

expertise levels. Furthermore, applications would need to be instrumented to collect

the relevant data.

5. USER STUDY

We have presented a survey of research in software expertise, which revealed a

diverse range of ways in which software expertise can be defined and measured. We

then produced a framework, which organizes previously and newly defined metrics of

expertise into a coherent framework. Given an eventual goal of identifying expertise

levels externally (without lab studies or expert assessments), two main questions arise

from the discussion in these previous sections.

Q1: How well can each of the metrics from the framework be identified? In Section 4.2 we

summarize four different methodologies, but we would like to establish which metrics

each of these methods can capture. In particular, showing what can and cannot be

inferred from these methodologies will be valuable in trying to advance the existing

research on identifying expertise levels in-situ.

Q2: Which aspects of the framework correlate to an expert judge’s assessment of software

expertise? Researchers have already shown the ability to identify metrics related to

expertise at certain levels of our framework. For example, Hurst’s identification was

based on the efficiency metric at the UI Expertise scope (Hurst et al., 2007). But it is

currently unclear how indicative this is of software expertise at the application level.

Understanding this issue will have important implications for identifying software

expertise.

Our study differs from prior art in three ways. First, we investigate the issues of

automatically identifying software expertise across the scope of the entire application,

whereas previous work has looked at the short-term effects of learning based on

repeating similar tasks. Second, we correlate our measurements in the lab with actual
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usage logs from home and workplace usage. Third, we compare our collected metrics

to assessments made by expert judges, to provide better insights and grounding to the

results.

5.1. Methodology

Target Application

Our evaluation is carried out with AutoCAD, a computer-aided design software

application most commonly used in the architecture industry. Historically, AutoCAD

was designed to allow designers and architects to create their 2D drafts and blueprints

within a digital medium. The software provides a graphical UI for creating, scaling,

and annotating such drawings. All drawings are built up using a series of commands,

with the availability of more than 1,000 commands to choose from. For example, a

user may use the LINE command to draw the outline of a building and then use the

OFFSET command to create a copy of that outline, offset by a distance representing

the thickness of the walls, and then use the TRIM command to remove any intersecting

edges. Almost all workflows consist of such series of command operations. Most

commands are modal; to trim a line, the user selects the trim command, then performs

a series of steps to trim the line, and then completes the command by pressing the

Enter key.

More recently, AutoCAD has introduced 3D commands for designing 3D

objects and models. Overall, the 3D commands are not used as commonly, as there

are other dedicated software packages for 3D modeling. However some expert users

do use these 3D commands. For example, a 2D design may be extruded into 3D to get

a sense of its true volume. The 3D tasks are typically accomplished using workflows

consisting of a series of 3D commands.

Overall, AutoCAD serves our purposes well, as it is a complex application that

can take years to achieve true expertise and has numerous domains of usage. As such,

it has previously been used as a software domain for studying software learnability

and expertise (Bhavnani & John, 1996; Grossman et al., 2009; Lang, Eberts, Gabel,

& Barash, 1991).

Participants

Sixteen participants were recruited by advertising at local architecture firms, local

universities with architecture programs, and online classified websites. A recruitment

questionnaire surveyed potential participants on their education level, and level of

experience with AutoCAD, both as a student and professionally. Participants were

selected to obtain a spectrum of experience levels.

Two participants withdrew prior to completing the laboratory phase of the study.

Our analysis is based on the 14 remaining participants (six female, eight male). These

participants ranged in age from 22 to 58, with AutoCAD usage experience ranging

from 6 months to 10 years. Participants were paid $150 upon completion of the study.
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Expert Judges

In addition, we recruited two experienced AutoCAD users to serve as expert

judges to provide their own assessments of the participants’ expertise levels during the

study. The first expert was an internal employee, but also a professional architect

with 14 years of experience using AutoCAD, and had taught AutoCAD at the

undergraduate level for 4 years. The second expert was also a professional architect,

with 20 years of experience using AutoCAD and 1 year of experience teaching

AutoCAD at the undergraduate and graduate levels. This expert was external and

was paid $400 for his participation. Although the expert judge assessments may not

necessarily provide a ground truth (Einhorn, 1974), they should be able to provide a

holistic measure to which other metrics can be compared.

Setup

The study took place across four group sessions lasting 2.5 hr, with each

participant attending one of those sessions. There were two sessions of three par-

ticipants and two sessions with four participants. We chose to run the sessions in

groups in consideration of the length of the study and the required time commit-

ment of the expert judges. Each group session consisted of six phases, which are

described next.

Each user was provided with a laptop and USB mouse. The sessions took place

in a conference room, with the participants seated around a large conference table.

Participants were spaced so that they could not see one another’s screens and were

asked not to interact with one another. An experimenter was present throughout the

entire study. Video screen capture software was run on each laptop, and audio was

recorded with the laptops’ microphones.

Study Phases

Next we describe the six phases of each group session. In each heading, we

highlight which of the four methodologies from Section 4.2 that each phase corre-

sponds to. The first phase was conducted in situ, whereas the remaining phases took

place in our laboratory.

Phase 1: Usage Data Collection (In Situ Measurements Methodology)

In this phase, usage data statistics were captured for each of the study participants

in their natural home and working environments. All participants installed a custom-

written AutoCAD plug-in 2 to 4 weeks prior to the laboratory session. The plug-in

runs in the background and collects the usage data. Participants were not given any

particular tasks to complete during this phase; they continued to use AutoCAD as they

normally would. However, participants were asked to use AutoCAD for at least 8 hr

prior to the laboratory session, to collect sufficient usage data. The plug-in collected



84 Grossman and Fitzmaurice

the following information:

� The name of all commands executed.
� The start and end times of all commands.
� The UI method used to access the command (shortcut, menu/ribbon, com-

mand line).
� The time of all mouse and keyboard events.

The usage logs were stored locally, and participants submitted them at the end

of the study.

Phase 2: Questionnaire (Self-Assessment Methodology)

Upon arriving to our laboratory, participants completed a short questionnaire,

which had questions about their usage experience with AutoCAD, and relevant

training or education. Participants ranked their own expertise level on a 5-point scale.

To capture familiarity and frequency levels at the UI scope, the survey also asked

participants to rate their familiarity and usage levels with four main UI access points in

AutoCAD—the ribbon, menu, command line, and shortcuts, using a single question

each, such as Please rank your familiarity with the AutoCAD Command Line.

Phase 3: Command Familiarity Survey (Self-Assessment Methodology)

This phase was a test used to capture familiarity and frequency levels at the

command scope. Users ran a windows application that surveyed them on 500 Au-

toCAD commands. The 500 commands were chosen by popularity, calculated as

the percentage of users that use the command, as reported through Autodesk’s Cus-

tomer Involvement Program (http://usa.autodesk.com/adsk/servlet/index?siteIDD

123112&idD12264110), using logs from slightly fewer than 3,000 users. Using radio

buttons, users were asked to report their familiarity with the command (unfamiliar,

familiar), and their frequency of usage (never, infrequent, frequent). Participants were

told to only respond as being familiar if they knew the command existed and knew

what it is used for. This phase took approximately 30 min.

Phase 4: UI Access (Laboratory Tasks Methodology)

This phase was an experiment used to capture efficiency levels at the UI scope, and

in particular with AutoCAD’s two main menu systems—traditional drop-down menus

and the ribbon. The experiment consisted of 96 trials and was run using a custom

plug-in within AutoCAD. In each trial of the experiment, users were presented with a

command and its associated icon. After clicking a ‘‘go’’ button, users had to click on

the command in either the ribbon or menu as fast as possible. The experiment was

divided into two conditions (menu, ribbon), with each condition having 16 commands,

repeated in random order across three blocks. The 16 commands contained a mix

of eight common (popularity > 50%) and eight uncommon (popularity < 10%)
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commands. If the user could not find the command after 30 s, the experimenter

would help. This phase took approximately 25 min.

Phase 5: Command Tasks (Laboratory Tasks Methodology)

This phase was an experiment to capture efficiency levels at the command scope.

In this phase, the users were tested on tasks that only required the usage of a single

command. The phase consisted of eight trials, in the following fixed order: two com-

mon 2D drafting commands, two uncommon 2D drafting commands, two common

3D commands, and two uncommon 3D commands. Our hope was that 2D and 3D

would approximate relevant and irrelevant for most users, and the common and

uncommon commands would closely approximate familiar and unfamiliar commands

for most users. If the user did not complete a task in 5 min, they proceeded to the

next task.

Phase 6: High-Level Tasks (Expert Assessment Methodology)

This phase was used to capture task metrics and higher level requirement metrics.

The two expert judges worked together to design four 10- to 15-min tasks. The tasks

were a simple 2D drafting task, an advanced 2D drafting task, a simple 3D modeling

task, and an advanced 3D modeling task. A formal GOMS decomposition was not

conducted, because depending on the strategy chosen, each task would consist of

several hundred or even thousands of steps at the individual keystroke level and a

sequence of approximately 50 to 100 command executions. As in the command tasks

phase, these tasks were meant to elicit a rough approximation of combinations of

relevant–irrelevant, and familiar–unfamiliar tasks.

During this phase, the expert judges monitored the user’s behaviors and task

progress by walking around the room and recording observations. Both judges

had extensive experience assessing user expertise levels with AutoCAD, from their

classroom and teaching experience. In particular, the judges provided a holistic

assessment of the expertise levels which they observed. They were not only rating

efficiency but judging the strategies participants chose, the knowledge which they

demonstrated, the final quality of their work, and the overall fluidity of the workflows.

In general, the nature of these observations could not be easily operationalized and

measured computationally.

Each task lasted approximately 10 to 15 min, with the total phase lasting 45 to

60 min. This ensured that the experts had time to get a fair assessment of each of the

users in the group. For each of the four tasks, the expert judges were given worksheets

on which they could record notes for each participant. After each of the four tasks,

the experts assessed user expertise for that task on a 5-point Likert scale. After the

entire phase was completed, the judges also provided an overall expert assessment for

each participant, based on their 45 to 60 min of observations.

The expert judges monitored and rated participants independently and did not

confer with one another. In addition, this was the only phase that the experts were

present for, to ensure their judgments were not biased by previous phases.
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5.2. Results

Laboratory and Assessment Results

To analyze our results, we first profile our participants by analyzing their ques-

tionnaire responses (Phase 2) and the assessments made by our expert judges (Phase 6).

Participant Overview

During recruiting, we tried to obtain a pool of participants that would represent a

spectrum of expertise levels, roughly estimated by their profession, and their amount

of experience. Figure 3 shows an overview of the participants’ experience and self-

assessed expertise, as well as the judges overall expert assessment of the expertise

levels. The expert assessments were averaged between the two experts. We also

calculated a 2D expert assessment by averaging the first two task assessments and a

3D expert assessment by averaging the last two task assessments. To test for interjudge

reliability, we performed a correlation analysis across each of the scores for the four

tasks and overall assessments, provided by the judges, which showed considerable

agreement (Spearman’s � D .765, p < .0001).

For ease of presentation, we have sorted the participant numbers by their overall

expert assessment score. Overall, it can be seen that this pool of participants represents

a nice spectrum of experience and expertise levels. We believe that this diversity

is a reasonable approximation to the actual population of AutoCAD users, which

also greatly varies. Although exact statistics are not readily available, Autodesk has

approximately 12 million professional users and 6.5 million users from the education

community (Shaughnessy, 2013). A large proportion of that education community

would be novice students learning to use the software.

Based on the overall expert assessments, we would say that participants P12,

P13, and P14 had the highest level of software expertise and participants P1, P2,

FIGURE 3. Summary of the study participants.

Note. Participant numbers have been sorted by overall expert assessment.
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FIGURE 4. a) Comparing users’ 2D and 3D expert assessments. Four users (highlighted)

had 3D assessments that surpassed their 2D assessments (above the dashed line) (N D 14).

b) Comparing users’ 3D command usage and 3D expert assessment (N D 14).

P3 and P4, had the lowest, with the remaining participants falling somewhere in

between. However, as discussed in the previous sections, software expertise cannot

just be considered along a single dimension, which we look at more thoroughly in

the remaining analysis.

Some interesting observations can already be made. First, the 2D expert assess-

ments did have a positive correlation with the 3D expert assessments (r 2
D .45, p <

.01; Figure 4a). The four users who are highlighted in this figure are discussed in

the next section. This correlation indicates that users who are strong in one area of

an application will be more likely to show strengths in another area. It should be

noted that the judges knew which participants they were assessing, so this effect may

partially be due to a carry-over effect of the assessments.

However, neither the user’s years of experience nor the user’s self-assessed

expertise had any observable correlation with our expert’s 2D, 3D, and overall

assessments (Figure 5). This suggests that both years of experience and self-assessment of expertise

levels may be misleading indicators of expertise.

Command Familiarity and Frequency of Usage (Phase 3)

Here we discuss users’ self-reported familiarity and frequency usage of AutoCAD

commands. Figure 6 demonstrates that users have a spectrum of familiarity and

FIGURE 5. Correlation values of the study participant data summarized in Figure 3 (N D 14).
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FIGURE 6. Percentage of commands familiar with and used (N D 14).

usage levels—it also shows that only one user (P4) worked with more than half

of the commands in the system. This is consistent with prior research studying

software command usage (Greenberg & Witten, 1988; McGrenere & Moore, 2000).

It is interesting to note that P2, who has 10 years’ experience, did not report

familiarity with any command that he hadn’t used. This may be due to P2 being reluc-

tant to report familiarity, but it also indicates that P2 may fall under our classification

of an isolated expert.

An interesting result is that when comparing these spectra of usage and familiarity

to the expertise assessments, we did not find any correlation between the number of

commands users use or are familiar with and the overall expert assessments. This is

evidence that a strong assessment of expertise does not necessarily require the usage or familiarity

with more commands.

We can also use this analysis to revisit the data from Figure 4a, which showed

some users’ 3D assessments surpassed their 2D assessments (P7, P8, P12, P14). As it

turns out, all four of these users were familiar 3D users, reporting to use more than

40% of the 3D commands in AutoCAD. In general, there was a correlation between

3D usage and 3D assessment (r 2
D .32, p < .05; Figure 4b). This shows that although

command familiarity and usage may not be consistent with an expert’s assessment of a user’s overall

expertise level, it may indicate areas of expertise in certain core areas.

UI Access (Phase 4)

Next we consider the UI access times from Phase 4 of our study. As expected,

block had a significant effect on acquisition times, F(2, 26) D 135.2, p < .0001. Here

we see an interesting effect—for all participants, the completion times decreased

between blocks, most prominently between the first and second block (Figure 7a).

This demonstrates that even a novice user could exhibit skilled behavior if accessing

an item that they had recently accessed. The same may hold true for items the user

frequently accesses. Despite this decrease of time, overall UI access time across all

blocks did exhibit a significant correlation with users’ 2D expert assessments (r 2
D

.53, p < .005; Figure 7b).
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FIGURE 7. a) User interface (UI) access completion times, by block. The completion times

decreased between blocks, most prominently between the first and second block. b) Correlation

between UI access times and 2D expert assessment (N D 14).

Command Tasks (Phase 5)

Users were assigned a completion score in the command tasks, based on whether

a trial was completed (1), almost completed (0.5), or not completed (0). We also

recorded task completion time. Overall task completion score had a correlation to

the user’s overall expert assessment (r 2
D .79, p < .0001; Figure 8a).

It is interesting to note is that the correlation level is also significant (r 2
D .75,

p < .0001) when only considering the four tasks that were chosen to be previously

unfamiliar to users. We verified the tasks were indeed unfamiliar by using the data

from Phase 3 of the study. As such, this finding is consistent with the cognitive

psychology literature stating that experts are able to use procedural knowledge to

adapt and apply their skills in new ways (Anderson et al., 1995).

For completion times, we considered only Tasks 1 and 2, as completion rates

were low for Tasks 3 to 8 (the completion rate was 92.9% for Tasks 1 and 2 and

58.3% for the remaining tasks). P1 and P3 did not complete Task 2, so we assigned

completion times of 300 s for these tasks. The correlation between completion time

FIGURE 8. a) Correlation between command task completion score and overall expert as-

sessment (N D 14). b) Correlation between command task completion time and 2D expert

assessment (tasks 1 & 2 only) (N D 14).
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and 2D expert assessment was significant (r 2
D .39, p < .05). It is interesting to

notice that P4 (Figure 8b, highlighted) was the fastest overall but had a low 2D expert

assessment. Thus, P4 would fall under our category of a naive expert—very efficient

with certain commands but lacking the knowledge to be able to demonstrate expertise

when completing the higher level tasks.

It is important to recall that the experts were not present during Phase 5, so the

command usage metrics are independent from the expert assessments. This demonstrates

that command efficiency is a possible metric for software expertise.

In Situ Metrics

We now look at the data captured from the usage logs. This is an especially

interesting part of the analysis, given that previous work has not focused on the

relation between in-situ usage data logs to software expertise. Figure 9 summarizes

the metrics calculated from the log files. In the following sections we discuss why

each of these metrics was chosen and what they could imply.

Sessions are defined as instances when the AutoCAD application was launched.

To calculate active usage hours, we subtracted any time interval longer than 5 min

without an input event being recorded. Four users (P4, P7, P8, P11) had less than

6 hr of active usage hours logged. Their data have been omitted from the following

Command Distribution and Menu Access analysis, because it was not complete enough to

accurately calculate these metrics.

Command Distribution

We first look at the nature of the commands users executed, as the type of

command a user uses may indicate expertise level (Lawson et al., 2009; Linton &

Schaefer, 2000). We did not find any correlation between the unique command

counts with the expert assessments. We also looked at the average popularity of

the commands used, thinking that expert users possibly use more ‘‘rare’’ commands.

FIGURE 9. Summary of Usage Log Statistics (N D 14).

Note. Rows marked with an asterisk were calculated from the 10 participants who had more

than 6 hr of usage data.
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FIGURE 10. a) Correlation between unique commands used and overall expert assessment

(N D 10). b) Correlation between in situ command completion time, and overall expert

assessment.

Popularity of command is calculated as the percentage of users, from our log of about

3,000 users who use that command. However, this too did not have a correlation with

expert assessments. This reiterates the data from the familiarity survey—the number

and nature of commands a user uses does not necessarily correlate to assessed expertise levels.

For example, P10 and P14 had lower command counts compared to other users

with similar overall expert assessments (Figure 10a, highlighted). It is interesting

to note these user’s had similar backgrounds—about 6 years of experience, and

an undergraduate degree in architecture. These users could be classified as isolated

experts. It is also interesting to note that P3, who was assessed as a novice, had the

highest number of unique commands used. This user only had 1 year of experience

but recently obtained an advanced AutoCAD training certificate. So this user could

be classified as a knowledgeable expert. We can also use the command frequencies to

compare our participants’ usage habits to the typical usage patterns seen in the actual

AutoCAD user community.

Figure 11 illustrates the command frequencies across our participants, for the

50 most frequently used commands captured by our usage logs. These frequencies

are compared to the actual command frequencies, as reported by AutoCAD’s CIP

program. It can be seen that the distribution is quite similar. The correlation is

significant, with a near 0 intercept and near unity slope (p < .0001, y D 0.9507x C

0.0008, r 2
D .8423). This provides evidence that our study participants were a

reasonable representation of actual AutoCAD users and that the 2-week collection

period was sufficient in gathering representative usage patterns.

Command Efficiency

We next look at how efficient users are at executing commands. This is done

by examining the time between when a command begins and finishes. In AutoCAD,

commands have explicit start and end times—commands are initiated when the asso-

ciated command is accessed from the user interface and completed once the command

has been issued, typically by pressing enter.
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FIGURE 11. A comparison of the command usage frequencies between our study participants

and actual Autodesk CIP logs, for the 50 most frequently used commands in the study logs.

To correct the skewing and remove outliers, we calculated the median value for

each user. There was significant correlation with command execution time and overall

expert assessment (r 2
D .49, p < .01; Figure 10b). This was somewhat surprising,

given the high level of noise we expected in the command usage times in situ, without

any knowledge of the tasks or even the commands being used. This is new evidence that

command efficiency could be measured in situ and used as an indicator of expertise.

Undo and Erase

In addition to looking at these overall command metrics, we also wanted to

look at two specific commands, undo and erase, that have been previously identified

as commands that may be indicative of usability issues (Akers et al., 2009). Hence

such commands may also be indicative of expertise. For each user, we measured the

frequency of use of these two commands relative to the total number of commands

that the user executed. As shown in Figure 9, the frequencies ranged greatly across

users, from 1.4% to 22.1% for undo and 0.1% to 23.2% for erase. However the

frequency of use with these commands did not have a significant correlation to users’

assessed expertise levels (p > .5 in both cases). This indicates that novices and experts

integrate these commands into their workflows in similar manners, and as such may

not be indicative of expertise level.

Workflow Pace

We also looked at metrics corresponding to the user’s pace: commands entered

per minute, and pause frequency. Pauses were defined as any break in mouse or

keyboard input that lasted longer than 300 ms (Ghazarian & Noorhosseini, 2010).
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FIGURE 12. a) Correlation between pauses and overall expert assessment (N D 14). b) Corre-

lation between menu access times and overall expert assessment (N D 10).

Such pauses could occur at any time while the AutoCAD was in focus. Pause frequency

was calculated by dividing the number of pauses by the number of commands a user

issued. Pause frequency had a significant correlation to overall expert assessment

(r 2
D .30, p < .05; Figure 12a). Again, this is an important result, as we have validated

another metric that may be used to identify expertise levels in situ, without any prior

knowledge about the user or their tasks. From the GOMS literature, this could be

explained by users requiring less time to perform mental operations, which is argued

to be a sign of expertise (John & Kieras, 1996).

Commands entered per minute did not have a significant correlation with

the expert assessments. Unlike pauses, previously discussed, this metric is highly

dependent on the nature of the task, which may be why it is less indicative of expertise.

These results shows that the high level pace of a user may not be indicative of

expertise, whereas low level pauses may indicate times where users need to consider

their next steps, something which experts do less.

Menu Access

Guided by previous work (Hurst et al., 2007), we looked at menu access times in

the usage logs. The metric we looked at is the one proposed previously, the Keystroke

Level Model (KLM) ratio, where the actual menu acquisition time is divided by the

expected acquisition time, as predicted by a KLM GOMS model (Hurst et al., 2007).

We did not include the four participants with less than 6 hours of usage data, as these

users all had less than 35 menu invocations. The initial analysis included menu items

at all depths, but no significant correlations were found. We repeated the analysis

with only top-level menu acquisitions, and there was a weak correlation between the

KLM and the overall expert assessment (r 2
D .35, p D .072). Although this shows that

there is some information within this metric, it is not completely reliable. For example,

Figure 12b illustrates that P12 has a higher KLM ratio for his level of expertise. Upon

further inspection, P12 has used the menu for the least number of commands, across

all users. As such, metrics which use menu access need to also consider how the user typically accesses

commands.



94 Grossman and Fitzmaurice

Access Metrics

In relation to this, we looked at the frequency at which users accessed the menu,

command line, and shortcuts. Although we hypothesized that the expert users would

rely more on accelerators (command line and short cuts), this was not the case. None

of the aforementioned correlated to the expert assessments. Our observations in

the laboratory study revealed that users have their own unique ways for accessing

commands, regardless of their level of expertise. For example, P13, a user who

was assessed at a high level of expertise, accessed only 21.5% of commands from

the command line even though the command line is considered to be an efficient

mechanism to access commands in AutoCAD.

5.3. Summary

We have presented a detailed analysis of the results from each phase of the

study we conducted. We were able to identify a number of interesting patterns, and

a number of metrics that correlated to the expert assessments. A full table of the

correlation analysis is presented in Figure 13. The most notable results that we have

found are as follows:

� Both years of experience and self-assessment of expertise levels may be mis-

leading. Neither of these metrics correlated with the overall expert assessment

levels.
� Users demonstrated a spectrum of usage frequencies with commands. The usage

frequencies from the usage logs identified two isolated experts that used a small

set of commands, but had a high-assessed level of expertise.
� The command distributions captured by our software logs closely matched

frequencies from actual Autodesk logs from a large population of users. This

demonstrates that our methodology of capturing data in situ is effective at

obtaining representative samples of data.
� Although shown to be a strong metric previously (Hurst et al., 2007), menu

access times in our laboratory study only had a weak correlation with the overall

expert assessment (p D .072). In particular, there were users who typically used

other command access techniques and had slower times with the menu.
� Performance with individual commands, as measured in our laboratory study,

exhibited the strongest correlation, across all metrics, with the overall expert

assessment. In addition, the data from completion times indicated the presence

of naïve experts (fast with the commands but lower expertise ratings). Surprisingly,

in situ command completion times also correlated to the overall expert assess-

ment—providing the new evidence that software expertise could potentially be

measured in situ, without any prior knowledge.
� A higher number of pauses in situ correlated to the overall expert assessment.

However, command usage rates did not, indicating that to be an expert does not

necessarily mean to work faster.
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FIGURE 13. Summary of the correlation analysis from the study results.

6. DISCUSSION

We have performed a thorough investigation of metrics for application-level

software expertise. This included presenting a framework within which expertise

metrics can be defined. In addition, we performed a study that examined the various

dimensions of the framework, looked at how the metrics correlate with one another,

and examined how well metrics of usage, including those gathered in situ, correlate

to expertise.

We believe the framework we presented will be a useful reference going forward.

Our survey of previous research indicated a number of proposals as to what a software

expert was, including a number of definitions which only looked at lower level

components. We made an explicit effort to capture this diversity in our framework

of possible metrics. This framework is not meant to define expertise, it is meant to

help ground discussions on expertise and provide a space for which metrics could be

chosen. In addition to contributing a new framework of application expertise metrics,

we see our study as providing two contributions to the existing HCI literature:
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� It serves as the first validation that previously proposed metrics not only apply

to low-level and short-term expertise but also high-level software expertise.
� It serves as the first validation that metrics from in situ usage data, without any

knowledge about the user environment or task, can be correlated to software

expertise.

6.1. Design Implications

Typically expertise detection is motivated by the use of adaptive user interfaces

(Carroll & Carrithers, 1984; Shneiderman, 2003) or help systems (Heckerman &

Horvitz, 1998; Hurst et al., 2007). However, by detecting expertise at the application

level, we see some additional opportunities for design. First, we believe it will be

valuable for community-based learning resources, such as online discussion boards,

for users to see and understand the nature of other users’ expertise levels. Similarly,

techniques that make software command recommendations on other users’ usage

behaviors (Linton & Schaefer, 2000; Matejka et al., 2009) could give higher weight to

the relevant experts.

We also see organizational implications for understanding software expertise

at the application level. If a software company could use its own software to under-

stand the spectrum of expertise of its end-users, it could better understand what types

of learning aids it should focus on developing. By dynamically measuring progress in

users’ expertise at the application level, a company could additionally track the impact

of a new learning aid or software revision.

Similarly, a company that has a large number of employees using the same piece

of software, such as an architecture firm or graphic design studio, could track the

expertise levels of its employees. This could allow the company to make informed

decisions about purchasing training materials or asking specific employees to attend

specialized training courses.

6.2. Limitations and Future Work

Overall, our study was both extensive and exploratory. The study consisted of six

different phases, each with its own protocol, and it required student and professional

users to install a plug-in, on their home or office workstations. Although we were

able to identify certain significant correlations, our results do still warrant future

investigation and validation. In particular several challenges in executing this work

led to both limitations and opportunities for future work, which we discuss next.

Generality of Results

Overall, there are a number of cautions that must be taken into account before

generalizing our results. The main issues that should be considered are the number

of participants used, the target application, and the limited number of tasks that

were used during the expert assessments. We discuss each of these issues in greater

detail next.
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Number of Participants

Our analysis was based on 14 participants who completed the study. This served

our purpose of providing an initial investigation of software expertise, and a larger

scale study may be able to better identify different expertise profiles and provide

stronger validations of some of our findings. However, even with the number of

participants we worked with, we were still able to identify some interesting trends

and unique characteristics from our data set.

Generalization to Other Software

Our framework was developed based on a literature review of expertise across

many different domains of software and should generalize to almost any end-user

software application. However, our study was conducted with a single target appli-

cation, AutoCAD. Some aspects of AutoCAD are unique, which may impact the

generalization of our study analysis. For example, users explicitly start and end

commands, which allowed us to accurately capture command completion times.

Although some of these application specific features were used in our analysis, other

metrics were based on more general software features. As such, we feel our results do

generalize, but validation against other software applications would be an interesting

project for future research.

Expert Assessment Tasks

Another caution that should be considered is that our expert judges made their

judgments based on observing only four predetermined tasks. Although this may

seem like a small number of tasks, it did provide for approximately 1 hr of usage

observations by the expert judges. Furthermore, these four tasks were specifically

developed by our expert judges, who both have extensive experience assessing skill

levels of AutoCAD users. They intentionally developed the tasks in a way that would

allow them to make their assessments. The tasks were high level enough that there

were many ways a participant could go about accomplishing the task. As such, the

experts were not just assessing how well the participants used a sequence commands to

accomplish the tasks but the overall approach and strategies that the participants used.

At the end of our study we discussed this issue with our expert judges to

gauge their sense of confidence in their ratings. Both responded that they had high

confidence in their assessments, indicating that the four tasks, across a 1-hr period,

were adequate for forming their assessments. However, an interesting future topic

would be to investigate how an expert’s assessment of a user’s expertise level evolves,

depending on the duration of the observation period.

Correlation Analysis

Our analysis was performed by collecting multiple measures of expertise and

investigating the relationship among those measures. This methodology is similar

to analyses of convergent validity used in psychometric research (Messick, 1995),
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where one is trying to understand what a particular metric is measuring by looking at

correlations among a variety of other metrics. Although a number of the correlations

were found to be significant, it only indicates that part of the variance in expertise can

be explained by the metric, with other factors at play. In addition, we tested multiple

correlations without pairwise correction. For studies such as ours, which are of an

exploratory nature, this is an accepted statistical protocol (Curtin & Schulz, 1998),

but it is important to recognize that this does increase chances of Type I errors, so

our results should be generalized and contemplated with caution.

True Novices

Because our methodology included in situ usage data, we required participants to

be existing AutoCAD users. As such, our study did not focus on the detection of true

novices using the application for the first time. However, our framework of metrics

should also be applicable to novice users, and it would be interesting to consider

how this framework could be used to provide classifications of types of novice users,

similar to the different classifications of expertise outlined in Section 4.1.

Automatic Classification

We have provided useful information as to what features may be used to identify

a user’s expertise levels. This was an initial study, and a next step could be to create

statistical expertise classifiers (Hurst et al., 2007) based on application usage logs. A

larger user base will be needed before such a technique can be validated, but our work

sets important groundwork for such an undertaking.

Domain Knowledge

With our study, we tried to investigate as much of our framework of software

expertise as possible. However, one omission was the issue of domain knowledge.

Although we collected some information about education experience, it would be

hard to accurately capture each of the participants’ knowledge level of architecture

and design at a broad level. Although identifying a user’s domain knowledge would

be challenging, we still feel it is an important component of the framework, as it is

likely to influence how a user works with a software system (Kolodner, 1983; Nielsen,

1994). In addition to domain knowledge, it may also be interesting in the future to

consider knowledge about computers, software, and operating systems in general, in

relation to the target application. In particular, a user with stronger knowledge of such

issues may be more likely to achieve expertise levels within certain areas of a software

application, such as importing or exporting data to and from other applications.
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