
AppMap: Exploring User Interface Visualizations

Michael Rooke, Tovi Grossman, George Fitzmaurice

Autodesk Research, 210 King St E, Toronto, ON, M5A 1J7

ABSTRACT
In traditional graphical user interfaces, the majority of UI
elements are hidden to the user in the default view. Application
designers and users desire more space for their application data
and thus want to minimize the user interface footprint. We explore
the benefits of dedicating additional screen space for presenting
an alternative visualization of an application’s user interface.
Some potential benefits are to assist users in examining complex
software, understanding the extent of an application’s capabilities,
and exploring the available features. Thus, we propose user
interface visualizations, alternative representations of an
application’s interface augmented with usage information. We
first introduce a design space for UI visualizations and describe
some initial prototypes and insights based on this design space.
We then present AppMap, our new design, which displays the
entire function set of AutoCAD and allows the user to
interactively explore the visualization which is augmented with
visual overlays displaying analytical data about the functions and
their relations. In our initial studies, users welcomed this new
presentation of functionality, and the unique information that it
presents. We conclude by summarizing some potential benefits of
UI visualizations.

KEYWORDS: AppMap, User Interface, Visualization.

INDEX TERMS: H5.2 [Information interfaces and presentation]:
User Interfaces. Graphical user interfaces.

1 INTRODUCTION
Today’s large computer software applications can expose an
overwhelming amount of functionality to its users [16]. With so
many functions, the majority of a UI is hidden in the default view,
to maximize screen real estate for the working document (see
Figure 1). Graphical user interfaces (GUIs) serve as tools for
access, providing mechanisms for users to navigate through
ribbons, dialog boxes, tabs and menu systems [28]. While this
provides a logical structure for interaction, users may have trouble
locating desired functionality and may not be aware of certain
features that are hidden away in these nested UI components [14].

Figure 1. UI screenspace consumption for the default views of

Microsoft Word (13%), Autodesk AutoCAD (28%) and Adobe
Photoshop (29%) running at 1280x1024 resolution.

While it may not be their primary purpose, a GUI also

inherently serves as a visual representation of what features the
system has to offer, and as a tool for exploring and becoming
aware of those features [28]. But, because this is not their primary
purpose, we argue that traditional user interfaces are not optimally
designed to provide awareness and exploration of features. For
instance, users rarely have the ability to graphically view the
entire scope of the software’s functionality, and how those
functions relate to one another. As such, becoming aware of
relevant functionality, and establishing an overall familiarity with
an application can be challenging, especially for complex
software applications. For example, Grossman et al. found that
functionality awareness was a specific learnability problem
impeding both novice and expert users from completing tasks
efficiently or at all [14].

Figure 2. AppMap UI Visualization.

Just as cities have tour books and web pages have sitemaps [5,
19, 23], we contend that software applications could provide user
interface visualizations – alternative representations of the UI for
improving the examination of an application. We first describe
related work and then introduce a design space for UI
visualizations. Guided by informal lessons learned from initial
mockups, we present AppMap, an interactive user interface
visualization system (Figure 2).

Specifically, AppMap provides an interactive visualization of
an entire program’s functionality to support exploration and
awareness of complex end-user interfaces. AppMap allows users
to grasp what a program does and how it is structured without
having to find and make sense of explicit functionality through
program usage. Information is laid out in either a grid view
(Figure 2) or map view (Figure 3). To help users indentify the
specific commands that are relevant to their own usage of the
software, AppMap provides analytical information about
commands, through interactive visual overlays and spatial layouts.
In initial user observation sessions, we found that AppMap was
well received and easy to use, delivering information which users
found to be useful.

mike.rooke@gmail.com
tovi.grossman@autodesk.com
george.fitzmaurice@autodesk.com

Figure 3. AppMap – an application User Interface Visualization exposing and organizing all command functionality. In the map view, the

visualization is grounded to a world atlas. Blue lines point to likely next used commands.

2 RELATED WORK

2.1 The Problem of Feature Awareness
Many computer programs of moderate complexity hold more
functionality than single users actually use [22]. In their paper on
software learnability, Grossman et al. highlight the important
issue of awareness of functionality. In particular, even an
“expert,” who has mastered certain aspects of a system may be
completely unaware of other tools that could improve their overall
efficiency [14]. In a recent study, Matejka et al. found that users
greatly overestimated the true fraction of functionality they used
[21]. An abundance of functionality is often labeled “bloat” if it
reaches a subjectively daunting size [22].

For a beginner, a fully featured program often requires trial and
error to locate desired components since many of these
components are not directly visible. In researching word processor
learning, Carroll and Carrithers [3] found that “new users often
recklessly tried out menu choices in their early encounters with
the system.” Their investigation demonstrated that showing the
full-featured program to a beginner was not the optimal approach
to learning it.

However, it was found by McGrenere and Moore that most
users do not want a stripped-down version to suit their own needs
– they prefer to have functionality that they can discover, even if
they never use it. They explained, “this discovery of a set of
unused features, both wanted and unwanted, that is subjectively
defined by each user, opens the design space and raises new
challenges for interface designers” [22]. However, a balance must
be struck at some level of complexity. Hsi and Potts found that
adding functionality to an existing program generally increases
complexity, especially when this process is repeated version after
version [16]. These contrasting finding demonstrates the challenge
in designing an interface that is discoverable but not complex.
AppMap attempts to address this challenge by providing a UI
visualization: an alternative representation of the user interface
which promotes discovery, so the primary representation can
maintain a low level of complexity.

2.2 Adaptive User Interfaces
One line of research, which could potentially combat the
challenge of software bloat and user confusion, is to design
adaptive user interfaces, which adapt to the user’s behavior [11,
12]. Most relevant to software bloat are multilayered user
interfaces [9] or “training wheels” [3] which gradually reveal
functionality to the user as they progress in expertise.
Unfortunately, there are disadvantages associated with adaptive
interfaces. In particular, Hui et al. argue that adaptive interfaces
can induce a disruption to a user’s mental model of an application
[17]. Furthermore, in a comprehensive study on the impact of
personalized interfaces, Findalter and McGrenere found that
“personalization can negatively impact the user’s overall
awareness of features” [10]. AppMap addresses this limitation, by
instead providing an alterative visualization of the UI that can
potentially improve a user’s mental model of the interface.

2.3 Software Feature Visualizations
Before GUIs were popular, it was important to indicate a system’s
functionality to the user. For example, menu map visualizations
were explored [24], and physical keyboard overlays1 were heavily
relied upon. We propose to bring back such strategies, but to
make them more interactive and exhaustive.

Our work is also inspired by sitemaps, which provide
alternative views to help aid navigation and cognition of online
websites [5, 19, 23]. We adapt such representations to user
interface components, which to our knowledge has never been
explored. Another relevant visualization technique which served
as inspiration are Mind maps [31]: structured diagrams used to
represent words, ideas, tasks, or other items arranged using radial
hierarchies and tree structures denoting relationships with a
central governing concept. This structured approach has shown to
have positive effects on learning [8]. AppMap applies these
concepts to visualize the full scope of an application’s user
interface elements and the relations between those elements.

1 http://www.vintage-computer.com/images/kaypro10keyboard.jpg (Retrieved 20/12/10).

Finally, while Software Visualization is an active subfield of
software engineering [25, 30], the field focuses on a developer’s
perspective of the program’s architecture and operation. Little
attention has been given to visualizing the UI components of a
software system for the benefit of an end user. In our work, we
adapt the concept of software visualization to aid navigation and
exploration of user interface components for end users.

2.4 Summary
To summarize, feature awareness and software bloat are still open
and important problems in user interface design. The commonly
proposed approach of adapting or personalizing interfaces may
actually be detrimental to user’s mental model of the applications
features space. As such, we take inspiration from work on
sitemaps and Mind Maps, and will introduce the concept of user
interface visualizations to aid in awareness, discovery, and
exploration of a GUI’s feature space.

3 USER INTERFACE VISUALIZATIONS
To motivate our work further, we provide an analogy to using
maps while driving a car. Most drivers do not use a map if they
know exactly where it is they are going, and how to get there.
However, if a tourist has just rented a car in an unfamiliar city,
and wants to explore, they would almost certainly invest in a map.
Without a map, they may be unsure of where they are, and more
importantly, where they have yet to explore. The experience of
using a traditional GUI is similar to driving a car without a map.
This may be acceptable if the user knows exactly what it is they
want to do. However, if the user wishes to explore the interface,
there are no analogous “map” tools for our “tourist” users. Using
the traditional graphical interface itself as this “map” may
significantly constrain the extent and value of the explorations.
Instead, we propose interactive user interface visualizations,
which serve as a platform for end-user software exploration.

The main idea is to display, in a single view, the entire scope of
an application’s user interface components, which the user can
navigate and interact with. However, it is not our goal to make the
user aware of every command in a system. On the contrary, most
components of the UI may be irrelevant to any single user, based
on their specific uses of the system [21]. Instead, we provide
interactive tools and visualizations to help users identify
components that may have particular relevance to them, amongst
the scope of the entire system’s functionality. This functionality
could be useful to both novice and expert users, as both are
susceptible to the awareness learnability challenge [14].

4 DESIGN SPACE
Because of the lack of any previous comprehensive investigation
into user interface visualizations, we map out a general design
space by describing various properties worth considering.

4.1 Represented UI Elements
The design must primarily determine what user interface elements
to include in the visualization. These elements could include
individual tool icons, toolbars, menus, menu items, dialog boxes,
tool parameters, etc. Also worth considering are tools or functions
that do not have a visual representation in the existing user
interface. For example, it may be worthwhile to have visual
representations of the hotkey accelerators that are available for the
system, as users are often unaware of these [13].

4.2 Element Granularity
The granularity of the UI elements must also be considered. For
example, a coarse grain visualization could represent dialog boxes
or menus, while a detailed visualization could depict individual
elements within a dialog box, or individual menu items.

4.3 Element Visualization
Each element could be represented by an actual screenshot of
itself, since users may be able to identify familiar dialog boxes by
their look. Elements could also be visualized by representative
icons or textual descriptions.

4.4 Layout
It has been argued that spatial layout can be one of the best
methods to facilitate graphical perception [1]. There are numerous
ways the individual components of a user interface visualization
could be laid out. One option is to cluster the elements by usage or
functional category. Another alternative is to have the layout
reflect the UI elements’ location in the primary UI or how deeply
they are nested in the UI access hierarchy. Alternatively, the
layout could have less semantic meaning, and be arranged in a
table, indexed by name or some other ordered feature.

Within the layout, it may be worthwhile to include real-world
landmarks, as this has been shown to improve spatial cognition [6,
26]. For our purposes, this may help users form a cognitive model
of the user interface.

4.5 Sizing and Coloring
Sizing and coloring are both important features for graphical
visualizations [4]. The size or color of the elements could be used
to represent any quantitative data associated with the element,
such as its frequency of use or number of child elements.

4.6 Interactivity
In its simplest form, the visualization could be a static
representation. However, to best support exploration, the
visualization should be interactive. Potential interactions include
navigation, annotations, filtering, sorting, and grouping.
Furthermore, the visualization could serve as a learning tool by
linking individual elements to extensive help articles or tutorials,
to help users explore and learn to use new features.

4.7 Application Link
While the visualization could run independently of the
application, it is important to consider real-time communication
between the application and the visualization. For example, the
visualization could represent the user’s current usage patterns, and
highlight the tools that were used most recently. Alternatively, the
user could trigger functionality from within the visualization.
5 INITIAL PROTOTYPES AND INSIGHTS
Through iterative design, we developed a series of mock-ups and
prototypes in order to explore the design space discussed above.
We briefly discuss these initial designs here, to help highlight
some of the challenges in designing UI visualizations and to also
provide rationale for our final design.

Our first exploration looked at visualizing the actual dialog
boxes of an application using a TreeMap style layout [18]. Figure
4 shows a mock-up with purely simulated data of our design
intent. Large regions of functionality would be visible (e.g.,
Modeling and Animation) and the relative size of each region
could represent a corresponding proportion of functionality
contained within the application. In addition, the size of each

dialog box could reflect the frequency of use. A problem with this
design is that the layout conveys little semantic meaning to the
user.

We next explored an experimental node-and-stick style
visualization, which was manually created to show Microsoft’s
WordPad user interface elements (Figure 5). The elements are
arranged according to the pull-down menu that they are accessed
from. The prototype was interactive, allowing the user to pan and
zoom the static image with the mouse.

From our initial prototypes we formed the following design
guidelines:

Figure 4: TreeMap mock-up using simulated data.

Figure 5: Wordpad expanded into all its visual UI elements.

Highlighted regions indicate interactive areas of functionality.

Utilize a combination of manual and automated layout
algorithms: One of the first issues we noticed was that it was
surprisingly time consuming to manually layout the visual
elements in a meaningful way – even for an application with
limited functionality. Furthermore, we found it challenging to
come up with a compact design. Even though the Wordpad node-
and-stick prototype was carefully laid out, it still took up a lot of
space. Switching to an entirely automatic layout could possibly
make the visualization more compact, but it could also result in a
less organized layout. We believe that a more useful approach
may involve a combination of manual and automated layout
algorithms. This would allow designers to specify high-level
structures and then the algorithms could fill these structures with
the UI elements.

Provide spatial landmarks: The panning and zooming interactions
seemed very promising, and in our own experiences, were very
useful for exploring the data. However, we found that in some
cases there was very little relationship between neighboring UI

elements in the visualizations. Thus, the user could become
disoriented in the information landscape. As a result, we felt
spatial landmarks could be considered.

Use uniformly sized iconic representations of the UI elements:
With regards to element representation, we found that using
screenshots of the actual elements added little value to the
designs. They were sometimes useful for identifying known
components, but this was not a primary goal for the visualization.
Furthermore, the varying size and aspect ratio of these elements
added to the challenge of creating compact and structured layouts.
Thus, we felt it would be worthwhile to pursue uniformly sized
iconic representations of the UI elements.

6 APPMAP
Based on the lessons learned from our initial prototypes, we built
a more robust and interactive system. We called this system
AppMap. We decided to use AutoCAD as a target application.
AutoCAD is a complex program used for 2D and 3D design and
drafting, containing over a thousand commands. Through the
customization features of AutoCAD we were able to obtain
graphical iconic representations of nearly all of its commands, and
through AutoCAD’s Customer Involvement Program, we were
able to obtain associated command usage data. AppMap and
AutoCAD ran in tandem, and could communicate with one
another via a custom written AutoCAD plug-in.

6.1 Implementation
AppMap was programmed in C++ using OpenGL, specifically the
WGL system interface. Implementation and evaluation occurred
on a dual-monitor HP xw4600 workstation. AutoCAD ran on one
monitor while AppMap ran on the other. This represents our
envisioned usage of having the visualization on a secondary, or
ambient, display. The AutoCAD plug-in was programmed in
Microsoft’s C# using the ObjectARX plug-in architecture.

6.2 Visualization Elements
For AppMap we decided to use commands as the primary visual
component for the visualization, regardless of how they are
accessed through the UI. This would give users a visualization of
almost all actions that could be carried out with the system. In the
dataset we collected, there were 1031 commands, with 840 of
them having an associated icon (Figure 6a). For the remaining 191
commands, we used the same placeholder icon (Figure 6b).

Figure 6: a) Example iconic representations. b) Placeholder

AppMap icon used for commands without associated icons.

6.3 Item Layout
AppMap supports two layouts: map view, and grid view.

6.3.1 Map View
Our initial prototypes indicated that the automatic layouts could
be somewhat arbitrary, causing users to lose context when
navigating, especially when zooming in. Motivated by research
showing the benefits of spatial landmarks [6], we developed a
map view, where icons are overlaid on a map of the world. This
design is similar to the approach used in Robertson et al.’s Data
Mountain, whose research showed beneficial recall and
understanding when grounding icons with spatial landmarks [26].

The icons were grouped into 33 functional categories, and each
group was automatically arranged over a specific region or
country (Figure 7). We specified the region for each category
heuristically, based on group size and relatedness. It is also
conceptually possible to place groups according to size,
popularity, etc. By default, icons are ordered alphabetically within
each category.

Figure 7: The Map View overlays icons on a world map. A "Flight

path," or recent command history, is shown in red.

While the choice of using an atlas for the spatial grounding
image provides a nice metaphor for the goals of the system, it is
not a requirement. An alternative image could be used, but it
should be familiar and contain explicit “areas” for the
categorization. Similarly, there is no “correct” mapping between
category and geographic location. Most important is that the
categories have specific and constant locations to help users form
a mental map of the system over time.

6.3.2 Grid View
In addition to the map view, we included a grid view layout
structure (Figure 8), arranging icons in a square grid. This
compact view is used for applying visualizations and sorting
arrangements across all icons regardless of category, without
restricting their placement to specific regions. By default, the
icons are ordered alphabetically.

Figure 8: The Grid View organizes items into arrays of icons.

Figure 9: a) Zooming into the Text category of the map view. b)

Displaying a tooltip for a command with a right-click.

6.4 Navigation and Interaction
AppMap uses the same zoom and pan interface as in the earlier
prototypes. The mouse-wheel is used to zoom, and the left button
is used to pan. This allows users to zoom in to specific regions to
see detailed information (Figure 9a). In addition, right-clicking an
icon invokes a contextual tooltip displaying additional
information of the tool (Figure 9b). Double-clicking executes the
command within AutoCAD.

6.5 Control Panel
The AppMap has a control panel (Figure 10) to allow the user to
(1) set and adjust display styles, (2) control visual overlays, (3)
sort the data given a selected criterion, (4) search for individual
commands, and (5) adjust the transparency of the background map
image. We now discuss each of these options in more detail.

Figure 10: The AppMap control panel.

6.5.1 Display Styles and Map Transparency
A “Session History” checkbox controls the visibility of what we
call “flight paths”, which are lines between recently used
commands (Figure 7). The data used to display this is the real-
time command history that is collected by the AutoCAD plug-in.
The purpose of these lines is to allow quick recognition of areas of
the map view that have been “visited.” This could help a user
identify entire categories of functionality that they do not use.
Alternatively, it may reveal to the user that they have used a
command that exists in an entire category of related commands
for which they were unaware. To avoid clutter, flight paths fade
out over time, so that only 10 curves are ever visible at a time.

Additional controls include a “Map” checkbox, which shows or
hides the background map image, a “Labels” checkbox, which
controls the visibility of the category labels in the map view, and a
slider, which can be used to adjust the map transparency.

6.5.2 Command Usage Visualizations
One of the potential benefits of user interface visualizations is
indicating the relative importance of the commands to the user.
This can be especially important for a system like AutoCAD,
where only a certain subset of the entire feature set may be
relevant to any single user. To this end, we acquired command
usage histories gathered from AutoCAD’s Customer Involvement
Program (CIP) [21]. We used a data set of 4075 users, which
contains a log of approximately 17,000,000 command activations.
For the sake of prototyping, we labelled 17 of these users as
“experts,” since these particular users were known professionals
in 2D drafting. We chose a single user’s command stream to
represent the command usage information of the AppMap user. In
an actual implementation, this personal usage data could be real.

From this usage data, we defined four data sets to be associated
with the commands, which could be visualized with a pull-down
menu in the control panel:

Community Usage: The overall frequency, relative to all other
commands, in which the command is used. For example, the
“Delete” command makes up 17% of the entire user population’s
command stream. Command frequency is an important indication
of the relative importance of a command [20, 21].
Community Popularity: The fraction of users who have used the
command. For example, 95% of all users have used the Erase

command (Figure 11). This is an alternative indication of a
command’s importance.
Expert Usage: The frequency for which the command is used by
the expert users. Viewing this information allows a user to see
“what the experts are doing”.
My Usage: The frequency which the AppMap user uses the
command. This allows a user to see and reflect upon their own
usage of the system.

Each data set is visualized by highlighting the icons with a
colored box. The data value is mapped to the opacity of the color.
A legend indicates the current visualization and the range in
values (Figure 11a). Applying the visualization while zoomed out
in the map view can allow users to obtain an overview of the
relative importance of categories (Figure 11b). Zooming in would
give detailed information on individual commands (Figure 9).

Figure 11: a) The legend for visualizing command popularity. b)

The associated visualization, shown in Map View.

In addition to highlighting by a single data set, the drop down
box contains options to visualize two usage data sets, comparing
their differences. For example, the community usage can be
compared to the expert’s usage, to quickly view what commands
experts use more often than the community on average, and vice
versa (Figure 12a).

6.5.3 Release Version Visualization
We also included a data field that identifies what release year a
given AutoCAD command was introduced. The 13 discrete
release versions are illustrated by 13 different colors (Figure 12b).
Viewing this information could help a user identify commands,
which were recently released, that they have not yet adopted.

6.5.4 Sorting
The spatial arrangement of items is of great importance to
cognition [1]. In addition to highlighting icons, their locations can
be sorted. This can allow users to obtain additional information.
For example, if a user is interested in what commands are popular
in AutoCAD, he or she may select the community popularity
visualization and judge which commands are popular by
inspection. However, if the user is interested in the single, most
popular command, this method is not effective. To do this more
efficiently, the user can sort the commands according to the
desired data field (Figure 12a). When the sort is performed, icons
are sorted from top-to-bottom, left-to-right. If in map view, each
category is sorted within its region.

A powerful feature in AppMap is the ability to visualize the
commands by one data set and sort by the other. This can be a
fruitful feature for understanding certain relationships between
data sets. For example, Figure 12b shows the grid view where the
icons are highlighted by release version and sorted by popularity.
Figure 13 shows a zoomed in view of the grid view when sorted
by community popularity, and viewed by “my usage.” This
arrangement could allow a user to identify commands to adopt.

Figure 12: The Grid View, a) visualized and sorted by the

comparison between expert and community usage. b) visualized by
release version, and sorted by popularity.

Figure 13: The Grid View, zoomed into the top-left. The view is

sorted by community popularity, and visualized by, “My Usage.”

Sorting criteria are selected from a pull down menu.
Alternatively, the user may click the “Current Visualization”
button, to sort the commands by the current visualization setting
(Figure 12a).

6.5.5 Searching and Executing Commands
The search box can be used to find commands within the
visualization. As each key is typed, AppMap searches for
commands that have the current substring in either their name or
tooltip text. Icons not containing this text fade out, to emphasize
the matching commands. Clicking “Search” will search for an
exact command name match. If the command is found, the icon is
highlighted, and AppMap zooms the view onto that icon. Once a
command is found, the user can double-click it to activate its
function within AutoCAD. Double clicking the icon also
highlights commands that it is often followed by, as determined
from our collected command usage data (see Figure 3).

7 INITIAL USER OBSERVATION SESSIONS
In order to understand how users may approach and use a UI
visualization, we conducted a set of exploratory user observation
sessions of AppMap, used in conjunction with AutoCAD (Figure
2). This study was not meant to measure a formal or quantitative
benefit of AppMap. We feel the true value of AppMap would
occur after a prolonged exposure, allowing time for a user’s
mental model to develop. It would thus be difficult to measure this
in our initial observation sessions. Instead, we felt at this stage, it
would be more useful to gather initial impressions on the design
aspects and features of the system.

Participants performed a series of AppMap tasks, using both the
grid and map views, while a single observer sat nearby.
Participants were then given a short questionnaire to ask about
their experiences with the system.

The sessions were conducted with six participants (5 male, 1
female) aged 24-25. Three participants were “novice” users,

defined as users with less than one year experience, and three
were “expert” users, who had been using AutoCAD for more than
three years. Each session lasted approximately one hour.

The session started with a 5-minute introduction to the system.
Participants were then given a list of eleven basic tasks, which
exhausted the majority of the AppMap functionality. For the
observations sessions, the My Usage data set was mocked-up with
data not belonging to the participant. Two example tasks are as
follows:

• Give three commands that experts use more often than
community users.

• What is the exact popularity of the VPMAX tool?

After completion of these tasks, two AutoCAD tasks were
carried out, with the “flight path” being visualized in real time on
the AppMap.

7.1 Observations and Results
The observations made during the usage sessions were
encouraging. In general, participants were able to quickly learn
and understand how to use the various features of the system. Of
the 66 tasks performed across the six participants, 56 were
completed quickly and independently by the participants. In the
other 10 tasks, minor help had to be provided by the experimenter.

The questionnaire demonstrated that users enjoyed using
AppMap (6.0/7), and found AppMap easy to use (5.2/7). In
addition, users indicated that they would likely recommend
AppMap to friends or colleagues that were both novice users
(5.8/7) and expert users (5.7/7). Participants’ comments during
execution of AppMap tasks indicate that they reacted positively to
the visualization (5.8/7), search (5.7/7), and navigation (5.3/7)
aspects of AppMap. During each session, participants were never
observed as being disoriented or confused.

The post-session questionnaire indicated that the most popular
features was the command usage visualization. This indicates
users had a positive reaction to the type of information that
AppMap exposed. Informal comments made during the study also
indicate users were genuinely interested in this information. We
are encouraged that this type of data is welcomed, and in
particular, in the form we presented it in.

One expert was surprised by the number of commands
immediately after beginning to use AppMap for the first time, and
believed that a lot of these new commands would be useful to
him. This was achieved by providing a single, non-hierarchal,
compact, graphical view of all available commands in the
application. Another expert took particular interest in viewing the
icons shaded by release version, taking several minutes to explore
this visualization closely.

A feature that seemed to be less popular was the real time
visualization of “flight paths” while using AutoCAD. Participants
did appreciate the ability to review this information once their
AutoCAD tasks were complete, but they rarely viewed the flight
paths as they appeared during the AutoCAD task completion.

Participants provided positive remarks regarding both the grid
view and the map view. Participants felt the grid view was an
effective way to visualize the data, but also liked the persistent
spatial grounding that the map view provided.

7.2 Discussion
We felt the informal usage observation sessions would be a more
appropriate form of evaluation than a controlled laboratory study,
given the exploratory nature of this research. This allowed us to
observe some important initial experiences. The initial
observations indicate our tool is promising, but additional long-

term studies, and formal methods, would need to be used to
quantitatively measure the benefits.

Having an alternative user interface view, or supporting dual
user interfaces, seems promising, as the user can choose a
presentation based on intent – one oriented for quick command
access and a second for function exploration and awareness. This
may ultimately lead to improved command awareness, increased
understanding, confidence or performance with the system.

Finally, it is important to mention that awareness and
exploration is only one aspect of software learnability, other
important challenges, such as task knowledge and novice to expert
transition [14] are equally significant. We foresee AppMap
complementing, not replacing, existing help mechanisms that tend
to other aspects of software learnability.

8 POTENTIAL BENEFITS OF UI VISUALIZATIONS
Through our investigation, prototypes and user observation
sessions, we have been able to identify numerous potential
benefits for a user interface visualization. These relate to the
characteristic information visualization tasks suggested by
researchers in the field of information visualization [2, 29].
Examples include providing overviews of a collection, zooming in
on areas of interest, filtering out less relevant items, acquiring
addition details for items when desired, highlighting relationships
among items, and providing interactive histories. Below we
identify potential benefits and discuss how these tasks specifically
relate to user interface visualizations.

Exploring Features: A user interface visualization would allow
a user to explore the UI features of a target application. Exploring
the visualizations could amplify a user’s cognition of the user
interface [2]. This may improve the confidence of a novice user,
and motivate an expert user to learn new features.

Locating Features: A known problem related to software
learnability is locating functionality [14]. If features of the
application are logically structured within the visualization, users
may be able to locate specific components.

Understanding Feature Relations: Through appropriate
interactive visualization, users could better understand how
features relate to one another [29], such as tools which accomplish
similar goals, or tools that are often used together.

Discovery of Features: Exploring a user interface visualization
could result in the discovery of new features which the user was
unaware of [27]. This is especially important given that awareness
is a recognized barrier to software learning [14], and in particular
can prevent a user’s transition to expert usage.

Usage Reflection: Exploring the features of a system may also
give users the opportunity to reflect on how they use the program,
how much of the program functionality they have used and how
their usage might relate to other users. Provided with the right
information, users may be able to identify specific tools or whole
categories of features that they should learn.

Communication Tool: Information visualizations can be a
useful platform for collaboration and communication [15]. In
particular, if the visualization tool has a static view that is shared
among users, it could serve as a platform for communication.
Users could informally refer to areas of the visualization to direct
one another to tools or categories of interest.

Comparison Tool: Similar visualizations of two or more
applications can be used to compare the relative functionality of
each application. This potentially would allow users to more
easily transition from one well-known application to similar
applications, to support “subsequent learning” [7].

9 FUTURE WORK & CONCLUSIONS
There are many areas for future investigation. One promising
direction we see is coordinating user interface visualizations with
other help and search techniques. AppMap currently provides
tooltips with short descriptions of each command. This could be
extended to link commands to help articles or learning videos
related to that command, or even community comments about the
nature or usefulness of that feature. This would help users not
only discover new tools, but also help user learn how to use those
new tools.

Another promising direction is to consider how our command-
centred visualizations relate to a goal-oriented user. Our intended
use was not to support the completion of specific goals, but to
instead support informal exploration and discovery. However, it
may be useful to segment the visualization based on a user’s
common goals or tasks, rather than on the categorizations which
we used. Here, it is important to remember that learning
commands is only one aspect of software learnability.

It would also be interesting to consider other usage domains.
While our focus was to assist end-users, our experiences indicate
that this may not be the only target user. For usability engineers,
AppMap may give a fast, visual look at traditional usability data.
AppMap could also be used as a tool for interface designers to
iterate on a UI based on how it is being used by its customers.

Overall, we would like to continue to explore alternative
representations and structures to present an application’s user
interface to the user to facilitate application examination and
understanding. Both our design space, and the lessons learned
from our prototypes, should not be considered exhaustive. We
hope our work will inspire future efforts to develop upon these
contributions.

In conclusion, we have defined and explored the concept of
user interface visualizations. Through the development of
multiple prototypes and AppMap, we illustrated novel methods of
viewing, accessing and analyzing a computer program’s
functionality. We have been able to identify and present both a
design space and potential benefits for developing UI
visualizations. Our experiences indicate that user interface
visualization is a fruitful area for continued explorations. We are
encouraged by the results of our initial user observations, and
hope our work will inspire future developments in user interface
visualizations.

10 REFERENCES
[1] Bertin, J. (1967). Semiologie graphique : Les diagrammes - Les

reseaux - Les cartes, Les reimpressions. Editions de l'Ecole des
Hautes Etudes en Sciences. 1967.

[2] Card, S. K., Mackinlay, J. D. and Shneiderman, B., Readings in
information visualization: using vision to think. 1999: Morgan
Kaufmann Publishers Inc. 686.

[3] Carroll, J. M. and Carrithers, C. (1984). Training wheels in a user
interface. Commun. ACM. 27(8):800-806.

[4] Cleveland, W. S. and McGill, R. (1984). Graphical Perception:
Theory, Experimentation, and Application to the Development of
Graphical Methods. Journal of the American Statistical Association.
79(387):531-553.

[5] Danielson, D. R. (2002). Web navigation and the behavioral effects
of constantly visible site maps. Interacting with Computers.
14(5):601-618.

[6] Darken, R. P. and Sibert, J. L. (1996). Navigating large virtual
spaces. Int. J. Hum.-Comput. Interact. 8(1):49-71.

[7] Davis, S. and Wiedenbeck, S. (1998). The effect of interaction style
and training method on end user learning of software packages
Interacting with Computers. 11(2):147-172.

[8] Farrand, P., Hussain, F. and Hennessy, E. (2002). The efficacy of the
mind map study technique. Medical Education. 36(5):426-431.

[9] Findlater, L. and McGrenere, J. (2007). Evaluating reduced-
functionality interfaces according to feature findability and
awareness. INTERACT. 592-605.

[10] Findlater, L. and McGrenere, J. (2010). Beyond performance:
Feature awareness in personalized interfaces. Int. J. Hum.-Comput.
Stud. 68(3):121-137.

[11] Gajos, K. Z., Czerwinski, M., Tan, D. S. and Weld, D. S. (2006).
Exploring the design space for adaptive graphical user interfaces.
AVI. 201-208.

[12] Greenberg, S. and Witten, I. H. (1985). Adaptive personalized
interfaces: A question of viability. Behaviour and Information
Technology. 4(1):31-45.

[13] Grossman, T., Dragicevic, P. and Balakrishnan, R. (2007). Strategies
for accelerating on-line learning of hotkeys. ACM CHI. 1591-1600.

[14] Grossman, T., Fitzmaurice, G. and Attar, R. (2009). A Survey of
Software Learnability: Metrics, Methodologies and Guidelines. ACM
CHI. 649-658.

[15] Heer, J., Vigas and Wattenberg, M. (2007). Voyagers and voyeurs:
supporting asynchronous collaborative information visualization.
ACM CHI. 1029-1038,

[16] Hsi, I. and Potts, C. (2000). Studying the Evolution and
Enhancement of Software Features. International Conf. on Software
Maintenance (ICSM'00). 143-151.

[17] Hui, B., Partridge, G. and Boutilier, C. (2009). A probabilistic
mental model for estimating disruption. Proceedings of Intelligent
user interfaces. 287-296.

[18] Johnson, B. and Shneiderman, B. (1991). Tree-Maps: a space-filling
approach to the visualization of hierarchical information structures.
IEEE Visualization. 284-291.

[19] Lin, J., Newman, M. W., Hong, J. I. and Landay, J. A. (2000).
DENIM: finding a tighter fit between tools and practice for web site
design. ACM CHI. 510-517.

[20] Linton, F., Joy, D., Schaefer, H. P. and Charron, A. (2000). OWL: A
recommender system for organization-wide learning. Educational
Technology & Society. 3(1):62-76.

[21] Matejka, J., Li, W., Grossman, T. and Fitzmaurice, G. (2009).
CommunityCommands: command recom-mendations for software
applications. ACM UIST. 193-202.

[22] McGrenere, J. and Moore, G. (2000). Are We All In the Same
“Bloat”? Graphics Interface. 187-196.

[23] Newman, M. W. and Landay, J. A. (2000). Sitemaps, storyboards,
and specifications: a sketch of Web site design practice. ACM
conference on Designing interactive systems. 263-274.

[24] Parton, D., Huffman, K., Pridgen, P., Norman, K. and Shneiderman,
B. (1985). Learning a menu selection tree: Training methods
compared. Behaviour & Information Technology. 4(2):81-91.

[25] Price, B. A., Baecker, R. M. and Small, I. S. (1993). A Principled
Taxonomy of Software Visualization. Jour. of Visual Languages and
Computing. 4(3):211-266.

[26] Robertson, G., Czerwinski, M., Larson, K., Robbins, D., Thiel, D.
and Dantzich, M. v. (1998). Data mountain: Using spatial memory
for document management. ACM UIST. 153-162.

[27] Russell, D. M., Stefik, M. J., Pirolli, P. and Card, S. K. (1993). The
cost structure of sensemaking. ACM CHI. 269-276.

[28] Shneiderman, B. (1983). Direct Manipulation: A Step Beyond
Programming Languages. Computer. 16(8):57-69.

[29] Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations. IEEE Symposium on
Visual Languages. 336 - 343.

[30] Stasko, J. Software visualization: programming as a multimedia
experience, T.M. Press. 1998.

[31] Wycoff, J., Mindmapping: Your personal guide to exploring
creativity and problem solving. 1991, New York, New York:
Berkeley Books.

