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ABSTRACT 
This paper presents a method to automatically extract 

structure knowledge of mechanical systems from natural 
language text. The current work extends our prior work on 
extracting function knowledge from text, which was presented 
at last year’s conference. The method uses rules based on a 
combination of syntactic, lexical, and redundancy information 
to identify structure knowledge from parsed text. Three case 
studies were conducted to evaluate the method. The case 
studies involved extracting physical connections among a 
known set of components of a bicycle frame, an internal 
combustion engine, and a drum brake from Wikipedia. The 
current work makes progress toward addressing the challenge 
of knowledge acquisition for knowledge-based CAD systems. 

 
INTRODUCTION 

Knowledge is central in ascribing intelligence to any 
computational system. For a computer-aided design (CAD) 
system to support and perform intelligent tasks such as problem 
formulation and design synthesis, it inevitably requires an 
extensive design knowledge base [1-4]. However, knowledge 
acquisition is still a significant challenge in constructing a 
comprehensive and practical knowledge base for design. 

To facilitate the knowledge acquisition process for 
knowledge-based CAD systems, our previous work presented a 
method to automatically extract function knowledge from text 
[5]. The method applied techniques of automated knowledge 
base construction, in particular machine reading [6], to extract 
“artifact-function-flow” knowledge (e.g., “gears-transfer-
mechanical energy”) from natural language text. Such function 
knowledge is essential in reasoning with design problems and 
solutions expressed at an abstract level to support conceptual 
and creative synthesis tasks. 

The current work extends the function knowledge 
extraction method to acquire system structure knowledge from 
text. Here, system structure knowledge is defined as physical 
connections between components in a system. One prominent 
example of such knowledge is the internal block diagram 

represented in SysML [7]. An internal block diagram consists 
of blocks, which are structural elements of a (sub-) system, and 
their interconnections, as shown in Figure 1. Similarly, the 
function modeling diagrams [8], which are widely used in 
engineering, also convey system structure knowledge. The 
diagrams represent relationships between components as input / 
output flows, which can be material, energy, or signal [9].  

System structure knowledge can be useful in several 
aspects of problem formulation during a computer-aided design 
process [2]. First, generalized system structure knowledge can 
serve as a template (or a “prototype” [10]) for new design 
problems. For example, a designer working on a bicycle frame 
design could import a generic system model such as Figure 1 
and instantiate, refine, or modify the model according to the 
designer’s specific problem. In addition, formally expressed 
structure knowledge combined with the function knowledge of 
individual components could produce a behavioral model of the 
system that can be simulated and optimized. This corresponds 
to formulating a system-level design problem. Or, the system 
structure knowledge can lead to the formulation of part-level 
design problems, e.g., shape optimization of a single or 
multiple part(s) in the system, as illustrated in Figure 2. 

The method developed for the current work uses the 
similar approach as our work on function knowledge extraction 
[5]. First, a corpus is chosen and parsed to obtain syntactic 
information. Then, extraction rules are applied to identify 
candidate knowledge. The rules leverage both the syntactic 
information produced by the parser and the lexical knowledge 
of Functional Basis [9], WordNet [11] and word2vec [12].  

The new contributions of the current work are the 
following. First, rules that are specific to extracting system 
structure knowledge are presented. In addition, the current 
work acquires graph data to represent system-level knowledge, 
in contrast from triplet data acquired in [5] to represent part-
level knowledge. The knowledge acquired is also generalized 
from a larger corpus based on redundancy information – 
repeated observation of same knowledge from different 
documents [13]. 

Posted with permission from ASME
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Figure 1: Example of an internal block diagram of bicycle frames, 
with edges representing mechanical connections 

 
 

 
 

Figure 2: Illustration of formulating a part design optimization 
problem from system structure knowledge 

 
The rest of the paper is outlined as follows. First, prior 

work in design knowledge modeling is highlighted, followed by 
general techniques used in knowledge acquisition from text and 
their applications to design knowledge acquisition. Then, the 
extraction method developed is presented, followed by the case 
studies conducted to evaluate the performance of the method. 
The paper ends with discussion, future work, and conclusions.      

BACKGROUND 
 
Design knowledge representation and reasoning 

Much of the knowledge representation work for design has 
been rooted in function modeling [8]. Prominent knowledge 
representation frameworks include Gero et al. [10], Umeda et 
al. [14], Chandrasekaaran et al. [15], and Chakrabarti and Bligh 
[16]. Many of these frameworks use a graphical model to 
express system knowledge. This is because engineering design 
inherently deals with systems of parts. Even at an abstract level 

of representation such as function models, system knowledge 
must be expressed. 

While many modeling frameworks have been established, 
very few large-scale design knowledge bases have been 
developed and used. To the best of our knowledge, the most 
extensive knowledge base is the design repository maintained 
by Oregon State University1, originally initiated by NIST [17]. 
The repository contains function models of 184 products and 
6906 artifacts. Based on this knowledge base, several synthesis 
methods have been developed [18]-[20]. All these synthesis 
methods apply reasoning on the graph-based representation of 
function models. Interestingly, these methods leverage the 
knowledge compiled in the repository. Hence, the usefulness of 
the methods depends on the amount of knowledge acquired. 
 
Techniques for knowledge acquisition from text 

Acquiring knowledge from text requires the analysis of 
semantics. To analyze semantics, the computer must identify 
relations between linguistic elements in text, e.g., words, and 
determine the meaning of those elements. 

Two main approaches are used to identify useful relations 
in text. First, the syntactic analysis approach uses parsers to 
determine grammatical relations between words in a sentence. 
Traditionally, various chart parsing techniques, which use 
dynamic programming to disambiguate potential grammar 
combinations in a sentence, were used for syntactic analysis. 
Recently, the performance of statistical parsers has surpassed 
chart parsers [21]. Statistical parsers determine the most likely 
grammatical relations in a sentence based on the probability 
distribution obtained from data. The current work used Stanford 
Parser [22], a statistical parser that outputs typed dependencies 
as the form of grammatical relations for a given sentence. The 
main limitation of this approach is that grammatical relations 
are found only within a single sentence at a time. 

Another approach used to uncover relations in text is 
distributional semantics. The essence of this approach is to 
capture and represent the co-occurrence of linguistic elements, 
e.g., words, over large corpora. Typically, vectors and matrices 
are used to capture the co-occurrence information, and 
techniques such as singular value decomposition can be used to 
find the most useful representation. Then, vector algebraic 
operations can be performed, such as calculating cosine 
similarity between document vectors. Latent semantic analysis 
is one popular method that embodies these techniques [23]. In 
addition, machine learning algorithms such as support vector 
machines can be used to classify document vectors. The main 
strength of this approach is its consideration of contextual 
information found in large sets of data. For the goal of 
determining semantic similarity, the approach works very well. 
However, it is typically limited to determining implicit 
relations, namely the semantic similarity. 

As for analyzing lexical semantics, two distinct approaches 
are also used. The lexicon-based approach uses a lexical 
knowledge base created by domain experts. One example of a 

                                                           
1 http://design.engr.oregonstate.edu/repo 
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lexical knowledge base is WordNet [11], created by linguists to 
capture the general semantics of English words. WordNet is 
hierarchical categorization of words by their lexical relations, 
such as synonyms, hypernyms, and hyponyms. Various 
methods have been developed to use the WordNet hierarchy to 
compute semantic similarity between a pair of words [24].  

The distributional semantics approach described above can 
also be used to compute similarity between words. Hence, it is 
also useful in determining lexical semantics. One successful 
application of this approach for lexical semantics is word2vec 
developed by Google [12].  

Our previous work [5] used a combination of Functional 
Basis [9], WordNet, and word2vec for lexical semantic 
disambiguation. Functional Basis [9] is a controlled set of 
function and flow terms used for function modeling. The 
current work also uses the same combination of lexical 
knowledge sources in the extraction method. 
 
Knowledge acquisition from text for design 

Both approaches of syntactic analysis and distributional 
semantics have been applied to extract design knowledge from 
text, depending on the purpose. To acquire explicit domain 
knowledge from a smaller corpus, the syntactic analysis 
approach is typically used. To acquire implicit knowledge 
across documents, the distributional semantics approach is 
used. 

Li and Ramani [25] used syntactic parsing and their 
domain-specific ontology (a form of a lexical knowledge base) 
to extract concept graphs from design documents. Their 
concept graphs represent artifacts and their functional 
relationships. Interestingly, their subsequent work [26] focused 
on constructing a design ontology from engineering documents 
using syntactic and lexical analyses. Cascini et al. [27] also 
applied syntactic parsing to generate functional diagrams from 
patent documents. Their approach was unique and effective 
because the authors leveraged the reference numbers labeled on 
patent documents. Hence, the approach avoided the need to use 
a lexical knowledge base to disambiguate the entities described 
in documents. In biomimetic design, Cheong and Shu [28] used 
syntactic rules to retrieve causally related functions from 
biology texts, to support analogical reasoning. Recently, Kang 
et al. [29] attempted to extract manufacturing rules in the form 
of Semantic Application Design Language from text and Renu 
and Mocko [30] investigated potentially extracting assembly 
planning knowledge from assembly work instructions. While 
all of the above mentioned work used off-the-shelf parsers, 
Zeng [31] used the author’s own recursive object model to 
translate requirements text into UML diagrams. 

Much of the design research work using the distributional 
semantics approach focused on identifying analogical similarity 
between documents, which can be interpreted as the degree of 
two documents describing similar functional principles. For 
instance, Verhaegen et al. [32] and Vandevenne et al. [33] 
constructed term-document matrices and applied principal 
component analysis to identify analogous patent documents or 
biology texts, respectively. Murphy et al. [34] also used the 

term-document matrices as the main representation to identify 
functionally similar patent documents. All these authors 
discovered analogical similarity, instead of simple semantic 
similarity, by mainly lexical filtering. Verhaegen et al. used 
WordNet to filter noun artifact words, Vandevenne et al. filtered 
organism names in biological texts, and Murphy et al. filtered 
all noun terms and kept only the relevant words that belong to 
their function vocabulary. Other applications of distributional 
semantics include the use of latent semantic analysis to 
determine knowledge convergence in design teams [35] and a 
probabilistic approach to classify manufacturing suppliers [36]. 
In addition, Tuarob and Tucker [37] used a graphical network 
as a novel method of capturing co-occurrence information to 
extract implicit customer preferences from Twitter data. 

The current work aims to extract and generalize system-
level knowledge obtained from a large corpus. This contrasts 
from the work of Li and Ramani [25], Cascini [27], and Zeng 
[31], which also aimed to extract system-level knowledge, but 
focusing on a single document at a time. Also, while the 
distributional semantics approach is typically used to extract 
knowledge from a larger corpus, the current work applies the 
syntactic analysis approach. This allows obtaining explicit 
knowledge that can be interpreted by both humans and 
computers, eventually used in knowledge-based CAD systems. 

METHOD 
This section defines the current knowledge extraction 

problem, followed by the general approach used to solve the 
problem. Then, the extraction method is presented – parsing of 
a corpus, extraction and redundancy rules used to acquire 
relevant knowledge, and the implementation details. 

 
Problem 

The problem involves extracting system structure 
knowledge from text in the following form. Here, the system 
structure knowledge is defined as an undirected graph G = (V, 
E), of which vertices (V) represent components of in a system 
and edges (E) represent physical connections between each pair 
of vertices, if present. For the current work, the set of vertices 
are assumed to be known (i.e., the components that belong to 
the system of interest are known), and the goal is to determine 
the edges (physical connections) based on the evidence 
obtained from unstructured text data. Hence, the problem can 
be stated as: 
 

𝐺𝑖𝑣𝑒𝑛 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} 
 

𝐹𝑖𝑛𝑑 𝐸𝑖,𝑗(𝑉𝑖, 𝑉𝑗);  𝑓𝑜𝑟 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 
 
 

General approach 
The general approach to the knowledge extraction method 

can be defined as the following: 
 
1. Select a corpus.  
2. Parse the corpus to identify syntactic relations found 

in each sentence. 
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3. Apply the extraction rules, which use a combination of 
syntactic and lexical information, to obtain relevant 
evidence from the parsed corpus. 

4. Apply the redundancy rule to determine the 
knowledge sought from the evidence obtained. 

 
Figure 3 summarizes the knowledge extraction method 

developed. The details of each step are described in the 
following subsections. 

 
Selection and parsing of a corpus 

The current research goal is to obtain generalized 
knowledge over a large data set. Hence, Wikipedia was chosen 
as the corpus because of its size (2.9 billion words2) and the 
breadth of the topics it contains. In addition, it is available as 
open and digital data. More domain specific corpus such as 
patent descriptions of electromechanical products could be used 
in the future. The extraction method developed is not limited to 
a specific corpus, but can work with any English corpus written 
in complete sentences. 

A Wikipedia database dump3 was downloaded on June 12, 
2014. Wikipedia Extractor4 was used to extract only the text 
content from the database dump. The entire Wikipedia text was 
used as the corpus for knowledge extraction because the goal 
was to extract generalized knowledge across multiple 
documents. 

The text was preprocessed by inserting a period at each 
end-of-line that does not end with a period, such as titles, 
section headers, and list items. This allows the parser used, 
Stanford Parser [22], to determine the end of a sentence or a 
phrase. The parser takes each sentence in the text as input and 
outputs Penn Treebank part-of-speech (POS) tags [38] for the 
words and typed dependencies [38] between pairs of words. 
Table 1 shows an example of parser output. Typed 
dependencies are grammatical relations between two words in a 
sentence. For example, in the sentence “The bracket holds the 
shelf against the wall”, the words “bracket” and “holds” are in a 
relation called “nominal subject”, indicating that the “bracket” 
is the subject of the verb, “holds”. Stanford Parser was chosen 
mainly because it produces these typed dependencies. All the 
parsed information was stored in a PostgreSQL5 relational 
database for efficient retrieval during the extraction process. 

 
Knowledge extraction rules 

This section first describes the assumptions made on the 
types of syntactic and lexical information found in sentences 
that convey the physical connection knowledge. Discussed next 
is the challenge of component names expressed in compound 
nouns, and how the extraction method handles them. Formal 
descriptions of the extraction rules are presented and explained 
at the end of the section.  

 
                                                           

2 https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons 
3 http://en.wikipedia.org/wiki/Wikipedia:Database_download 
4 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor 
5 http://www.postgresql.org/ 

 
 

Figure 3: Summary of the knowledge extraction method 
 
 

Table 1: Example parser output 
 

Example sentence: 
“The top tube connects the head tube to the seat tube.” 

 
 

Part-of-speech tags: 
The/DT top/JJ tube/NN connects/VBZ the/DT head/NN tube/NN to/TO 
the/DT seat/NN tube/NN ./. 
 

DT: Determiner 
JJ: Adjective 
NN: Noun, singular or mass 
VBZ: Verb, 3rd person singular present 
TO: Infinitival to 
 

 

Typed dependencies: 
det(tube-3, The-1) 
amod(tube-3, top-2) 
nsubj(connects-4, tube-3) 
det(tube-7, the-5) 
nn(tube-7, head-6) 
dobj(connects-4, tube-7) 
prep_to(connects-4, tube-11) 
det(tube-11, the-9) 
nn(tube-11, seat-10) 

determiner 
adjectival modifier 
nominal subject 
direct object 
noun compound modifier 
direct object 
prepositional modifier, to 
determiner 
noun compound modifier 
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We identified two scenarios when the physical connection 
knowledge is conveyed in sentences. The first scenario is when 
a sentence contains a verb that conveys the meaning of a 
physical connection and is grammatically related with the 
components of interest. For example, in the sentence “The 
bracket holds the shelf against the wall”, a physical connection 
between “bracket” and “shelf” is inferred if the verb “holds” is 
assumed to convey the meaning of a physical connection and 
participates in grammatical relations with the nouns “bracket” 
and “shelf”, and the two nouns are the components of interest. 
In summary, the following deduction is desired: 
 

Given:   
Extraction Rule A 

+ 
 “The bracket holds the shelf against the wall” 

------------- 
PhysicalConnection(“bracket”, shelf”),  
PhysicalConnection(“bracket”, “wall”) 

 
The following technique is used to determine whether a 

verb found in a sentence conveys a physical connection. First, 
we manually selected a set of verbs from Functional Basis that 
convey physical connections. All of these verbs came from two 
primary classes in Functional Basis, namely “Connect” and 
“Support”. The set of verbs selected are {“connect”, “join”, 
“assemble”, “fasten”, “link”, “attach”, “support”, “stabilize”, 
“steady”, “secure”, “hold”, “fix”}.    

This set of selected verbs is likely not all the verbs in the 
English language that convey physical connections. To increase 
the likelihood of identifying a physical connection verb from 
sentences, WordNet [11] was used to expand the selected verb 
set. For each verb in the original set, the synset of the verb was 
identified. In WordNet, each word is classified into synsets 
based on one of the word’s multiple possible meanings. Hence, 
synsets can be thought as classes of synonyms. Figure 4 shows 
the synsets identified for each function verb and their 
hierarchical relationships found in WordNet.  

 

 
 

Figure 4: Selected verbs from Functional Basis (underlined) and 
their synsets found in the WordNet hierarchy (“is-a” relation) 

 
After locating the appropriate synset for each word, the 

original set of selected verbs was expanded to include the 
synonyms and all the troponyms that belong under the synset. 
Troponyms are more specific forms of a verb, e.g., “fasten” is a 

troponym of “attach”. We call this expanded set of verbs as P. 
Hence, if a verb found in a sentence belongs to this set P, the 
verb is assumed to convey a physical connection. 

The second scenario of the physical connection knowledge 
expressed in a sentence is assumed to be the following. A 
sentence contains a noun that is one of specific flows [9] 
conveying a physical connection and participates as the direct 
object of a verb, and that verb is grammatically related with the 
components of interest. For example, in the sentence “The 
piston transfers the force to the crankshaft”, the noun “force” is 
a mechanical energy flow that is the direct object of the verb 
“transfers”, which is grammatically related with the nouns 
“piston” and “crankshaft”. Therefore, a physical connection 
between “piston” and “crankshaft” is assumed. In summary, the 
following deduction operation is desired: 
 

Given:   
Extraction Rule B 

+ 
 “The piston transfers force to the crankshaft” 

------------- 
PhysicalConnection(“piston”, crankshaft”) 

 
The physical connection knowledge is assumed only when 

specific types of energy flows are involved. First, a material or 
signal flow is neglected because either flow could be 
transferred between components without a physical connection 
between them (e.g., via the medium of air). Among the energy 
flow types, a physical connection is assumed when electrical, 
mechanical, hydraulic, or pneumatic energy flows are involved. 
Flow types such as acoustic or electromagnetic energy can be 
transferred across objects without a physical connection. 

To determine whether a particular noun is a flow type of 
our interest, the flow classification method developed in [5] is 
applied, which demonstrated 90% accuracy. The method 
involves first classifying whether a noun is an energy flow 
using a combination of WordNet-based and word2vec-based 
similarity measures. Then, it further classifies the noun into a 
specific energy flow class using the word2vec tool. For the 
details of the method, please refer to [5]. Using this method, we 
can define F as a set of nouns that are classified as the flows 
conveying physical connections. 

We now describe the technique to handle component 
names. In many mechanical systems, component names are 
expressed as compound nouns. Compound nouns consist of a 
head noun modified with adjectives or other nouns. For 
example, “top tube” is the head noun “tube” modified with the 
adjective “top”, “head tube” is a the head noun “tube” modified 
with another noun “head”, and “bottom bracket shell” is the 
head noun “shell” modified with the adjective “bottom” and 
another noun “bracket”. 

The following data structure is used to express input 
system components. It is a set of component names, where each 
component name is a set of up to three elements. An example 
for a bicycle system could be the following:  

 
𝐸𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = {{"fork"}, {"head", "tube"}, {"bottom", "bracket", "shell" }, … }  
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In theory, there is no limit on how many adjectives or 
nouns can be used to modify the head noun. However, for the 
current work, the capability of the knowledge extraction 
method is limited to handle only compound nouns consisting of 
up to three words, which is deemed sufficient for evaluating the 
feasibility of our approach. Handling compound nouns that 
consist of any number of words would require the program to 
dynamically generate the rules at the run time. 

The extraction process iterates through all possible 
combinations of a pair of component names for a given system, 
and finds from text the evidence of a physical connection 
between each pair. Because the number of words allowed for a 
component name is limited to three, nine different cases of 
extraction rules are required. The nine cases represent the pair-
wise combinations (3×3) of component names that can have 
one, two, or three words.  

When collecting the evidence of a physical connection 
between a pair of components expressed as compound nouns, 

two different types of evidence are considered – complete and 
partial. Given a pair of compound nouns, e.g., “rear shaft” and 
“rear wheel”, the complete evidence scenario corresponds to 
when the physical connection knowledge is observed between 
the full names of the compound nouns, e.g., “The rear axle 
transfers torque to the rear wheel.” The partial evidence 
scenario corresponds to when the physical connection 
knowledge is observed between the head nouns of the 
compound nouns, e.g., “An axle transfers torque to a wheel.” 
Both types of evidence are kept during the extraction process, 
while assigning different confidence weights to each type of 
evidence to conclude whether a physical connection actually 
exists between the given pair of components.  

Table 2 and Table 3 present the formal descriptions of our 
knowledge extraction rules based on the knowledge of physical 
connection verbs and flows, respectively. The following 
paragraph on the next page explains the rules in detail.

 
 

Table 2: Extraction rules based on the knowledge of verbs that 
convey physical connections  

 
 
For all cases: 

𝑃 = 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑟𝑏𝑠 𝑐𝑜𝑛𝑣𝑒𝑦𝑖𝑛𝑔 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛  
𝑅1 = 𝑛𝑠𝑢𝑏𝑗(𝑧, 𝑥0) ∩ (𝑑𝑜𝑏𝑗(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 
𝑅2 = 𝑎𝑔𝑒𝑛𝑡(𝑧, 𝑥0) ∩ (𝑛𝑠𝑢𝑏𝑗𝑝𝑎𝑠𝑠(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 
𝑅3 = 𝑥𝑠𝑢𝑏𝑗(𝑧, 𝑥0) ∩ (𝑑𝑜𝑏𝑗(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 

 
Case 1: Both component names consist of three-word compound nouns, 𝑉𝑖 =
{𝑥2, 𝑥1, 𝑥0} and 𝑉𝑗 = {𝑦2, 𝑦1, 𝑦0}. 
 

∀𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2, 𝑧 
𝑃(𝑧) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
∩ 𝑛𝑛(𝑥0, 𝑥1) ∩ 𝑎𝑚𝑜𝑑(𝑥0, 𝑥2) ∩ 𝑛𝑛(𝑦0, 𝑦1) ∩ 𝑎𝑚𝑜𝑑(𝑦0, 𝑦2) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥2, 𝑥1, 𝑥0}, {𝑦2, 𝑦1, 𝑦0}) 

 

∀𝑥0, 𝑦0, 𝑧 
∃𝑥1, 𝑥2, 𝑦1, 𝑦2 

𝑃(𝑧) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) ∩ 𝑥0 ≠ 𝑦0 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍({𝑥2, 𝑥1, 𝑥0}, {𝑦2, 𝑦1, 𝑦0}) 

 
Case 2: The first component name consists of three-word compound nouns, 
𝑉𝑖 = {𝑥2, 𝑥1, 𝑥0}, and the second component name consists of two-word 
compound nouns, 𝑉𝑗 = {𝑦1, 𝑦0}. 
 

∀𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑧 
𝑃(𝑧) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
∩ 𝑛𝑛(𝑥0, 𝑥1) ∩ 𝑎𝑚𝑜𝑑(𝑥0, 𝑥2) ∩ (𝑛𝑛(𝑦0, 𝑦1) ∪ 𝑎𝑚𝑜𝑑(𝑦0, 𝑦1)) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥2, 𝑥1, 𝑥0}, {𝑦1, 𝑦0}) 

 

∀𝑥0, 𝑦0, 𝑧 
∃𝑥1, 𝑥2, 𝑦1 

𝑃(𝑧) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) ∩ 𝑥0 ≠ 𝑦0 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍({𝑥2, 𝑥1, 𝑥0}, {𝑦1, 𝑦0}) 

… 
 

Case 9: Both component names consist of single nouns, 𝑉𝑖 = {𝑥0} and 𝑉𝑗 =
{𝑦0}. 
 

∀𝑥0, 𝑦0, 𝑧 
𝑃(𝑧) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥0}, {𝑦0}) 

 
 
 
 

 
Table 3: Extraction rules based on the knowledge of flows that 

convey physical connections  
 

 
For all cases: 

𝐹 = 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑛𝑜𝑢𝑛𝑠 𝑐𝑜𝑛𝑣𝑒𝑦𝑖𝑛𝑔 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛  
𝑅1 = 𝑛𝑠𝑢𝑏𝑗(𝑧, 𝑥0) ∩ 𝑑𝑜𝑏𝑗(𝑧, 𝑤) ∩ (𝑖𝑜𝑏𝑗(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 
𝑅2 = 𝑎𝑔𝑒𝑛𝑡(𝑧, 𝑥0) ∩ 𝑑𝑜𝑏𝑗(𝑧, 𝑤) ∩ (𝑛𝑠𝑢𝑏𝑗𝑝𝑎𝑠𝑠(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 
𝑅3 = 𝑥𝑠𝑢𝑏𝑗(𝑧, 𝑥0) ∩ 𝑑𝑜𝑏𝑗(𝑧, 𝑤) ∩ (𝑑𝑜𝑏𝑗(𝑧, 𝑦0) ∪ 𝑝𝑜𝑏𝑗(𝑧, 𝑦0)) 

 
Case 1: Both component names consist of three-word compound nouns, 𝑉𝑖 =
{𝑥2, 𝑥1, 𝑥0} and 𝑉𝑗 = {𝑦2, 𝑦1, 𝑦0}. 
 

∀𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2, 𝑤 
∃𝑧 

𝐹(𝑤) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
∩ 𝑛𝑛(𝑥0, 𝑥1) ∩ 𝑎𝑚𝑜𝑑(𝑥0, 𝑥2) ∩ 𝑛𝑛(𝑦0, 𝑦1) ∩ 𝑎𝑚𝑜𝑑(𝑦0, 𝑦2) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥2, 𝑥1, 𝑥0}, {𝑦2, 𝑦1, 𝑦0}) 

 

∀𝑥0, 𝑦0, 𝑤 
∃𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧 

𝐹(𝑤) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) ∩ 𝑥0 ≠ 𝑦0 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍({𝑥2, 𝑥1, 𝑥0}, {𝑦2, 𝑦1, 𝑦0}) 

 
Case 2: The first component name consists of three-word compound nouns, 
𝑉𝑖 = {𝑥2, 𝑥1, 𝑥0}, and the second component name consists of two-word 
compound nouns, 𝑉𝑗 = {𝑦1, 𝑦0}. 
 

∀𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑤 
∃𝑧 

𝐹(𝑤) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
∩ 𝑛𝑛(𝑥0, 𝑥1) ∩ 𝑎𝑚𝑜𝑑(𝑥0, 𝑥2) ∩ (𝑛𝑛(𝑦0, 𝑦1) ∪ 𝑎𝑚𝑜𝑑(𝑦0, 𝑦1)) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥2, 𝑥1, 𝑥0}, {𝑦1, 𝑦0}) 

 

∀𝑥0, 𝑦0, 𝑤 
∃𝑥1, 𝑥2, 𝑦1, 𝑧 

𝐹(𝑤) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) ∩ 𝑥0 ≠ 𝑦0 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍({𝑥2, 𝑥1, 𝑥0}, {𝑦1, 𝑦0}) 

… 
 

Case 9: Both component names consist of single nouns, 𝑉𝑖 = {𝑥0} and 𝑉𝑗 =
{𝑦0}. 
 

∀𝑥0, 𝑦0, 𝑤 
∃𝑧 

𝐹(𝑤) ∩ (𝑅1 ∪ 𝑅2 ∪ 𝑅3) 
→ 𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕({𝑥0}, {𝑦0}) 
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Conditions P(z) in Table 2 and F(w) in Table 3 correspond 
to whether a relevant verb or a flow noun is found in the 
sentence. Conditions R1, R2, and R3 ensure that the relevant 
verb or the flow noun is associated with the component pairs of 
interest through appropriate grammatical relations. Different R 
conditions are required for different forms of sentences. R1 is 
applicable to sentences in the active voice, e.g., “The bracket 
supports the shelf.” R2 is applicable to sentences in the passive 
voice, e.g., “The shelf is supported by the bracket.” R3 is 
applicable to sentences when the verb of interest follows an 
infinitive, e.g., “The shelf is used to support the bracket.” As 
explained before, different cases of rules are required to handle 
different combinations of compound nouns used as component 
names. Here, only a few cases are presented due to the space 
limit. Finally, the evidence is collected as either PhysConnect 
or PhysConnectPartial based on whether the complete 
compound nouns or only the head nouns are involved in the 
observation. The grammatical relations nn and amod, which 
correspond to the “noun modifier-head noun” and “adjective-
head noun” relationships, are used to identify compound nouns. 

 
Redundancy rule 

Applying the extraction rules collects evidence of the 
physical connection knowledge from text. The method then 
determines how much evidence is enough to conclude that a 
physical connection exists between a pair of components. To 
make this generalization, the concept of redundancy [13] is 
applied – the observed knowledge is assumed to be true if the 
knowledge is found multiple times across different documents. 
Also, because both the complete and partial evidence of the 
knowledge are acquired during our extraction process, different 
weights, wc and wp, can be applied to each evidence type, 
respectively. Hence, the following rule is applied to determine 
the physical connection knowledge, where {𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕(𝑉𝑖, 𝑉𝑗)} 
and {𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍(𝑉𝑖, 𝑉𝑗)} are the sets of complete and 
partial evidence observed for the component pair of Vi and Vj. 
 

𝐸𝑖,𝑗(𝑉𝑖, 𝑉𝑗) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑓: 
 

𝑤𝑐|{𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕(𝑉𝑖, 𝑉𝑗)}| + 𝑤𝑝|{𝑷𝒉𝒚𝒔𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝑷𝒂𝒓𝒕𝒊𝒂𝒍(𝑉𝑖, 𝑉𝑗)}| ≥  𝑢 
 
The values for the parameters wc, wp, and u can be determined 
based on training data. The Case Studies section presents the 
best parameter values found for three different examples. 
 
Implementation of the extraction algorithm 

A program was written in Python to implement the 
knowledge extraction method. The program first accesses the 
parsed text database, applies the extraction and redundancy 
rules, and returns the system structure knowledge obtained for a 
given set of components. The program also leveraged two 
Python libraries – gensim6 was used for its word2vec tool and 
NLTK (Natural Language Toolkit)7 was used for WordNet-
based computing. 

                                                           
6 http://radimrehurek.com/gensim/ 
7 http://www.nltk.org/ 

CASE STUDIES 
Three case studies were conducted to evaluate the 

extraction method. We selected three archetypical examples of 
mechanical systems – a bicycle frame, an internal combustion 
engine, and a drum brake. These systems consist of a well-
defined set of components that are physically connected. In 
addition, we could identify Wikipedia pages (bicycle frame8, 
internal combustion engine9, drum brake10) that list the typical 
components found in these systems. The three systems also had 
a similar number of components listed in those Wikpedia pages 
(n=8 for a bicycle frame, n=9 for an internal combustion 
engine, and n=8 for a drum brake). 

After identifying the set of components for each system, 
we created the ground truth knowledge by manually defining 
physical connections between the components where they exist. 
This ground truth knowledge was established by reading the 
relevant materials in the Wikipedia pages and other sources 
found on the Internet. Figures 5, 7, and 9 depict the ground 
truth knowledge defined for the systems. The goal of our 
experiment was to compare the ground truth knowledge to the 
knowledge obtained with our extraction method. 

The experiment tested different sets of redundancy rule 
parameters. Because all the parameters are relative measures, 
the value of wc, the weight assigned for the complete evidence, 
was held constant, while testing different values of wp, the 
weight assigned for the partial evidence, and u, the threshold 
value used to determine the physical connection knowledge. 
The values of wp were chosen to be smaller than the values of 
wc, because wp is the weight for the weaker form of evidence. 
Hence, we set wc = 1, the domain of wp as [0, 0.1, 0.2, 0.3, 0.4, 
0.5], and the domain of u as [1, 2, 3, 4, 5]. Hence, 30 tests are 
performed in total for each case study.   

The current problem consists of determining whether an 
edge exists or not for a given set of vertices. Hence, 
information retrieval measures such as precision and recall can 
be used to evaluate the accuracy of our method. Precision and 
recall are defined as the following: 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒}|
|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒}|  

 
𝑟𝑒𝑐𝑎𝑙𝑙 =  

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒}|
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒}|  

 
In other words, precision measures how much of the retrieved 
knowledge is true, while recall measures how much of the 
relevant knowledge of interest is found. F-measure combines 
the two measures by calculating its harmonic mean: 
 

𝐹 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

 

                                                           
8 https://en.wikipedia.org/wiki/Bicycle_frame#Frame_tubes 
9 https://en.wikipedia.org/wiki/Component_parts_of_internal_combustion   
_engines#Parts 
10 https://en.wikipedia.org/wiki/Drum_brake#Components 
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Table 4: Accuracy results based on the best parameters 
 

 
Our Method Baseline: word2vec 

wc wp u Precision Recall F-measure v Precision Recall* F-measure 

Bicycle frame 1 0.1 1 1.00 0.778 0.875 0.1 0.375 1.000 0.545 

Internal combustion engine 1 0.4 2 0.667 0.750 0.706 0.05 0.222 1.000 0.364 

Drum brake 1 0.5 3 0.750 0.375 0.500 0.05 0.286 1.000 0.444 
 

*The word2vec method with the best parameter, v, simply connected all the edges in the graph, resulting in 100% recall, but with low precision scores. 
 
 

Table 4 reports the accuracy measures calculated for the 
extraction method. Here, only the accuracy measures obtained 
for the best parameter set are reported. Ideally, one optimal set 
of parameters should be used to report the accuracy measures. 
However, we did not consider the three examples as a large 
enough data set to draw conclusions on the optimal parameter 
set. Finding the optimal parameter set based on more 
experiment data is planned as the future work. In addition, the 
sensitivity of the parameters should be analyzed to examine the 
robustness of the method. For now, we wanted to get a sense of 
the accuracy of the method based on the three case studies. 

To get an idea of the difficulty of this extraction task, our 
method was compared to a baseline method. The baseline 
method used word2vec to find the vector representations of 
each component and determine the physical connection 
knowledge based on the cosine similarity between those 
vectors. For instance, the method concludes that there is a 
physical connection between two components if the cosine 
similarity is greater than some threshold value, v. Several 
experiments with this method were performed using different v 
values (domains: [0.05, 0.5], quantity: 10). Similar to reporting 
the results of our extraction method, the results obtained with 
the best parameter value were reported for the baseline method. 

Figures 6, 8, and 10 depict the best results obtained with 
our method. These figures can be compared against the ground 
truth knowledge depicted in Figures 5, 7, and 9. 

 

 
 

Figure 5: Ground truth knowledge for the bicycle example 
 
 

 
 

Figure 6: Knowledge obtained with the best redundancy 
parameters for the bicycle example 

 

For the bicycle frame example, our method performed very 
well. The method obtained the F-measure of 87.5%, with 100% 
precision and 78% recall. For the internal combustion engine 
example, the method obtained fair results with the F-measure of 
70%, precision of 67%, and recall of 75%. For the drum brake 
example, the method performed relatively poorly, with the F-
measure of 50%, particularly because of the low recall score 
(38%), while having fair precision (75%). 

For all three examples, our extraction method achieved 
higher F-measure scores than the baseline method. The best 
results for the baseline method essentially made all the possible 
physical connections between the components, obtaining 100% 
recall but low precision. Hence, it cannot be considered as 
reliable in distinguishing true knowledge from a false one. Our 
extraction method, on the other hand, tended to have higher 
precision scores (0.667-1.00) than recall scores (0.375-0.778). 

 

 
 

Figure 7: Ground truth knowledge for the engine example 
 
 

 
 

Figure 8: Knowledge obtained with the best redundancy 
parameters for the engine example 
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Figure 9: Ground truth knowledge for the drum brakes example 
 
 

 
 

Figure 16: Knowledge obtained with the best redundancy 
parameters for the drum brakes example 

 

DISCUSSION, FUTURE WORK, AND CONCLUSIONS 
The main contribution of the current work is the extraction 

method developed to obtain generalized and explicit system-
level knowledge across a large text data set. On the other hand, 
previous work on design knowledge acquisition from text 
focused on obtaining either explicit knowledge from a single 
text or implicit knowledge, e.g., analogical similarity, from a 
large corpus. The generalized knowledge obtained using our 
extraction method can be used as a template for systems 
modeling and design. In addition, because the knowledge 
obtained is explicit, it can be comprehended by both humans 
and computers for truth maintenance.  

The current method could be combined with the method 
developed for function knowledge extraction [5] to acquire 
more semantically rich system models. Such models would not 
only contain the structure knowledge, but also the function 
knowledge of individual components. Acquiring the 
combination of both structure and function knowledge could 
enable automated construction of a design repository [17] that 
can take advantage of various computational synthesis methods 
[18]-[20].  

The main limitation of the current method is that it can 
only extract knowledge from text if it is explicitly expressed in 
a single sentence. The relatively low recall scores reported in 
the case studies indicate this limitation. While humans can infer 
implicit semantics expressed across multiple sentences, it is still 
very challenging for computers to obtain such knowledge. 
However, the scalability of the extraction method could enable 
processing through even a larger data set and at least discover 
all the evidence of knowledge that is explicitly stated. 

The current extraction method can be improved in several 
ways. First, as mentioned before, additional experiments should 
be conducted to obtain the optimal parameters for the 

redundancy rule. Next, we could investigate using different 
types of lexical knowledge in our extraction rules. For instance, 
a different set of verbs that more accurately indicate the 
physical connection knowledge could be identified. Ideally, the 
method should automatically identify not only the relations but 
also the component names of a given system. During the 
extraction, each component name could also be expanded with 
a class of synonymous component names to increase the chance 
of locating relevant knowledge. Naturally, a list of components 
for a given system or synonymous names for given components 
could be also acquired from text data. Finally, the text-based 
knowledge extraction method could be combined with other 
modes of knowledge acquisition methods such as diagram 
understanding [6]. 

The current work demonstrates the feasibility of extracting 
generalized system structure knowledge from text. We believe 
that the current work makes important progress toward 
addressing the long standing challenge of knowledge 
acquisition for enabling knowledge-based design systems. 
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