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ABSTRACT 
Learning a new software application can be a challenge, 
requiring the user to enter a new environment where their 
existing knowledge and skills do not apply, or worse, work 
against them. To ease this transition, we propose the idea of 
cross-application bridges that start with the interface of a 
familiar application, and gradually change their interaction 
model, tools, conventions, and appearance to resemble that 
of an application to be learned. To investigate this idea, we 
developed Blocks-to-CAD, a cross-application bridge from 
Minecraft-style games to 3D solid modeling. A user study of 
our system demonstrated that our modifications to the game 
did not hurt enjoyment or increase cognitive load, and that 
players could successfully apply knowledge and skills 
learned in the game to tasks in a popular 3D solid modeling 
application. The process of developing Blocks-to-CAD also 
revealed eight design strategies that can be applied to design 
cross-application bridges for other applications and domains. 
Author Keywords 
Feature-rich software; software learning; skill transfer. 
ACM Classification Keywords 
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INTRODUCTION 
Learning a new software application can be difficult, pre-
senting users with a range of challenges [18]. When faced 
with a new application, users are known to have a production 
bias – progress toward achieving goals is the paramount con-
cern, and they have little motivation to spend dedicated time 
on learning – and an assimilation bias – they apply what they 
already know to interpret new situations [7, 15]. In early soft-
ware learning research, these phenomena were used to argue 
for techniques that enable users to get started quickly, and 
relate knowledge from the non-software world to the con-
cepts being learned [5]. Thirty years later, we live in a world 
where people’s expectations about software are shaped heav-
ily by their experiences with other software – a child may 
grow up playing video games and using simple apps before 
moving on to more sophisticated software as required by 
their changing interests, careers, and creative endeavors. 

Motivated by the above, we are interested in how a user’s 
experience with an existing software application can be used 
as a foundation for expanding their knowledge into new and 
unfamiliar software and domains. We propose a model of 
cross-application bridges that start with the interface of a 
known application, and gradually change their interaction 
model, tools, and conventions to resemble that of an 
application being learned. Cross-application bridges are 
analogous to training wheels [6] and multi-layered interfaces 
[36], but while such techniques progressively disclose UI 
components to aid learning within a single interface, cross-
applications bridges aid in learning across multiple user 
interfaces. Changes are triggered by user behavior, to 
provide new capabilities in motivated learning scenarios 
where they are most likely to be understood and appreciated. 
The overall idea is to help users stay motivated by embracing 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the authors must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
UIST '18, October 14–17, 2018, Berlin, Germany  
© 2018 Copyright is held by the authors. Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-5948-1/18/10…$15.00  
https://doi.org/10.1145/3242587.3242602 

 
Figure 1. A cross-application bridge from Minecraft-style games to Tinkercad-style 3D solid modeling. (a) The player starts out 
in a Minecraft-like voxel world; (b) over time, tools are introduced which alter the interaction model and introduce 3D-modeling 
concepts; (c) eventually, the player transitions to Tinkercad-style 3D solid modeling. 

mailto:Permissions@acm.org
https://doi.org/10.1145/3242587.3242602


 

 

their production and assimilation biases, allowing them to 
gain new skills and capabilities while completing personally-
relevant tasks in a familiar interface. 

To investigate this concept, we designed and developed 
Blocks-to-CAD, a cross-application bridge that starts in a 
Minecraft-style voxel building game and gradually 
introduces 3D solid modeling in the model of Tinkercad 
(Figure 1a-c). This application of the cross-application 
bridge approach is appealing for several reasons. First, 
Minecraft is extremely popular, having sold over 144 million 
copies since its release in 2011, and with more than 74 
million monthly players. This suggests that a huge base of 
users possess Minecraft skills, and could benefit from a 
technique that can leverage their experience to develop skills 
in other applications. Second, Minecraft is fundamentally 
about building in 3D, albeit using a block-by-block 
approach, which suggests that some of its players may be 
interested in learning more sophisticated 3D modeling skills. 

The specific contributions of this work are as follows: 
• We introduce the concept of cross-application bridges – 

interfaces that gradually transform from a known 
application’s interface into a target application’s interface, 
introducing new features and capabilities in motivated 
learning scenarios triggered by user behavior; 

• We present a prototype system that implements this 
concept, to transition users from a Minecraft-style building 
game to 3D solid modeling; 

• We present an evaluation of our system with children ages 
10–14, which shows that it can effectively teach 3D mod-
eling concepts without hurting enjoyment of the game; 

• Based on our experience, we present eight strategies that 
designers can apply to develop cross-application bridges 
for other applications and domains. 

RELATED WORK 
This work builds on existing research on software learning, 
reduced functionality interfaces, techniques for transferring 
knowledge between applications, and theories of learning 
and education. Each of these areas is reviewed below. 
Software Learning 
Early HCI research on software learning pointed out the fail-
ures of manuals and documentation [5, 7, 33], and identified 
a task-focus in users – progress toward goals is paramount, 
and time spent on other concerns, such as learning how to 
use the software, is minimized to the greatest extent possible 
[7, 34]. At a lower level, Grossman et al. identified five com-
mon classes of problems that users face when learning 
modern feature-rich software applications: understanding the 
sequence of operations for a task, awareness of functionality, 
locating functionality, understanding how to use specific 
tools, and transitioning to efficient behaviors [18]. 

Building on the above work, a variety of techniques have 
been developed to promote software learning, with many fo-
cused on providing minimal instruction and helping users to 
learn in the context of realistic tasks. Examples include in-

context help and tutorials [12, 17, 21], animated and video 
instruction [1, 30], game-based training [11, 25], tutorials 
that react to a user’s progress or skill level [12, 30], and 
methods for linking web-based help content with an applica-
tion’s interface [14]. However, little research in the software 
learning literature has explored how knowledge can be trans-
ferred between applications. A notable exception is 
ShowMeHow [31], which builds translation maps between 
the interface languages of similar applications (e.g., GIMP 
and Photoshop) to help users locate commands in one appli-
cation using the vocabulary of another. The authors 
demonstrate that this allows users to more quickly find cor-
responding functionality between applications, and to apply 
tutorials intended for one application to a similar application. 

In contrast to ShowMeHow, we are interested in gradually 
transitioning a user between applications, by leveraging their 
existing knowledge and the constraints and similarities in the 
conceptual models of the source and target applications. The 
idea of using gradual UI transitions to aid software learning 
has been explored within a single application in the form of 
“training-wheels” techniques that progressively reveal func-
tionality, as described below. 
Training Wheels and Multi-Layered User Interfaces 
For users in the early stages of learning an application, the 
complexity of the interface can be a hindrance. Recognizing 
this, researchers have proposed training-wheels for inter-
faces [6], which limit functionality to prevent common or 
particularly troublesome error states, and multi-layered in-
terfaces [36], which enable progressive revelation of an 
system’s full functionality by organizing the interface into 
multiple conceptual layers that the user can switch between. 

Reduced-functionality approaches have been shown to ena-
ble faster learning [2, 13, 23], and to reduce errors and time 
spent on error recovery while learning [6]. When it comes to 
transferring knowledge, some studies have indicated that this 
approach improves a user’s ability to perform in the full sys-
tem [8], while others show effects only for certain types of 
interfaces, such as those with deeply nested menus [24], or 
no change in performance on new tasks learned in the full 
system [23]. Overall, however, work in this area suggests 
that it is valuable to make a user’s first steps in working with 
a new application easy by reducing the system’s complexity, 
and by providing learning materials and guidance [24]. 

This form of learning is often successfully employed in 
games, which use progressive disclosure to match the level 
of challenge to a player’s developing skills [9, 37]. Gamifi-
cation mechanics have now been introduced into many non-
game contexts [10], including software learning systems [11, 
25]. In particular, our work was inspired and informed by 
Dong et al.’s discovery-based puzzle game to help people 
learn Adobe Photoshop features [11], and Bruckman’s de-
sign recommendations for educational games [3]. 

Cross-application bridges can be viewed as a type of 
adaptive multi-layered interface, in that the system initiates 
changes to the interface that progressively reveal 



 

 

functionality over time. However, unlike existing work in 
this area, functionality for a new application is revealed in 
the interface of a known application. This enables the user to 
learn in a familiar environment, where they can fall back on 
their existing skills, and enables the system to use the 
familiar environment as a context for motivated learning 
scenarios that reveal new functionality. 
Theories of Learning and Education 
Several prominent theories of learning and education suggest 
that a task-centric focus toward learning, as well as being fa-
vored by users, is beneficial for learning. The theory of 
situated learning emphasizes that learning should take place 
in authentic settings [32]. Constructivism [29] positions 
learners as active sense makers who seek to build coherent 
and organized knowledge, and can thus choose situations to 
manipulate and discover where their current conceptions 
conflict with observations. Likewise, discovery learning [4, 
11] advocates for active participation in the learning process, 
and constructionism [27] posits that learning occurs “most 
felicitously” when constructing a public artifact “whether a 
sand castle on the beach or a theory of the universe.” [28] 
The overall concept of cross-application bridges embraces 
learning in the context of active participation, and Blocks-to-
CAD is specifically built around the idea of construction. 

Though theories such as constructionism and discovery 
learning are sometimes interpreted as prescribing a fully 
hands-off approach, it has been argued that “…students need 
enough freedom to become cognitively active in the process 
of sense making, and […] enough guidance so that their cog-
nitive activity results in the construction of useful 
knowledge.” [26] Methods that allow active exploration but 
also guide the construction of useful knowledge (guided dis-
covery methods) are advocated to satisfy these criteria. 

The cross-application bridges approach naturally fits with 
the model of guided discovery. Our prototype system is de-
signed to transition users between interactive systems using 
a series of discoveries, supplemented with guidance in the 
form of short videos designed to motivate and communicate 
to the user how the interaction model has changed. 
CROSS-APPLICATION BRIDGES 
Cross-application bridges incrementally introduce the inter-
action model of an unfamiliar target application within the 
interface of a known application that is familiar to the user. 
Instead of forcing the user to switch to an unfamiliar appli-
cation and engage in a performance dip [35] – a frustrating 
period of orientation and re-learning of basic skills (Figure 
2a) – the user can learn through a series of motivated learning 
scenarios that introduce new knowledge, capabilities, and 
skills, all within a familiar environment (Figure 2b). Expand-
ing on the above, our model for cross-application bridges is 
built on three main design principles: 

Build on the known application. First, we wish to inject 
learning of the target application into the known application, 
which the user has experience using to perform personally-
relevant tasks. This gives the user a familiar environment to 

work in as they learn, and enables them to fall back on their 
existing skills and abilities during the process. It also shifts 
the framing of the experience – instead of being dropped into 
an unfamiliar interface where their existing skills may not 
apply, the user learns in a familiar domain where new capa-
bilities are provided that augment their existing skills. 

 
Figure 2. Two models for switching between a known and 
target application. (a) Switch outright, which imposes a cost 
in re-learning basic skills. (b) Transition from the known 
application, through a series of motivated transition tasks. 

Present new capabilities in motivated learning scenarios. 
Second, the system should introduce capabilities from the 
target application in scenarios where they provide an obvious 
advantage, or illustrate a key difference between the known 
and target applications. By doing so, the system should help 
the learner to discover how the interaction models of the two 
applications differ, and foster an appreciation for the ad-
vantages of the target application’s interaction model. 

Gradually transition between interaction models. Finally, 
the system should create a gradual transition toward the in-
teraction model of the target application. To keep the 
transition gradual, it may be necessary to develop intermedi-
ate interaction models between those of the two applications. 

The above design principles informed the design of our 
prototype cross-application bridge between Minecraft-style 
building games and Tinkercad-style 3D solid modeling. 
Before describing our prototype system in detail, we briefly 
introduce these two applications. 

 
Figure 3. The user interfaces of (a) Minecraft, (b) Tinkercad. 

FROM MINECRAFT TO TINKERCAD 
Minecraft is a sandbox game in which players explore, inter-
act with, and build in a procedurally-generated voxel world. 
Players start the game with no instructions, and engage in a 
simple form of 3D building in which the world is manipu-
lated one block at a time. The game is played from a first-
person perspective (Figure 3a) in which the player can walk 
around and create or remove blocks up to a set distance in 
front of them. 

Tinkercad (Figure 3b) is a 3D solid modeling application that 
enables users to create, manipulate, and combine 3D primi-
tives. Primitive shapes are dragged from a drawer on the right 



 

 

side of the screen onto a workplane. Shapes can be manipu-
lated (scaled, resized), repositioned, and combined with one 
another to form more complex models. 

While Tinkercad’s interface is designed to be simple, past 
work has shown that it can still be difficult to learn and use 
by novice users [20]. To use Tinkercad effectively, a user 
must understand a range of skills, including object-centric 
3D navigation to move the camera around the scene; interac-
tion mechanisms to reposition, resize, and rotate objects; and 
additive and subtractive Boolean operations to combine 
primitives into more-complex shapes. A particularly im-
portant concept in Tinkercad is the workplane, which defines 
ground plane relative to which other operations occur (the 
blue grid in Figure 3b). Primitives are placed on the work-
plane when created, and dragging a shape moves it across the 
workplane. To place shapes on the faces of other shapes, a 
workplane tool can be used to set the workplane to be parallel 
to a face of an object in the scene. Past work has shown that 
understanding the workplane tool is a particular source of 
difficulty for new users of Tinkercad [20]. 

In terms of skills that overlap between Minecraft and 
Tinkercad, both require the user to conceptualize and plan 
how to build in 3D spaces, though they differ significantly in 
how these building activities are carried out. As a starting 
point for the design of our bridge from Minecraft to 
Tinkercad, we now consider how these applications differ in 
terms of application domain, data representation, and 
interaction paradigms. 
Application Domains 
Both Minecraft and Tinkercad enable the user to build ob-
jects in a 3D environment, but they differ in how this activity 
is framed. Tinkercad provides an environment for designing 
models for 3D printing, whereas Minecraft provides a virtual 
world with minimal restrictions placed on the user, and al-
lows them to define their own tasks. That is, Tinkercad, like 
most CAD software, is used with a mainly extrinsic motiva-
tion, whereas activities in Minecraft are intrinsically 
motivated. This suggests a potential benefit for users learn-
ing Tinkercad through a cross-application bridge from 
Minecraft – it can provide an intrinsic motivation for their 
learning activities that would not exist in Tinkercad alone. 

In addition to differences of motivation, we hypothesize that 
a key feature that makes building in Minecraft compelling is 
a flat difficulty curve. The difficulty of creating a given shape 
in Minecraft is proportional to the number of blocks that 
make it up, with the complexity of the object outweighed by 
the time it takes to place the individual blocks. In contrast, in 
Tinkercad, the complexity of an object plays a much greater 
role in determining how successful a user will be in building 
something, because creating geometrically complex objects 
requires more sophisticated operations and manipulations 
than simpler objects. The result of this difference may be that 
beginners with Minecraft are less limited in the classes of 
objects they can create – complex objects are as easy to 
create as simple ones, with the main constraining factor 

being the number of blocks a design is made up of. In 
contrast, beginner users of Tinkercad may be able to easily 
conceive of designs that are unreachable with their current 
skill set. This also highlights a disadvantage of the Minecraft 
model of building – the time to build an object is proportional 
to the number of blocks that make it up, regardless of its 
complexity, making it difficult to build large structures, even 
if they are not complex (e.g., a tall cylindrical tower). 

The above discussion suggests a specific strategy that can be 
used by a cross-application bridge between Minecraft and 
Tinkercad – tools and capabilities from Tinkercad can be 
presented as saving time when many blocks need to be cre-
ated or removed. 
Data Representations 
Minecraft represents the world as a three-dimensional grid of 
voxels, whereas Tinkercad represents the scene as a 
collection of solid shapes. As described earlier, this has 
implications for the difficulty of creating different objects in 
the two applications. This difference also makes it much 
more difficult for a user to modify an object built in 
Minecraft, as any alterations must be done block-by-block, 
and there are no easy methods to move, resize, or duplicate 
an object once it has been created. In contrast, objects created 
in Tinkercad can be easily manipulated after they have been 
created. 

To address this discrepancy, our system adopts a two-way 
mapping between the voxel and 3D solid model representa-
tions, so that users can work with either representation and 
see the advantages of each. 
Interaction Paradigms 
In terms of interaction paradigm, the controls to Minecraft 
are like those of most first-person games – the mouse cursor 
is “locked” to the center of the screen, and mouse movement 
maps to looking up and down or rotating the player left and 
right, with keyboard controls to walk forward, backward, or 
laterally left and right. The currently-equipped tool or block 
type can be changed using keyboard commands to open an 
inventory screen, or through use of the mouse wheel to select 
items in a toolbar visible at the bottom of the screen. 

Tinkercad, in contrast, follows standard WIMP interaction 
conventions. The mouse cursor is not locked, and is used to 
interact with toolbar buttons, to drag primitives into the scene 
from the shape drawer, to select objects in the scene, and to 
directly manipulate selected objects using resizing, reposi-
tioning, and rotation handles. The 3D scene is navigated 
using object-centric controls centered on a pivot point, and 
allows panning, zooming, and orbiting with a ViewCube 
widget [22] or by clicking and dragging the mouse (right 
mouse button + drag to orbit, middle mouse button + drag to 
pan, scroll wheel to zoom in/out). 

Given the extensive differences between the interaction par-
adigms of the two applications, we adopted a multi-step 
approach to bridge the two interaction models, where new UI 
concepts are introduced gradually. 



 

 

SYSTEM DESCRIPTION 
When Blocks-to-CAD is started, the user begins in a tradi-
tional Minecraft-style interface (Figure 4a). They can walk 
around the world in a first-person perspective, create blocks 
from a set of six colors, and remove blocks one at a time. 

As they interact with the world, the system monitors their 
activity and new tools and functionality are gradually 
unlocked. We start by describing the progression of tools and 
capabilities that are unlocked, followed by the mechanisms 
and criteria used to determine when tools are unlocked. 

Tree-stamp tool. The first tool to be unlocked enables the 
user to stamp a multi-block tree shape in one click (Figure 
4b). The tool is added to the player’s toolbar, and can be se-
lected as if it was another block type. When the tool is used, 
the point of view transitions to a third-person view of the 
scene, centered on a pivot point where the player was looking 
when the tool was activated. The mouse cursor is unlocked, 
and the user can stamp multiple tree shapes by clicking the 
corresponding point in the scene. Clicking a ‘Back to First 
Person’ button re-locks the mouse cursor and returns the user 
to the first-person view. 

3D navigation widgets. The next tool to be unlocked is Tink-
ercad’s set of 3D navigation widgets, including the 
ViewCube and a set of additional controls (Figure 4c). These 
widgets are displayed only when the user is in third-person 
mode (i.e., when using the tree-stamp tool or other third-per-
son tools described in the rest of this section), and enable the 
user to rotate the camera around the scene’s pivot point, or 
zoom in/out. In addition to 3D navigation with these widgets, 
Tinkercad-style 3D navigation using the mouse can be used 
in the third-person view. 

Shapes tool. The Shapes tool operates similarly to the tree-
stamp tool when invoked, changing the player to the third-
person perspective. For this tool, however, a shape drawer is 

displayed on the right side of the screen (Figure 4d). The user 
can drag 3D solids from this drawer into the world. Once in 
the world, solids can be clicked and dragged to move them. 
Upon returning to the first-person view, shapes created in 
this way are ‘voxelized’, converting them into blocks (Figure 
5). However, the shapes retain their dual representation – if 
the player returns to the third-person view, they are displayed 
as 3D solids again, and can be moved or manipulated. 
Maintaining this dual representation was intentional, to 
emphasize one of the advantages of 3D solid modeling over 
building in Minecraft – namely that shapes can be easily 
repositioned or manipulated after being created. As 
mentioned previously, achieving the same goal in Minecraft 
alone would be challenging, requiring the user to re-create 
each constituent block of a large shape in a new location. 

 
Figure 5. The shapes from Figure 4d, converted into blocks 
upon the user returning to first-person mode. 

Shape resizing. Next, players gain the capability to resize 
solids in the third-person perspective. Resizing handles, 
matching those provided in Tinkercad, are provided at the 
corners and top of solids (Figure 4e). Clicking and dragging 
these handles alters the dimensions of the solid. 

Workplane tool. The final tool to be unlocked is the Work-
plane tool – a button for this tool is added to the shapes 
drawer, just above the list of solids (Figure 4f). As described 
earlier, the Workplane tool in Tinkercad allows the user to 

 
Figure 4. The six stages of functionality in the Blocks-to-CAD system. (a) Minecraft-style block tools; (b) Tree-stamp tool; 
(c) 3D navigation widgets; (d) Shapes tool; (e) shape-resizing handles; (f) Workplane tool. 

 



 

 

set the 3D plane relative to which other operations are per-
formed (e.g., when the user clicks and drags an object, it 
moves across the current workplane). In practice, this ena-
bles the user to easily place solids on top of one another (e.g., 
by setting the workplane on top of an existing solid, before 
creating the new solid), or on the faces of other solids. 

While the above tools do not represent all functionality avail-
able in Tinkercad, we believe they collectively provide a 
good representation of 3D solid modeling. Moreover, our ap-
proach could easily be extended with additional tools and 
capabilities, such as functions for grouping objects or per-
forming additive and subtractive Boolean operations. 

In the next section, we discuss how our prototype system de-
termines when to unlock new tools and capabilities. 
Unlocking Features 
The progression of tools described in the previous section 
fulfills two of our design goals – building on the known ap-
plication, and creating a gradual transition between 
interaction models. To fulfill our final design goal of creating 
motivated learning scenarios, we adopted a behavior-driven 
approach to determine when features should be unlocked. 
Our intention was for tools to be unlocked in situations where 
the user would be able to appreciate the advantages that the 
new tool provides. To this end, we used two strategies for 
determining when to unlock a feature. 

Content-based unlocking. The first approach we employed 
was to detect when the user was building a particular kind of 
object with blocks, or engaging in a particular type of build-
ing activity, and to unlock tools that could help with that 
activity. We developed heuristics to detect when the user was 
building trees, basic shapes, and ‘stacked’ structures consist-
ing of a pattern of blocks repeated on top of one another (as 
would be used to build a large structure from the ground up). 

To implement this approach, the system tracks all blocks cre-
ated by the user. When a block is created, the region of user-
created blocks connected to that block are determined by per-
forming a 3D flood fill algorithm from the new block’s 
position. The following heuristics are then applied to the re-
sulting connected region of blocks: 

• Trees – Region is at least 4 blocks high, and contains at least 
twice as many green blocks above the midpoint as brown 
blocks below the midpoint. 

• Shapes – Region is matched by a sliding window of templates 
for cubes, pyramids, and spheres of up to 4×4×4 blocks. 

• Stacked structures – Region consists of at least 4 layers of an 
identical 2D pattern of at least 4 blocks, stacked vertically. 

While we used manually-created heuristics for content-based 
behavior detection, we believe that more sophisticated ap-
proaches based on machine learning could learn heuristics 
over time, or detect the type of object a user is building. 

Operation-based unlocking. The second approach we used 
was to detect the number of operations of various types the 
user has performed (e.g., the number of blocks created, or 

instances of moving/resizing a shape). Our rationale is that it 
is valuable to wait until the user becomes familiar with each 
new tool or capability before unlocking the next. 

Drawing together the above approaches, the unlocking crite-
ria we used in our system are set out in Table 1. Counts are 
reset after each tool is unlocked. These criteria were tuned to 
enable participants to experience all tools within the 
timeframe of the user study described later in the paper. For 
other settings, such as users playing Minecraft over hours, 
days, or weeks, a different tuning may be more appropriate. 

Tool Unlocking criteria 
Tree-stamp tool 2 heuristic trees or 40 blocks created 
3D nav. widgets 2 trees stamped or 80 blocks created 

Shapes tool 2 heuristic shapes or 80 blocks created 
Shape Resizing 1 heuristic stacked structure or 2 shape moves 

or 80 blocks created 
Workplane tool 2 shape resizes or 6 shape moves or 80 blocks created 

Table 1. Tool unlocking criteria used in our system. 

In terms of the mechanism for unlocking new tools and func-
tionality, a notification is displayed in the corner of the user’s 
screen (Figure 6a). When the user presses a key to unlock the 
tool, a modal dialog is displayed with a short 15–60 second 
video loop demonstrating the newly-unlocked capability. 
This mechanism was designed to feel like unlockable 
“achievements” that are often used in video games, rather 
than formal training materials. 

 
Figure 6. When the threshold for unlocking a tool is met, a 
notification is displayed in the corner of the screen (a). 
When the user unlocks the tool, a modal dialog with a short 
video demonstrating the tool is played (b). 

System Implementation 
The system was implemented in JavaScript using three.js and 
a range of other JavaScript libraries. The voxel game com-
ponent was based on the open-source voxel-engine1 project, 
extensively modified and customized for the project. The 
embedded CAD functionality was built on a closed-source 
3D editor library on which Tinkercad is built, used with per-
mission and substantially modified for the project. 

Though both voxel-engine and the Tinkercad editor are built 
using JavaScript and the three.js library, it was challenging 
to combine them. In particular, it was tricky to manage user 
input, as both applications were developed assuming raw ac-
cess to keyboard and mouse events. To address this, our 

1 https://github.com/maxogden/voxel-engine 
 



 

 

system uses a state-based representation to manage which 
application receives input events at any given time, with 
states for the first-person and third-person interaction modes 
described previously. We believe that this state-based ap-
proach could be applied in creating cross-application bridges 
between other applications as well. 

While our project incorporates closed-source code, we 
believe that the cross-application bridge approach is well-
suited to the open-source software ecosystem, in which the 
full source code of multiple applications is available to 
modify and extend. 
EVALUATION 
We conducted a user study with two main goals. First, we 
wanted to understand reactions to the unlockable features, 
including whether users would incorporate them into their 
building activities in the game, and how they would impact 
the subjective experience of the game. Second, we wanted to 
test whether use of the unlockable tools in the game trans-
lated into skills that could be transferred to the Tinkercad 
application. 
Study Design 
Our study followed a between-subjects design. In the exper-
imental condition, participants used Blocks-to-CAD with 
unlocking of features enabled. In the control condition, par-
ticipants also used Blocks-to-CAD, but unlocking was 
disabled (i.e., participants had access to the basic block tools 
only, for the duration of the study). Comparing these two 
conditions enables us to understand the impact our system 
has on learning Tinkercad, in comparison to someone who 
only has experience playing Minecraft-style games. 
Study Procedure 
The study began with a game phase in which participants 
spent 25 minutes playing Blocks-to-CAD. For this phase, 
they were given the task of creating “parks” in each of a se-
ries of square-shaped open areas in the game world. 
Participants were instructed to create a park in as many of the 
squares in the world as they could in the time provided. Each 
park had to meet four requirements: (1) four trees, around the 
outside of the park; (2) two shapes – spheres, boxes, trian-
gles, etc. of dimensions at least 2×2×2; (3) a tower at least 
2×2 blocks wide and 10 blocks tall; and (4) a simple house 
consisting of a box of size 3×3×3 or greater and a triangular 
roof. Participants were given a handout explaining these re-
quirements with example screenshots (see supplementary 
materials), but were told that they did not have to exactly re-
produce these examples, so long as all the components were 
present. The experimenter checked each park before allow-
ing the participant to begin building the next. 

In the experimental condition, participants were told that the 
game had unlockable features, and that a notification would 
be displayed in the corner of the screen if one was unlocked. 
If a participant had an unlocked tool pending when they com-
pleted a park (i.e., the unlock notification displayed), the 
experimenter reminded them that they could open it with the 

‘X’ key before they went on to start the next park. In practice, 
this was a rare, occurring only twice across all participants. 

The game phase was followed by a transfer phase in which 
participants attempted a series of 3D modeling tasks in Tink-
ercad. Participants were given 25 minutes in total to 
complete three tasks: (1) creating three primitive shapes in a 
specified arrangement (to test basic shape placement); (2) 
creating a box and three pyramids of specified sizes (to test 
shape positioning and resizing); and (3) reproducing a simple 
car model (to test more-advanced orientation and placement 
of shapes). The handouts for each task are provided as sup-
plementary materials with this paper. Tasks were presented 
serially in the order above. 

Participants were not given instruction on how to use the 
software, apart from being told that they could delete shapes 
by selecting them and using the ‘backspace’ key. The exper-
imenter stated that they could not provide help with 
performing the tasks, but that they could confirm if a model 
was acceptably close to the reference model. 

A short questionnaire was administered after each of the 
game phase and the transfer phase, to measure how fun par-
ticipants found each part of the study, and their cognitive 
load (using an adapted version of the NASA-TLX question-
naire [19]). For the game phase, we asked participants in the 
experimental condition to rate how useful, fun, and annoy-
ing/disruptive they found the unlockable features. For both 
conditions, we asked participants to tell us what they liked 
about the game, and how they felt it could be improved or 
made more fun. 
Participants 
We recruited 12 participants (6 male, 6 female, ages 10-14, 
mean 11.7, SD 1.2) from two pools: children of employees 
of a large software company, and members of a local chil-
dren’s soccer team. Participants were screened to ensure that 
they had experience playing Minecraft, but no experience us-
ing Tinkercad. Participants were given a $25 gift card for 
participating. We balanced the ages of participants across the 
two conditions, to control for learning ability. 

Best practices for working with young participants were fol-
lowed, including requiring parental consent to participate in 
the study, and gaining assent to participate from the partici-
pants themselves. Based on our observations, the study was 
a fun experience for participants. 
Results 

Game phase – Use of unlockable features 
To analyze reactions to the unlockable features, we look at 
whether the features were used, how the features were used, 
and participants’ subjective reactions to them. 

All but one participant in the experimental condition un-
locked all five of the unlockable features. Figure 7 shows a 
timeline indicating participants’ use of the third-person mode 
over time. We can see that use of the unlockable features in-
creases over time, to a point where near the end of the session 



 

 

many participants were heavily using the unlockable tools. 
Overall, participants in the experimental condition spent an 
average of 26% of their time in the third-person mode, with 
individual participants ranging from 5% (P3) to 50% (P2). 

 
Figure 7. Timelines for participants in the experimental 
condition, indicating use of Tinkercad mode (blue) and 
points at which tools were unlocked (red dots). Participants 
are sorted by total use of the Tinkercad mode. 

P3, the one participant who did not unlock all the tools, ap-
peared to be somewhat overwhelmed with figuring out the 
game’s control scheme and how to perform the building 
tasks. However, she did not express a negative view of the 
unlockable features, and seemed interested in the tree-stamp 
tool when she did try it. 

In summary, nearly all participants appeared to immediately 
recognize the value in unlockable features, and incorporated 
them into their building activities. 
Game phase – Subjective ratings and impressions 
In terms of subjective ratings, participants rated the unlock-
able features highly when asked about their usefulness and 
fun, and low for annoyance or disruption (Figure 8).  

 
Figure 8. Subjective ratings of the unlockable features. 

When asked about what they liked about the overall system, 
several participants mentioned the unlockable features: 

I liked that you could unlock stuff, because it helped build and 
it was really nice. – P6 

[P7, when asked what she liked about the system]: How you 
could unlock the features, and it made it easier, to do it. Be-
cause the first time I was, like, making, I had to make them 
myself. Next time after I did that [unlocked the features] it was 
a lot easier, I just had to place them down. – P7 

When we asked participants what they felt could be im-
proved about the system, or how it could be made more fun, 
none of the participants mentioned the unlockable features as 
a negative. Instead, suggestions focused on features of the 
full Minecraft game that could be added to our system, such 
as additional block types; enemies and other survival aspects; 
and a more-realistic sky texture. None of the participants 
who experienced the unlockable features suggested that they 
made the system feel less game-like, and participants talked 
about the features as though they were part of a game. 

One participant, P11, wanted to be able to modify the blocks 
created using the shapes tool after returning to the first-per-
son mode, and have these changes persist (in our prototype 
system, blocks modified in voxelized Tinkercad shapes do 
not persist in this way). This highlights how including mul-
tiple data representations and interaction models can create 
the expectation that they will work together seamlessly. 

Comparing participants’ subjective ratings of the game be-
tween conditions, we did not find a significant difference 
between cognitive load (Welch two-sample t-test, t(9.9)=0.4, 
p = .67) or subjective ratings of fun (t(6.2)= -0.2, p = .87), 
with similar means (Figure 9). This provides further evi-
dence that the modifications did not make the game seem 
more challenging or less enjoyable. 

 
Figure 9. Subjective ratings of the overall game experience, 
and the cognitive load (based on 5 NASA-TLX questions) 

In summary, participants’ subjective ratings and comments 
indicate that the unlockable features enhanced the game ex-
perience, were welcomed and utilized by participants, and 
did not have adverse effects on enjoyment or cognitive load. 
Transfer-phase 
To analyze whether the unlockable features in the game re-
sulted in skills transfer to Tinkercad, we examine task 
completion and task time, and present observations of how 
participants worked on the transfer tasks in the experimental 
versus control conditions. 

 
Figure 10. Timing for transfer tasks. 

All participants, across both conditions, completed all three 
transfer tasks. Task completion times for Task 1 were nearly 
identical between conditions (mean of 35s for both). For 
Tasks 2 and 3, the mean completion times were lower for the 
experimental condition (109s vs. 161s, and 637s vs. 855s re-
spectively). However, individual times varied widely, and 
Welch two-sample t-tests failed to show a significant differ-
ence (Task 2: t(7.4)=2.1, p = .07; Task 3: t(9.1)=0.9, p = .39). 

Qualitatively, we observed that participants in the two con-
ditions worked differently on the transfer tasks. None of the 
participants in the control condition used the workplane tool, 
while all but one participant used it in the experimental con-
dition. The exception to this was P3, the participant who did 



 

 

not unlock this tool in the game phase, as discussed previ-
ously. Moreover, these participants demonstrated through 
their actions that they understood how the workplane tool 
was meant to be used, and how it could be applied the trans-
fer task. Participants in the experimental condition also 
appeared more confident in moving and resizing shapes. 

Given these qualitative differences, the lack of an observed 
significant difference warrants discussion. We believe there 
are two reasons a statistical difference was not observed. 
First, our sample size is small for a between-subjects study. 
Second, 3D modeling tasks naturally lead to a high variance 
in task times. Even if a user has determined a fundamentally 
correct strategy to use, it can be easy to run into difficulties 
while carrying out that strategy. For example, accidentally 
manipulating the wrong resize/rotate handle, or clicking and 
dragging the wrong shape, can result in modifications that 
are time-consuming to recover from. We observed this fre-
quently during the study, and in-practice this greatly 
increases the variances of task times for novice users. 

In summary, our qualitative observations provide evidence 
that participants did learn skills in the game that they could 
apply in the full Tinkercad application. This may be reflected 
in a decreased mean task time for the transfer tasks, but ad-
ditional timed studies are warranted to confirm this. 
DISCUSSION 
Overall, our study findings indicate that less than 30 minutes 
of playing a familiar game with cross-application bridge en-
hancements can enable users to learn tools and skills they can 
successfully apply in an unfamiliar application and domain. 
Moreover, the enhancements achieved this without decreas-
ing enjoyment of the game for players, or significantly 
increasing their cognitive load while playing. 

In this section, we consider the question of how cross-appli-
cation bridges could be built for other applications. To this 
end, we present a set of strategies for applying this approach 
that emerged out of this project. We also consider next steps 
for extending the research presented in this paper. 
Strategies for Designing Cross-Application Bridges 
Developing Blocks-to-CAD revealed several insights into 
how to design cross-application bridges. Based on our expe-
rience, one of the most important design considerations is 
how the conceptual models of the known and target applica-
tions differ. Six areas stand out as particularly important: 

Application Domain. The known and target applications 
may exist in different domains. An application’s domain 
defines the purpose of the application from the user’s 
perspective, and thus can be useful for framing motivated 
learning scenarios. For example, Blocks-to-CAD uses the 
common theme of ‘building’ to frame new capabilities, and 
to motivate and advance the progression through the 
unlockable features. 

Conceptual Model Differences. Understanding the differ-
ences between the conceptual models of the known and 

target applications is important for developing a set of steps 
that illustrate the conceptual model of the target application. 
It is also important to understand that users will have a strong 
mental model for the known application, and care must be 
taken when the target application’s model contradicts it or 
differs significantly. 

Data Representation. A particularly important difference 
between applications is how each represents data (e.g., a ma-
trix of voxels versus a collection of 3D solids). To bridge 
differences in data representation, commonalities or map-
pings between the representations can be exploited. 
Depending on how extensively they differ, an artificial map-
ping may need to be developed to relate the two. In Blocks-
to-CAD, we created a mapping between 3D solids and blocks 
in which the solids are converted to blocks when the player 
returns to the first-person mode, but the 3D solid representa-
tion is maintained in parallel and can be returned to in the 
third-person mode. 

Tools and Capabilities. The known and target applications 
may provide different sets of tools and capabilities for mod-
ifying data, or tools with similar names that act differently in 
the two applications (e.g., the ability to remove blocks in 
Minecraft, and the command for deleting objects in Tinker-
cad). Unlike differences in application domain, or cross-
cutting concerns such as data representation, tools are easily 
thought of individually. This makes them a good unit for in-
troducing new capabilities to the user. In Blocks-to-CAD, we 
took advantage of this and used a series of tools to introduce 
new functionality. We also used the invocation of the tree-
stamp and shapes tools as a mechanism for entering the third-
person mode, in which the interaction model of Tinkercad is 
active. We believe this works well because it gives the user 
explicit control over switching the interaction model, and be-
cause it is not uncommon for tools in applications to impose 
a different interaction model for the duration that the tool is 
being used. 

Interaction Techniques. The interaction techniques for ap-
plying tools and commands, and otherwise interacting with 
the two applications, may differ as well. In Blocks-to-CAD 
we had to contend with an extreme example – a ‘locked’ 
mouse cursor for the game, and an unlocked cursor for 3D 
modeling. To bridge this difference, we broke the transition 
into multiple steps – the tree-stamp tool releases the pointer 
lock for the duration that the tool is used, then re-locks it 
when the user returns to first-person mode. Next, the 3D nav-
igation widgets introduce a new way to navigate the scene. 
Over time, participants spend more and more of their time 
working using the mouse cursor in the unlocked state. 

Interface Conventions and Aesthetics. Finally, applications 
may differ in how action possibilities are communicated (i.e., 
affordances), how they provide feedback or feedforward to 
the user, and their overall aesthetics. We bridged these 
differences by tying conventions and visual style to the 
capabilities of the application being introduced (i.e., the 
game features and 3D modeling features each match the 



 

 

visual style of their respective applications). An advantage 
of this approach is that the conventions provide cues as to 
what conceptual model each tool will operate in. An alternate 
approach would be to gradually alter the visual style of the 
application as a whole – an approach that has been used in 
previous work as a means to reveal keyboard shortcuts [16]. 

Summarizing the above points, we recommend the following 
strategies for designing cross-application bridges: 

• Use a common theme or purpose to bridge application 
domains, and to tie together activities in the two applications. 

• Carefully consider how the conceptual models of the known 
and target application differ, to identify areas of potential 
confusion, and to plan a series of steps between models. 

• Use commonalities in data representation, or a mapping 
between representations, to motivate and enable users to 
discover key differences between the two conceptual models. 

• Maintain parallel data representations, and use switching to 
demarcate changes in the interaction model. 

• Use tools and commands as a unit for introducing new 
functionality or changes in the interaction model. 

• Tie interface conventions to tools or data representations. 
• Use intermediate interaction models to incrementally bridge 

larger differences in interaction techniques or modalities. 
• Gradually transition toward the visual style of the target 

application. 

Generalizing to Other Applications 
The strategies above could be immediately applied to de-
velop a bridge from simple 3D solid modeling in Tinkercad 
to more complex parametric 3D modeling – a paradigm used 
in sophisticated CAD software that starts with creating 2D 
“sketches” of geometrically-constrained points, lines, and 
shapes, which are then transformed into 3D geometry. As a 
first step, an unlockable “2D-sketch” tool could be added to 
Tinkercad for drawing geometric shapes on the workplane, 
with simple presets for how these would be converted to 3D 
solids. Next, successive classes of geometric constraints 
from the target application could be unlocked and added to 
the 2D-sketch mode. The progression through unlockable 
functions could be motivated by the key advantages of para-
metric modeling (e.g., the ability to create models that are 
easily customizable, being defined by a few user-facing pa-
rameter values and a set of geometric constraints), and the 
2D-sketch mode’s visual style could match that of the target 
application (e.g., DSS SolidWorks, or Autodesk Fusion 360). 

As another example, these design strategies could be applied 
to create a bridge from a Scratch-style “block” programming 
interface to a more traditional text-based programming IDE. 
Similar to the design of our prototype system, a two-way 
mapping between data representations could be maintained 
for the visual- and text-based code, and features could be 
gradually unlocked to reveal the advantages of text-based 
programming (such as the ability to quickly modify code 
without dragging visual blocks). 

Beyond the examples above, we believe that opportunities 
arise for creating cross-application bridges whenever a 
significant number of users of one application may be 
interested in learning another, and the two applications have 
sufficient overlap in skills that motivated learning scenarios 
can be developed. 
Toward a Toolkit for Cross-Application Bridges 
Our design strategies provide high-level guidance for devel-
oping cross-application bridges, but they do not directly 
address the many lower-level design and technical chal-
lenges that arise when trying to bridge two applications. 
Thus, a key area for future work is to develop more specific 
approaches for user-skill modeling, interface adaptation, and 
creating motivated learning scenarios, as well as technical 
approaches for combining the interfaces and features of dif-
ferent applications. Ideally, work on these research problems 
could be collected in a toolkit for applying the cross-applica-
tion bridges approach to new applications. 
Limitations and Future Work 
This work has several limitations that should be addressed in 
future research. First, our study was conducted with only 12 
participants from a narrow age range (children ages 10-14). 
While this was sufficient to provide initial insights into our 
prototype system, and children are an ecologically-valid user 
group for the applications we were working with, it would be 
valuable to study a larger and more diverse group of users 
(e.g., adults or professional users). 

Second, our evaluation was focused on understanding 
whether the cross-application bridges approach had learning 
value, and how it might impact learner motivation. Future 
studies are needed to investigate how the approach compares 
to standard tutorials, in terms of impact on learner motivation 
and depth of understanding. It would also be valuable to eval-
uate specific components of our system, such as the 
heuristics for determining when new features are unlocked. 

Third, Blocks-to-CAD could be extended to include other 
fundamental 3D modeling concepts, such as additive/sub-
tractive Boolean operations, or understanding what makes a 
model 3D printable or not. 

Finally, working with children can be unpredictable, and the 
experimental setting may have introduced expectations that 
are different from a real-world setting. 
CONCLUSION 
This work has demonstrated that a cross-application bridge 
can effectively teach skills that transfer to a target applica-
tion, without hurting enjoyment or increasing cognitive load. 
The design process for our prototype also provided deeper 
insights into the cross-application bridges approach, includ-
ing design strategies for applying this approach to other 
applications. Overall, we see this work as a first step toward 
a future in which users seamlessly transition from the games 
they play in their youth, to the ever more sophisticated soft-
ware applications demanded by their changing interests, 
careers, and creative endeavors. 
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