
Compatability and Interaction Style 
In Computer Graphics 

George W. F i t zmaur ice  a n d  Bil l  Bux ton  
AliaslWavefront Inc. 

Introduction 
Recent trends in human computer interaction 
have focused on representat ions based on 
physical reality [4, 5, 6, 8].The idea is to provide 
richer, more intuitive handles for control and 
manipulation compared to traditional graphical 
user interfaces (GUIs) using a mouse. This 
trend underscores the need to examine the 
concept of manipulation and to further under- 
stand what we want to  manipulate versus what 
we can easily manipulate. Implicit in this is the 
notion that the bias of the UI is often incom- 
patible with user needs. 

The main goal of UI design is to  reduce 
complex i ty  whi le augmenting the abil i ty of  
users to get their work  done. A fundamental 
be l ie f  under ly ing  ou r  research is t ha t  
complexity lies not only in what is purchased 
f rom the sof tware and hardware manufac- 
turers, but also in what the user creates with 
it. It is not just a question of making buttons 
and menus easier to learn and more efficient 
to use. It is also a question of"Given that I've 
created this surface in this way, how can it now 
be modi f ied to  achieve my cur rent  design 
objective?" (The observation is that how the 
user created the surface in the first place will 
affect the answer to  the question.) Our  thesis 
is that appropriate design of the system can 
m in im ize  bo th  kinds of  c o m p l e x i t y :  t ha t  
inherent in accessing the functionality provided 
by the vendor, and that created by the user. 
The literature focuses on the former. In what 
follows, we investigate some of the issues in 
achieving the latter. In so doing~ we structure our 
discussion around quest ions of  compatibility. 

Three Perspectives on 
Compatibility 
W h e n  we  cons ide r  man ipu la t i on  in the 
context of 2D and 3D graphics applications, 
we often consider proper t ies  of  the input 
device such as degrees of freedom, and how 
well the device is capable of moving points or  
shapes in this space.That is, how well can the 
user move and adjust interactive widgets as 
wel l  as d i rect ly  t rans form geomet ry  (e.g., 
adjust points, curves and surfaces). What  is 
often not considered, however, is the ease of 
manipulating the underlying structure of the 
graphics (e.g., the deep structure of the geom- 
etry, as represented by the scene graph, etc.), 
even when these are data that were directly or  
indirectly created by that same user. 

Many users, especially artists, do not under- 
stand the deep structure, or  how it is repre- 

sented - -  in fact, many prefer not to. However 
providing access and acquiring such under- 
standing is often necessary for users to achieve 
t h e i r  goals. Thus, we must  f ind ways of  
exposing the deep structure to the user in 
ways that are compatible, intuitive and efficient, 
and which enable the user to work  at this level 
when appropriate. 

To explore this issue, we examine three 
styles of interaction in terms of their ability to 
support  manipulation of both the deep and 
surface levels of the graphics. We do so by 
considering the issue of compatibility between 
input and output  devices in addit ion to  the 
ability of the user to manipulate internal repre- 
senta t ions ( "deep  s t r u c t u r e " )  as we l l  as 
external representations ("surface structure") 
of the application data. This is somewhat akin 
to  the model-v iew-control  organizing struc- 
ture of SmallTalk [7]. Let us look at each one 
of these compatibilities. 

• Input with output devices: Does the input 
device match the capabi l i t ies of  the 
output display? 

• User interface with the ability to manipulate 
internal representation (access to "deep 
structure"): Can the user interface effec- 
tively manipulate the internal representa- 
tion of the application data stream? 

• User interface with the ability to manipulate 
external representation (access to "surface 
structure"): Can the user interface effec- 
tively manipulate the artifacts generated 
by the internal representations? 

For example, let us consider a form-based 
UI on a database of records  tha t  use an 
alphanumeric keypad input device. From the 
first perspective, this has good compatibi l i ty 
since the primary type of data being input and 
displayed is alpha-numeric.The deep structure 
might be considered the layout of the forms, 
and what attributes of the underlying database 
are exposed and in what  relationship. Since 
layout, at least, is a spatial thing, the keyboard 
would likely have low compatibility, compared 
to a mouse, in terms of interacting at this level. 
Finally, in interacting with the fields exposed, 
the surface structure, there is medium to good 
compatibility. In entering the alphanumeric data 
the compat ib i l i ty  is high. However,  tabbing 
f rom field to  field using the keyboard may 
often be less compat ib le than doing so by 
selection with a mouse. 

In this paper we explore the progression of 
manipulat ion as it relates to input devices, 
deep structure and surface structure. We do 
this by giving two historical examples and then 
discuss a new trend which we call "interactive 
assemblages." We wil l  frame our  discussion 
within the context  of sophisticated graphics 

applications such as computer  aided design, 
modeling, compositing and animation. 

Example I :APL and Teletype 

I/O Compatibility - -  High 
UI to Manipulate Deep Structure - -  High 
UI to Manipulate Surface Structure - -  Low 

To begin, consider the use of the programming 
languageAPL in computer graphics in the 
1960s.The language was cryptic and terse, but 
the matrix handling was wonderful."The 
power o fAP/comes  from its direct manipula- 
tion of n-dimensional arrays of data.The APL 
primitives express broad ideas of data manipu- 
lation.These rich and powerful primitives can 
be strung together to  perform in one line 
what would require pages in other program- 
ming languages"[I] Interaction was via an IBM 
Selectric typewriter-l ike terminal, and 
compared to the card-punch readers typical of 
the era, it was very interactive. 

I/O Compatibil i ty - -  High 
The inpu t  devices (charac te rs  on the 
keyboard) and the output (printed characters) 
had a strong compatibility. IBM Selectric type- 
wr i te rs  were  very popular  and fami l iar  to  
users. Moreover, the symbolic nature of the 
language lent itself to  typing. 

UI to  Manipulate Deep Structure - -  High 
There was a high compatibil ity in the manipula- 
tion of the deep structure of the graphics.This 
was by virtue of the language's facility in manip- 
ulating n-dimensional arrays, performing matrix 
mult ipl icat ion operat ions and programming 
new functionality. 

UI to  Manipulate Surface Structure - -  Low 
However, there was a strong incompatibility in 
the manipulation of the surface structure of 
the graphics.APL processed numeric arrays of 
data, not graphics images per se. Whi le  the 
numer ic  arrays may represent  a graphical 
image, such as a set of curves, a user could not 
directly adjust the contour of a curve within the 
graphical domain. 

Consequently, the user was forced to func- 
tion exclusively at the abstraction level of the 
graphics, manipulating the internal representa- 
tions, o r  deep structure. The user interface 
was designed and optimized to facilitate the 
manipulation of the graphics as represented by 
the APL notation, not by way of the pictures 
themselves. Nevertheless, APL was used in the 
1970s to  produce a number  of  innovative 
animat ions such as by Judson Rosebush's 
company, Digital Effects Inc. 

64 November 1998 Computer Graphics 



E x a m p l e  2: G U I  D i rec t  Manipulat ion 

I/O Compatibility- High 
UI to Manipulate Deep Seruccure - -  Low 
UI to Manipulate Surface Structure - -  High 

In this example we leap ahead approximately 
20 years and consider the shift towards direct 
man/pulat/0n through the development of the 
graphical user interface (GUl).The GUI signifi- 
cantly improved our ability to manipulate the 
surface structure which was so lacking in the 
previous example. 

I/O Compat ib i l i t y -  High 
The high compatibility of the input and output 
devices with GUIs is based on the use of 
graphical metaphors. Tools and other entities 
are represented graphically, often as icons, and 
one interacts with them using generic actions 
such as pointing and dragging. Interaction is 
mediated through the use of a graphical input 
device such as a mouse, tablet, trackball or 
touch screen, typically in conjunction with a 
pixel addressable graphics display.VVhile graph- 
ical representations and metaphors are used 
to regulate input and output, there is still a 
level of indirection employed which serves as 
an abstraction above that of physical reality 
(for example, with a GUI one doesn't grab a 
document to move it up or down. One does 
this indirectly, using a widget such as a scroll 
bar or scroll arrow, which is itself a metaphoric 
icon). 

Moreover,  whi le  graphically the GUI's 
output is explicidy representational, the input 
is limited and generic. For example, while I may 
be presented with a graphical ruler, the typi- 
cally one-handed, single device input mecha- 
nisms available only permit me to perform a 
small subset of the overall bimanual actions or  
gestures that I might employ with a real ruler. 
Just compare how you perform actions like 
bending, flipping, squeezing, shaking, tilting or 
moving objects in the physical world with how 
you do so using so-called "direct manipulation" 
with a GUI. 

In summary, while input and output are 
compatible in manipulating the surface struc- 
ture, we need to keep in mind that this holds 
true only within the range of actions available. 
Between how one interacts with the graphical 
objects in the GUI and their counterparts in 
the physical world, there is limited compati- 
bility at best, and incompatibility at worst. 

Ul to Manipulate Deep Structure - -  Low 
The underlying structure of complex graphical 
scenes and objects does not generally lend 
itself to effective graphical representation, that 
is, in terms of actions that you want to 
perform on i tWhi le I may "know how" to 
manipulate things in the micro sense (point 
and click) I still may have problems achieving 

my goals in a macro sense. Consider 
AliaslWavefront's Maya animation package [9], 
as an example. In this application, 3D geometry 
is available to the user in a number of repre- 
sentations. One is a 3D perspective view. 
Another is as a 2D dependency graph which 
reflects the deep structure of the graphics. 
Users are able to manipulate the graphics 
within this view. However, while this exposes 
the internal representation to the user in a 
form that can be manipulated, actually doing so 
can still be quite cumbersome. 

This is sometimes due co a notational issue: 
the graphical representation or  interaction 
techniques available may not be appropriate to 
the task at hand. Other times, however, it is 
due to the data itself being structured in a way 
that is incompatible with the manipulation that 
the user wants to perform (even though it was 
likely that same user who structured ir that 
way.) 

The former notational issue can often be 
addressed by offering another form of repre- 
sentation and manipulation.This is partially 
why packages such as Side Effects Houdini and 
Maya still support procedural scripting in addi- 
t ion to the GUI: this enables the user to 
manipulate the geometry and perform global, 
large scale manipulations at a variety of granu- 
larities.This scripting ability is more akin to the 
previous APL example than direct manipula- 
tion. 

The latter point, the compatibility of the 
underlying structure itself to the types of 
manipulations that the user wants to perform 
is addressed by, and motivates, Example 3, 
below. 

UI to Manipulate Surface Structure - -  High 
There is a high compatibility between the GUI 
and the ability to manipulate the surface struc- 
ture of the graphics.This is because it enables 
the artist to work directly on an image or 3D 
model. Note chat this is not always done. 
Rather, almost more often than not, interme- 
diate dialog boxes are used to manipulate 
parameters resulting in what might more prop- 
erly be described as indirect man/pulat/0n. 

Some work has been done to address this 
issue, such as building 3D manipulators and 
attaching them to 3D geometry [3]. Such 
manipulators provide efficient handles which 
afford control over key parameters of the 
underlying structure. They bring such control 
closer to the geometry itself than is the case 
with dialogue boxes, making control more 
direct. 

In summary, GUI-based systems generally 
do a fairly good job of supporting the capability 
to work  directly on the graphics. However, 
they also have affordances that bias and deter 
users from understanding the deep structure. 
Thus, users often have trouble manipulating 
the graphics at the appropriate level of detail 

or  abstraction for the task at hand.The bias is 
towards the surface structure. Consequently, 
as the complexity of the (user created) graph- 
ical scene, object or animation increases, the 
effectiveness of the UI breaks down.Without a 
grasp of the deep structure and an effective 
handle on it, users are mired in too  much 
detail, detail which becomes overwhelming 
regardless of how simple any single step of that 
detail is. 

Resolving the Dilemma 
Given these two examples, we are presented 
with a dilemma. How can we design interactive 
systems which maintain the balance of manipu- 
lability and compatibility over deep and surface 
structure? Already we have alluded to a hybrid 
approach (Houdini and Maya) which offers both 
scripting and direct manipulation solutions. But 
from the perspective of artists, direct manipu- 
lation is generally preferred since it is closer to 
how they w o r k  in the physical wor ld .  
Consequently, intense scripting is typically 
delegated to  a p rogrammer  (technical 
d i rec to r )  who is f luent  in the scr ipt ing 
language. 

What we would like to do in the remainder 
of this paper is discuss an alternative approach 
to finding a balance between control over the 
deep and surface structure of the graphics.This 
approach has more to do with how the user 
creates the graphics in the first place, rather 
than the mechanics of the UI per se. Here, one 
assembles the graphics using higher order 
primitives.The assumpl'_ion is that much of the 
complexity in the deep structure in conven- 
tional systems stems from the primitives used 
being at too low a level. If the granularity of 
how one thinks about a model, for example, 
matches that  of  the pr imit ives used to 
construct or modify it, then the assumption is 
that the underlying complexity for the user 
will be significantly reduced. Such primitives 
may be procedural or  declarative. The key 
point is that they be compatible with how the 
user thinks, and that they afford control at the 
appropriate level of detail or granularity appro- 
priate for achieving the user's goals. We will 
refer  to  this approach as interactive 
assemblages. 

Example  3: In teract ive Assemblages 

I/O Cornl~tibility - -  High 
Ul to Manipulate Deep Structure - -  
Moderately High 
UI to Manipulate Surface Structure - -  High 

By interact ive assemblages we mean the 
construction of graphical scenes, models and 
animations out of higher level components 
than is traditionally the case. Such components 
may be declarative (such as a canonical form 
or a generic skeleton with all of the IK handles 
and dynamics built in), procedural (such as a 

Computer Graphics November 199S 6S 



Figure 2: Example of  a flock of  birds [ I  0]. See page 103 for color image. 

Figure I : Example of cloth simulation on a computer 
character [2]. See page 103 for color image. 

flocking module) or  some hybrid of the two. 
Each integrates sophisticated behaviours or  
data into a single component having a manage- 
able but rich set of appropriate operating para- 
meters.  These operat ing parameters,  o r  
handles, may be exposed to the user via virtual 
means (such as dialog boxes or 3D manipula- 
tors) o r  through physical means (such as 
specialized input devices like physical sliders, 
dials or customized graspable objects). 

The deep structure now reveals the rela- 
tionship among these components, rather than 
the low-level primitives traditionally used.Thus, 
there is an increased likelihood that any repre- 
sentation of the deep structure will be both 
more comprehensible to users, and afford 
manipulation at a level appropriate for the task 
at hand. 

le t  us describe three example modules to 
illustrate this idea: modeling cloth, specifying 
flocking behaviour and car design. 

Modeling Cloth 
Imagine animating a super hero who is wearing 
a cape. Specifying the behaviour of the cape 
through a sequence using keyframe techniques 
is as tedious as it is time consuming, so much 
so that the ability to experiment with different 
variations is extremely limited. On the other 
hand, if one has a generic parametrized cloth 
module (see Figure I), the generation of such 
variations becomes relatively easy. First, one 
"dresses" the character.The artist does so at a 

high level, specifying parameters such as size, 
seams, fabric propert ies, texture and how 
tightly the material should fit or  fol low the 
character.The cloth module simulator then can 
calculate the behaviour of the cloth as the 
character moves - -  factoring in the physical 
dynamics of the cloth material and real-world 
properties such as gravity and object collisions. 
With this approach, notice that the specifica- 
tion of the character's movement is indepen- 
dent of the specification of the behaviour of 
the cape. Certainly the former  affects the 
behaviour of the other. But unlike traditional 
animation, if I change the character's move- 
ment, I don't have to reanimate the cape, and if 
I change the material of the cape, I don't have 
to reanimate the whole thing. The animator 
addresses things at the appropriate level with 
the ensuing freedom to explore a far broader 
range of possibil it ies wi th relatively l i t t le 
increase in cost. In terms of the UI, one can 
imagine defining virtual or physical sliders and 
controllers to adjust the parameters of the 
cloth. Perhaps a set of instrumented pieces of 
fabric may facil itate specification of cloth 
behaviours.The idea is that the deep structure 
of the cloth module is abstracted and users 
only need to set a few high level parameters to 
get sophisticated behaviours. 

Specifying Flocking Behaviour 
A second example is the animation of the 
behaviour of a crowd of people, a school of 
fish or  a f lock of birds. Tradit ionally, one 
animates each member of the group individu- 
ally. But if it is the character of the group as a 
whole which is of concern, one can offer this 
level of control (see Figure 2). First, the artist 
specifies a few representative characters, then 
specifies an area where the crowd should 

occupy. The flock module then populates the 
area with a random placement of instances of 
the representative characters. High-level para- 
meters can then be defined which move the 
crowd in a particular direction, make them 
more  o r  less active, and cont ro l  the 
percentage of the crowd looking in a certain 
direction, etc. Again, it would be very tedious 
for the artist to have to manipulate each indi- 
vidual character within the crowd consisting of 
hundreds of characters. 

Car Design 
The previous two examples were procedural. 
Our  third example involves a module that 
consists of declarative data. It is a car module 
in which the designer is presented wi th a 
canonical model of a car. This is in contrast 
wi th current practice where the designer 
starts wi th a blank sheet and works from 
there. The model contains and encapsulates 
the necessary engineering specifications and 
manufacturing constraints, as well  as the 
essence of the "s ty le"  of that  par t icu lar  
product line (see Figure 3).The notion is that 
by modifying the base model, rather than 
building each concept from scratch, one can 
work faster, stay within the style, conform to 
the engineering criteria and end up with a 
much better initial geometry. 

Given these three examples, let us now 
consider the manipulation and compatibility 
issues of interactive assemblages. 

I/O Compat ib i l i t y -  High 
This approach builds upon the GUI and direct 
manipulation paradigm. However, since we are 
exposing more handles of the deep structure 
to modify, assemble and control the surface 
structure, we have a stronger opportunity to 

66 November 1998 Computer Graphics 



Figure 3: Example era prefabricated base model orcor. 
Model components compliments or'General Motors. See 
page 103 for color image. 

manipulate these parameters using dedicated 
input devices. Thus, there are two main differ- 
ences compared to  the t rad i t iona l  GUI 
approach. First, the quant i ty  of  input  is 
increased when we move towards offering 
multiple, dedicated physical input transducers 
for  adjusting high level controls. This is in 
contrast to conventional GUls having one 
graphical input device, such as the mouse, 
which serves as a "time-multiplexed" physical 
handle being repeatedly attached and unat- 
tached to a variety of logical functions of the 
GUI. Second, we shift to using more specialized 
form factors and capabilities for  our input 
devices.These dedicated physical handles can 
serve as iconic input devices (physical icons) as 
well as graphical output_ 

UI to Manipulate Deep Structure - -  
Moderately High 
There is a moderately high compatibility with 
manipulating the deep structures.We are able 
to place direct manipulation UI on relevant 
parameters of the deep structures.These para- 
meters are passed to procedural scrip~s or 
simulations which perform the real work. 
However, we are constrained by using only the 
parameters that are exposed to the user and 
by the components which are available for 
assembling. Nevertheless, we are now dealing 
with higher level components with meaningful 
handles. 

Ul to Manipulate Surface Structure - -  High 
As with the GUI and direct manipulat ion 
example above, there is a high compatibility 
w i th  manipulat ing the surface structure.  
Moreover, the user is augmented by the exten- 
sions mentioned above with the handles on 
higher level components.This gives users capa- 
bilities they would never consider doing by 
hand (e.g., adjusting each bird in a flock of 200 
birds). 

The results of these interactive assemblage 
components are a consequence of complex 

relationships among a number of variable para- 
meters. For example, the cloth module may 
have 20 parameters to adjust to generate an 
enormous variety of cloth behaviour.Therefore 
i t is not enough to understand the effect of 
changing one parameter but instead one needs 
to know the relationships among a set oF para- 
meters. The fundamental point is that having 
simultaneous manipulation through dedicated 
handles allows us to more effectively and 
rapidly explore these relationships (i.e., the 
parameter space). 

There are a t  least three characteristics of 
the interaction that result From the interactive 
assemblages approach: 

• Active exploration through the provision 
of rich control, including input handles 
(physical and conceptual) wi th  good 
compatibility. 

• A move from a "specification" to "explo- 
ration" style of interaction. The goal is 
to create a fert i le ground for explo- 
ration bur also to provide rich points of 
departure rather than start ing from 
nothing. 

• The exposure of portions of the deep 
structure at a high-level of abstraction. 
This allows users to leverage off of the 
deep structure using t radi t ional  GUI 
elements without as much of a need for 
an expert  understanding of the micro 
level of the internal structure. 

The net result is to place a manageable and 
compatible handle both physical and cognitive 
on the task of creation in this space. 

Conclusions 
In UI design we want to manage complexity 
through the use of  structure.  Today our  
elementary building blocks are at a very fine 
granularity and the onus is on the user (artist) 
to deal with the high overhead of creating, 
manipulating and managing structure from 
these atomic elements. 

Our belief is that a significant part of the 
complexity of current systems lies within the 
structure of the data created by the user 
rather than in questions like "what does this 
button do?" The problem is, when building 
from scratch, one often doesn't know what 
structural features are needed until long after 
decisions have been made which make 
changing that structure, or working within it, 
overly difficult, expensive or even impossible. 
We see the same thing in software engineering 
where it often takes us multiple iterations to 
get our data structures correct_ In this paper 
we have argued that we can address these 
problems for our users in much the same way 
we have deal t  w i th  them fo r  ourselves: 
increase the granularity of the building blocks 
and shift the balance f rom a "c rea t i on "  
approach to  one of  "c lone,  modi fy  and 
assemble:' 

There is a potential for strong tension 
between manipulating the surface and deep 
structure when there is a UI or representa- 
tional discontinuity between the two struc- 
tures. One step towards alleviating this is to 
display both structures and show how the 
deep structure changes as one manipulates the 
surface structure. Thus, users can build an 
understanding (perhaps limited) of the deep 
structure.Alternatively, we want to strategically 
migTate deep structure up to the surface.We 
suggest defining interactive assemblages as a 
way of bridging the gap between these two 
structures. The assemblages encapsulate the 
deep structure and offer high level control and 
handles within the same UI representation of 
the surface structure. 

The key is to focus on manipulation and 
transformat ion rather than creation from 
scratch. Further, we want to manipulate rela- 
tionships, both temporal and spatial, rather 
than individual parameters. Graspable systems 
should expose the deep and surface structure 
through the use of cognit ive and physical 
handles of control. 

Acknowledgments  
This research was undertaken under the 
auspices of the User Interface Research Group 
at AliaslWavefront_ Special thanks to Gordon 
Kur tenbach for  his discussions and for  
reviewing early drafts. 

References 
I. ACM SIGAPL, h t t p : l l w w w . a c m . o r g /  

sigapl. 
2. Bereft, D. and A. Witkin. "Large Steps in 

Cloth Simulation:' SIGGRAPH 98 Proceedings, 
1998, pp. 43-54. 

3. Conner, D. B., S. S. Snibbe, K. P. Herndon, D. 
C. Robbins, R. C. Zeleznick, and A. van Dam. 
"Three-dimensional widgers:' Proceedings of 
the ACM Symposium on Interactive 3D 
Graphics, ] 992, pp. 183-188. 

4. Fishldn, K.R, T. R Moran and B. L. Harrison. 
"Embodied User Interfaces: Towards 
Invisible User Interfaces," To appear in 
Proceedings of" EHCI'98 (Heraldion, Greece), 
1998. 

5. Fi tzmaurice, G.W. Graspable User 
Interfaces, Ph.D. dissertation, University of 
Toronto, h t t  p : l /~nNw.dgp. toronto.ed ul  
peopledGeorgeFitzmaurice/home.hlurnl, 
1996. 

6. Fitzmaurice, G.VV., H. IshJi and VV. Buxton. 
"Bricks: Laying the Foundat ion fo r  
Graspable User Interfaces" ACNI Proceedings 
of CHI'95, 1995, pp. 442-449. 

7. Goldberg, A~ and D. Robson. Smalltalk-80:The 
Language and its Implementation, Addison- 
Wesley, Reading, MA, 1983. 

8. Ishii, H. and B. Ullmer."Tangible Bits:Towards 
Seamless Interfaces between People, Bits, 
and Atoms," ACM Proceedings of  CH1"97, 
1997, pp. 234-241. 

Computer  Gt-dphlr.s November 1998 67 



9. Maya 1.0. 1998, Al iaslWavefront ,  
h t t  p://www.aw.sgi.co m/. 

I 0. Reynolds, C.W."FIocks, herds and schools: 
A distr ibuted behavioural model," 
SIGGRAPH 87 Proceedings, 1987, pp. 25-34. 

George F i tzmaur ice is a Research Scientist 
at AliaslWavefront, Inc. His research interests 
include computer augmented reality, physical- 
virtual interfaces, interactive 3D graphics and 
haptic input devices. He holds a Ph.D. in 
computer science from the University of 
Toronto, an M.Sc. in computer science from 
Brown University and a B.Sc. in mathematics 
with computer science from the Massachusetts 
Institute of Technology. 

GeorgeW. Fitzmaurice & Bill Buxton 
AliaslWavefront Inc. 
Toronto, Ontario 
Email: {gf, buxton}@aw.sgi.com 
Web: h t t p : / / w w w . d g p . t o r o n t o . e d  u/ 
people/GeorgeFitzmaurice/.  

68 November 1998 Computer Graphics 



F R O M  T H E  E D I T O R  

Explore the World of Computer Gaming and Computer Graphics 

Gordon Cameron 
SOFTIMAGE, Inc. 

The February 1997 issue of Computer Graphics 
contained a focus (expertly guest edited by 
Mike Milne) on the entertainment industry, 
but we chose to save an important area of 
this industry for later investigation. It's with 
great pleasure that I present that focus on the 
computer games industry in this May 1998 
issue of Computer Graphics. 

Back in the early 'B0s when I was still 
in school, I was enthusiastically coding away 
on a variety of early machines such as the 
Sinclair ZX8 I, Oric- I, Atari 800XL and Atari 
ST. At the same time, I spent a great deal of 
my hard-earned paper-round cash on games 
for these machines, so it was with great 
excitement that I recently discovered an 
on-line "shrine" to the games and their pro- 
gremmers. James Hague had painstakingly put 
together a list of"classic game programmers" 
and in addition had interviewed several of the 
more revered game designers for a fascinating 
electronic publication entitled Halcyon Days. 
Around the same rime, I was trying to put 
together an issue on computer graphics and 
the games industry, and so contacted James 
to see if he might be interested in guest edit- 
ing such an endeavour. Luckily, he accepted, 
and ~e  issue in your hands now contains the 
resulting focus. 

Over the past decades, computer games 
have evolved at a remarkable pace. Many of 
the early titles pushed the platform capabili- 
ties, but more recently the games industry is 
proving one of the major factors in pushing 
computer graphics in feneral forward at a 
breakneck pace -- many of the new titles are 
generating groundbreaking research of their 
own, and forcing the hardware (and stan- 
dards) to evolve co keep up, You can pick up a 
consumer PC with graphics comparable (or 
superior) to the workstations of a short time 
ago, at a fraction of the cost today, and this 
trend is really shaking up our industry and 
forcing innovations at a startling rate. 

At the same time, it is worthwhile to 
Jook back at the amazing things people were 
doing in the earlier days of computer gaming, 
with far more limited resources (both techni- 
cal and human). These early pioneers were 

performing minor miracles to achieve effects 
that today may look somewhat dated bur in 
their time were bleeding edge, whilst still 
managing to keep in mind that most impor- 
tant, yet too-oft neglected, aspect --- game- 
play. 

James has done a superb job in gathering 
together a collection of thoughtful and per- 
sonalarticles from both past and present 
which together form a snapshot of the world 
of computer gaming and computer graphics. 
My thanks go out to all those who con- 
tributed, and especially to James for working 
under extremely tight deadlines. 

Also, once again we have a tremendous 
series of columns. If you have any comments, I 
encourage you to drop a note to the colum- 
nisl3. For any general questions, ideas, com- 
merits, etc, please feel free to contact me at 
one of the addresses listed below and I'll do 
my best to answer -- thank you s o  much for 
your letters over the last few months and, 
please, keep them cominl! The majority of 
notes from the last issue complimented the 
content, for which I'm extremely grateful on 
behalf of the contributors. However, rather 
than print only these, I've decided to wait 
until we have a broad cross section of letters 
to use in the next Letters column. 

Until next issue, all the very besT,, and I 
look forward to seeing some of you at the 
upcoming SIGGRAPH 98 25th anniversary 
conference. 

Gordon Cameron 
Software Development 
SOFTIMAGE, Inc. 
3510 boul. St-~urent 
Suite 400 
Montn~, Quebec, H2X 2V2 
Canada 
Tel: + I-51A, aA,5-1636 ~ 3445 
Fmc + I-514-845-5676 
Email: Eordon_cameron~sll~q-aph-ori 

Computer Graphics ~ 1998 3 


