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ABSTRACT

This work introduces personas, descriptions of fictional
individuals used in the field of human-computer interac-
tion, into the simulation of building performance. The
ultimate goal is to reduce the impact of buildings on the
environment by helping architects predict the energy de-
mand associated with different design options. As energy
consumption patterns are largely dependent on human ac-
tivities, we previously developed a method to simulate the
behavior of individual building occupants. Here we ex-
tend the method, allowing occupants to interact with one
another. Also, whereas activities generated by the previ-
ous method were based on only the recorded schedules
of real people, we now use personas as well to customize
and diversify occupant behavior. Both occupant interac-
tion and behavior customization were achieved via the as-
signment of weighting coefficients to activities used for
model calibration. Simulation results demonstrate that, by
supplying only modest amounts of information, architects
may be able to generate plausible interdependent sched-
ules specifically tailored to their own projects.

INTRODUCTION

Buildings consume vast amounts of energy; they ac-
count for 72% of electricity use in the US, according to
Crawley (2008). It has been suggested that appropriate
design improvements, selected with the aid of decision-
support software, could reduce energy use by about 30%
in existing buildings and 50% to 75% in new buildings
(Clarke 2001). This is the motivation for building perfor-
mance simulation. The idea is to model a building’s many
interacting subsystems, including its occupants, electrical
equipment, and indoor and outdoor climate. With simu-
lation results in hand, an architect is better able to predict
the energy demand associated with various designs, and
choose from among the more sustainable options.

A building’s energy consumption patterns depend
largely on the behavior of the people that occupy it, a
fact observed in numerous papers comparing the timing
of daily activities with profiles of energy use. Although
many existing building performance simulation tools use
fixed schedules to account for the presence of occupants,
a study by Hoes et al. (2009) has shown that more detailed

occupancy models are necessary for accurate energy de-
mand predictions. Having recently proposed a behavior
simulation method for individual occupants (Goldstein,
Tessier, and Khan 2010), we now turn our attention to the
fact that buildings have multiple occupants, that those oc-
cupants interact with one another, and that the behavior of
one occupant may differ from that of another.

In pursuit of a multiple-occupant simulation method,
we strive for both realism and ease of use. These qualities
seem to conflict with one another, as the numerous input
parameters required by realistic models can be difficult to
obtain. For example, although our previous method gener-
ates realistic schedules that resemble the recorded sched-
ules of real building occupants, architects would need to
supply numerous schedules of their own to produce be-
havior specifically tailored to their own projects. This led
us to a new idea: firstly, data extracted from recorded
schedules could be packaged with simulation software
and reused by many architects; secondly, descriptions of
fictional individuals called personas could be invented by
architects on a per-project basis to customize and diversify
occupant behavior. Theoretically, the desired level of real-
ism results from the large quantities of reusable recorded
data, whereas the ease of use lies in the fact that each in-
vented persona requires only a dozen or so parameters.

The simulation method presented in this paper gener-
ates sets of schedules for arbitrary numbers of building oc-
cupants. The schedules feature occupant interaction. For
instance, if an office meeting or social gathering appears
in the schedule of one occupant, it will also appear in the
schedules of other participating occupants. Also, the be-
havior represented in the schedules can be customized.
Both occupant interaction and behavior customization are
achieved with the same underlying mathematical tech-
nique: the assignment of weighting coefficients to the
schedules and activities used for model calibration.

BACKGROUND

An occupant schedule is a list of consecutive activities
that describes the behavior of a building occupant over
the course of a single day. An example of an occupant
schedule is shown in Table 1. Each activity includes sev-
eral activity attributes that pertain to a specific block of




time. In the example, these attributes include start times,
tasks performed, numbers of participants, and durations
inferred from consecutive start times.

Table 1: An occupant schedule

Activity | Start Task Number of
ID Time | Performed | Participants
#0 00:00 off 1
#1 10:13 work 1
#2 12:37 break 3
#3 13:24 work 1
#4 14:31 break 1
#5 14:36 work 2
#6 14:49 break 2
#7 15:02 work 1
#8 15:48 off 1

Occupant behavior simulation is the process of gener-
ating fictional occupant schedules. We describe an oc-
cupant behavior simulation as schedule-calibrated if be-
havioral patterns found in the recorded schedules of real
building occupants are automatically reproduced in the
generated schedules. Notable work in schedule-calibrated
simulation includes a presence/absence prediction model
by Page (2007), a domestic occupancy model by Richard-
son, Thomson, and Infield (2008), and our own previous
method described in Goldstein, Tessier, and Khan (2010).

Each schedule-calibrated method involves a model cal-
ibration phase during which histograms are populated us-
ing the activities of recorded schedules. Providing a sim-
ple example, the histogram in Table 2 is populated with
the data in Table 1. Observe that Activity #1, a transition
from the off task to the work task occurring between 10:00
and 11:00, contributes a value of 1 to the off — work row
and the column labeled 10. In practice, the time of day
would be discretized at a higher resolution, and multiple
schedules would contribute to the same histogram.

Table 2: Histogram population
Transition 10 | 11 | 12 | 13 | 14 | 15
off — off
off — work 1
off — break
work — off 1
work — work
work — break 1 2
break — off
break — work 1 1 1
break — break

In Page’s method, the states present and absent are used
in place of the tasks in Table 2, and hence there are four

possible transitions. Richardson, by contrast, tracks the
number of active household occupants. If there are N oc-
cupants in total, then there are N + 1 states (0 to N ac-
tive occupants) and (N + 1)2 possible transitions. Both
Page and Richardson adopt a discrete-time approach in
which exactly one transition occurs at every time step.
Following this approach, one would have populated the
work — work transition in column 11, condensed Activi-
ties #4, #5, and #6 into a single work — break transition,
and treated the last two activities as a single break — off
transition. As it is, the example reflects the discrete-event
approach of our previous method, in which activity dura-
tions are tracked in separate histograms.

We have yet to find a schedule-calibrated method in
the literature with a convincing treatment of occupant in-
teraction. If a five-person meeting is generated in the
schedule of one occupant, for example, the same meeting
should occur in the generated schedules of four other oc-
cupants. Our previous method produces numbers of par-
ticipating occupants, but as in Page’s work, generated oc-
cupant schedules remain strictly independent. The prob-
lem with Richardson’s method is that, were it extended
to include multiple tasks and applied to office buildings
with dozens of occupants, the resulting number of possi-
ble transitions would render simulation intractable.

Existing schedule-calibrated occupant behavior simula-
tion methods also fail to provide easy-to-use mechanisms
for customizing simulated behavior. Consider a scenario
in which a client informs an architect that a future office
building will accommodate different numbers of program-
mers, managers, marketers, and salespeople. Each type
of occupant is expected to work different hours and fa-
vor different activities. One could model this diverse yet
project-specific behavior by supplying their own sched-
ules for calibration, but this would be prohibitively time-
consuming. In search of an easier way for architects to
specify behavioral patterns on a per-project basis, we have
been inspired by research in the field of human-computer
interaction (HCI) on personas.

A persona is a description of a fictional individual. In
the HCI community, personas are invented by software
designers who strive to better understand product require-
ments by imagining fictional characters as future users
(Cooper 2004). A typical persona is assigned a portrait,
a name like “Max” or “Jane Roberts”, and a 1-2 page de-
scription emphasizing personality traits and social/work-
related habits. Although personas usually emerge from
observations and subjective decisions, Miaskiewicz, Sum-
ner, and Kozar (2008) have proposed a method to iden-
tify them objectively by automatically classifying survey
results. And while personas are generally qualitative in
nature, they have been reduced to sets of quantitative at-
tributes and analyzed numerically (Chapman et al. 2008).



OCCUPANT INTERACTION

Here we extend our previous schedule-calibrated
method to accommodate interaction between simulated
occupants. Only one additional input parameter is re-
quired: the maximum number of building occupants N.
Instead of generating each occupant schedule indepen-
dently, we now generate N schedules simultaneously.

During a simulation, a time variable ¢ is repeatedly ad-
vanced to the end of the next activity to expire. When an
occupant’s current activity expires, his/her subsequent ac-
tivity is randomly generated from various probability dis-
tributions. These distributions depend on values extracted
from the histograms populated in the calibration phase
(see the Background section). As in Goldstein, Tessier,
and Khan (2010), the generated activities have three at-
tributes: the task, the duration, and the number of par-
ticipating occupants np,. If n,, = 1, the resulting solo
activity has no effect on the schedules of other occupants.
But if n,, > 2, then with our extended method, the re-
sulting shared activity may appear in multiple occupant
schedules. First, the initiating occupant (for whom the
shared activity was generated) transitions to the new activ-
ity. Next, np, — 1 summoned occupants are selected at ran-
dom as additional participants. Note that the distinction
between the initiating occupant and the summoned occu-
pants is to be completely invisible to a simulation user. We
introduce the distinction not as an attempt to model the
real-world roles of group members, but only to produce
interdependencies between the N generated schedules.

Suppose that at time ¢ we have just generated a shared
activity, appended it to the schedule of the initiating occu-
pant, and selected n,, — 1 summoned occupants. Some-
how the shared activity must be added to the summoned
occupants’ schedules. We consider different options.

The first option is to apply the shared activity immedi-
ately; that is, to prematurely terminate the current activ-
ities of all n,, — 1 summoned occupants, and append the
new shared activity to the np,, — 1 associated schedules.
Thus all n,, occupants would begin the shared activity
at time ¢. In the case of an office meeting, all attendees
would arrive at exactly the same time. Some might leave
early, however, to attend other meetings.

A second option is to queue the shared activity. Each
summoned occupant would transition to the shared activ-
ity only after the scheduled completion of his/her current
activity. This option would allow participants to arrive
late for a meeting, though all participants would leave the
meeting at exactly the same time.

To account for both planned and impromptu meetings,
we decided on a compromise between the two options de-
scribed above. First, |n,,/2] of the n,, — 1 summoned
occupants are selected. These occupants abandon their
current activities, and immediately switch to the shared

activity. The remaining summoned occupants complete
their current activities, and thereafter transition to the
shared activity. With this approach, some occupants may
arrive late to a meeting, and some may leave early.

So far we have described a simple extension to our pre-
vious schedule-calibrated method, facilitating occupant
interaction by allowing shared activities to appear in mul-
tiple schedules. There is one important issue we must now
address. First note that our previous method assumes ev-
ery shared activity to be initiated by every participating
occupant. The frequency with which simulated occupants
initiate shared activities thus reflects the frequency with
which real occupants interact. But now that an occupant
can be summoned by other occupants, the frequency with
which simulated occupants participate in shared activities
will be overestimated. The problem is severe, as an n,,-
person activity will occur roughly 7, times too often.

The solution to the above problem is to reduce the prob-
ability of initiating an n,,-person activity by a factor of
npo- This is done by assigning a weighting coefficient of
1/np, to each activity in the recorded schedules used for
calibration. These coefficients affect the histogram pop-
ulation procedure discussed in the Background section.
Table 3 shows the same histogram as in Table 2, again
populated with the data in Table 1, but this time using
weighting coefficients. For example, because Activity #2
(starting at 12:37) has 3 participating occupants, we now
add 1/3 instead of 1 to the appropriate bin in column 12
of Table 3. Similar adjustments are made to the 2-person
activities (Activity #5 at 14:36, and #6 at 14:49).

Table 3: Histogram population with weighted activities
Transition 10 | 11 12 |13 | 14 | 15
off — off
off — work 1
off — break
work — off 1
work — work
work — break 0.33 1.5
break — off
break — work 1 |05 1
break — break

This application of weighting coefficients reduces the
rate at which simulated occupants initiate shared activ-
ities, compensating for the fact that they may be sum-
moned to activities initiated by others. Later in the pa-
per we use different sets of non-negative weighting co-
efficients to influence behavior in other ways. Note that
in Goldstein, Tessier, and Khan (2010), a recorded activ-
ity may contribute to multiple bins in each of several his-
tograms. An activity’s weighting coefficient simply mul-
tiplies every value added to any bin in any histogram.



BEHAVIOR CUSTOMIZATION

With existing schedule-calibrated methods, all of a
building’s simulated occupants exhibit some sort of “av-
erage” behavior. There is no easy way to specify that cer-
tain occupants arrive unusually early, for example, or that
others spend long hours in meetings. Here we introduce
personas into building performance simulation as a way of
customizing simulated behavior. In the HCI community,
software designers invent personas to better understand
the habits of users of future computer applications. In a
similar way, we envision architects inventing personas to
better predict occupant behavior in future buildings.

Although HCI personas tend to be qualitative in na-
ture, our focus on simulation necessitates hard numbers.
Like Chapman et al. (2008), we regard a persona as a set
of quantitative persona attributes. To describe an office
worker, for example, useful persona attributes might in-
clude the arrival time, the percentage of the day spent in
meetings, and the number of breaks taken each day.

Chapman et al. caution that the more attributes a per-
sona is given, the fewer real-world people it is likely to
represent. We address this concern by expressing persona
attributes as intervals. Instead of stating that an occupant
arrives at 09:00, spends 5% of the day in meetings, and
takes 3 breaks each day, we might state that he/she arrives
between 08:45 and 09:15, spends 3% to 7% of the day in
meetings, and takes 2 to 4 breaks. Each interval has an
associated probability (eg. “...arrives between 08:45 and
09:15, 80% of the time). An architect who shares the con-
cerns of Chapman et al. would choose large intervals.

From an simulation user’s perspective, we feel that the
intervals described above are relatively easy to interpret.
However, from a mathematical perspective, it is more
convenient to parameterize each persona attribute with a
mean value ¢ and a standard deviation 6. If y and G are
known, then the interval bounds b;,ye, and byppe, associ-
ated with a probability of p may be calculated from (1).
Similarly, if the interval is known, one may derive u and
o from (2). We use ®;,, to denote the inverse cumulative
distribution function of a standard normal distribution.
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We distinguish between two types of personas: inferred
personas and invented personas. In the case of an in-
ferred persona, m persona attributes are obtained from n

occupant schedules and their associated weighting coeffi-
cients. Recall that a weighting coefficient pertains to a sin-
gle activity, and that there are several activities in an occu-
pant schedule. We require a single weight for each sched-
ule. Therefore, for each occupant schedule j (meaning the
schedule identified by the integer j; j=0,1,...,n—1), we
calculate the weight w; by averaging the weighting coef-
ficients of the schedule’s activities.

Continuing this persona inference procedure, the next
step is to obtain a separate schedule attribute a;; for each
persona attribute i and occupant schedule j. The deriva-
tion of a;; depends on the type of persona attribute. If the
attribute quantifies an office worker’s arrival time, for ex-
ample, we assign to a;; the time between midnight and the
first office activity of the day. If the persona attribute is
the percentage of time spent in meetings, then a;; is calcu-
lated by dividing the accumulated time spent in meetings
by the time elapsed between arrival and departure.

Once all n weights w; and all m-n schedule attributes
a;; are obtained, one can calculate the mean value y; and
standard deviation ©; for each persona attribute i. This is
done by first evaluating n,, using (3), then obtaining each
u; and o; in that order using (4) and (5).
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The inferred persona is completed by applying (1) for
each persona attribute to obtain the corresponding inter-
val. Slightly complicating matters, the probability p must
in some cases be adjusted to yield a reasonable-sounding
interval. Suppose, for example, that an arbitrarily selected
p of 80% yielded an interval of -2 to 5 breaks per day. To
avoid the negative number, we would instead report O to 3
breaks with a recalculated p of 42%.

Inferring a persona from existing schedules, as de-
scribed above, is a relatively simple procedure. Consid-
erably more difficult is the use of an invented persona to
generate fictional schedules. Note that we are not giving
up on schedule-calibrated methods, for the inclusion of
recorded schedules alleviates the need to obtain all behav-
ioral information from user-supplied personas. However,
in a case where recorded behavior contradicts an invented
persona attribute, it is the attribute that should govern the
behavior of the simulated occupant.

A solution to this customization problem is to use our
previous schedule-calibrated method, but steer the simu-
lated behavior towards that of an invented persona using
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Figure 1: The matrix equation A-W = B used to obtain weights from schedules and an invented persona

weighting coefficients. Whereas persona inference entails
the use of n schedules and n weights to calculate m per-
sona attributes, we are now given m persona attributes and
n schedules with which to obtain n weights.

Assuming that the invented persona is specified using
intervals, we first obtain the y; and 6; of each persona at-
tribute i using (2). We also calculate each schedule at-
tribute a;; as described above for persona inference. Now
that the weights w; and their sum n,, are unknown, it is
best to eliminate n,, from (4) and (5) by substitution using
(3). Further manipulation yields (6) and (7).
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The obvious next step is to express (6) and (7) as a ma-
trix equation of the form A-W = B. We do exactly that,
as shown in Figure 1, but include (8) as well to avoid the
trivial exact solution W = 0,, (the vector W containing the
unknown weights w;, and 0, being a vector of n zeros).

TAWj =T, ()

With m equations given by (6), another m given by (7),
and an additional n given by (8), we have 2-m + n equa-

tions for n unknowns. This motivates a least squares solu-
tion. Note that a large value of r4 emphasizes (8). These
n equations, which imply that w; = 1 for all j, steer the
simulated behavior towards that found in the schedules.
Conversely, small values of r4 favor the persona. We
have found that if there is a great discrepancy between
the schedules and the invented persona, it is safest to use
a large r4 to discourage variability in the weights. We
therefore recommend (9), which quantifies this discrep-
ancy. Note that Ay, is the top 2-m-by-n submatrix of A,
and By, is the top 2-m-element subvector of B.

TA :||A2-m'1n_32-m ” 9)

The least squares solution is the W that minimizes
|| A-W — B ||. Unfortunately, the standard solution neglects
the fact that the weights must be non-negative. We recom-
mend that W be obtained using the Fast Non-Negativity-
Constrained Least Squares Algorithm (FNNLS) of Bro
and Jong (1997), which guarantees w; > 0 for all j. Small
values of r from (10) suggest a successful fit.

r:HAgm-W—Bgm || (10)

With W in hand, every activity of each schedule j can
be assigned w; as a weighting coefficient. If the n sched-
ules and the new weighting coefficients are used in the
model calibration phase, the resulting simulated behavior
should reflect both the schedules and the invented persona.



METHOD AND PROTOTYPE

Occupant interaction and behavior customization can
be combined into a single multiple-occupant simulation
method. We tested this method by collecting behavioral
data and implementing a prototype in C++.

The method requires a set of recorded occupant sched-
ules. For testing purposes, we gathered a total of 121
schedules from six researchers who tracked their own ac-
tivities in an office environment. Each schedule resem-
bled the example in Table 1, with possible tasks limited
to off, desk_work, desk_meeting, team_meeting, tech_visit
(eg. using the printer), washroom_break, onsite_break,
and offsite_break. Figure 2 shows the probability that an
occupant is working at their desk (lower region) and en-
gaging in shared activities with other occupants (upper re-
gion) throughout the day, based on these 121 schedules.
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Figure 2: Activity profiles based on recorded schedules

While recorded schedules can be packaged with sim-
ulation software and reused, the set of personas and the
number of occupants for each persona are to be specified
on a per-project basis. Our fictional building included 100
occupants and 3 personas: 50 occupants for Persona X, 40
for Persona Y, and 10 for Persona Z. Instead of inventing
Persona X, we inferred its six persona attributes (m = 6)
from the recorded schedules. Below, p = 50% for the desk
meeting interval, and 80% elsewhere.

Persona X (inferred from input data)

...arrives between 08:26 and 12:30

...Jeaves between 15:29 and 21:44

...spends 0.0% to 14.7% of the day in desk meetings
...has a 19.8% chance of meeting with the team
...takes a break onsite 0.2 to 3.2 times per day

...has a 51.2% chance of taking a break offsite

For the persona attributes pertaining to team meetings
and offsite breaks, the probabilities listed are the mean
values p. The intervals and standard deviations are re-
dundant for these attributes, as 6 = u-(1 —u). As for

the schedule attributes, a; = 1 if schedule j includes any
team_meetingloffsite_break, and O otherwise.

Both Persona Y and Persona Z were invented. Note
the differences between the behavior specified below for
Persona Z, and that inferred from the recorded schedules.

Persona Z (invented)

...arrives between 10:00 and 11:00

...Jleaves between 18:00 and 21:00

...spends 10.0% to 20.0% of the day in desk meetings
...has a 40.0% chance of meeting with the team
...takes a break onsite 1.0 to 3.0 times per day

...has a 20.0% chance of taking a break offsite

Before simulating interacting occupants, a set of 7,4
independent schedules must be generated for each per-
sona. We used n;,; = 10000, generating the Persona X
schedules with our previous schedule-calibrated method.

For each invented persona like Y and Z, one must first
customize behavior by generating n independent sched-
ules, constructing the matrices of Figure 1, and solving
for W. We used n = 400. If there is a significant discrep-
ancy between the n schedules and an invented persona, a
single application of the FNNLS algorithm may be inad-
equate. Fortunately, the customization procedure can be
repeated several times over. On each iteration, the current
W is used to generate a new set of n schedules, which in
turn yields an updated W. The value of r tends to decrease
with each iteration, as each successive set of n schedules
better reflects the persona. We terminate the loop when
r < 0.1, which required 3 iterations for both Persona Y
and Persona Z. Final sets of weights are used to generate
the sets of n;,y schedules.

For each persona, one now has n;,; independent sched-
ules with which to calibrate a separate activity generator.
It is at this point that one applies the occupant interac-
tion weighting scheme, where each n,,-person activity is
given a coefficient of 1/n,,. When an occupant’s current
activity expires during a simulation, the activity generator
associated with his/her persona produces the next activity.

The final challenge is to allow occupants of multiple
personas to be summoned to the same shared activity, yet
preserve the behavior in the independent schedules. Our
solution is to use all sets of n;,; schedules to calibrate a
single participant generator. Whenever an activity gen-
erator outputs a shared activity, the participant generator
calculates the proportion of the summoned occupants to
allocate to each persona. These proportions are selected
in the same way that task probabilities were obtained in
our previous method. All four activity attributes (time of
day, task, np,, duration) are used as factors (see Gold-
stein, Tessier, and Khan (2010)), and there is one feature
for each persona. A set of normalized feature values gives
the distribution of personas among activity participants.



There is one remaining complication. If there are rel-
atively few occupants of a particular persona, then those
occupants will be summoned to a disproportionately high
number of shared activities. Once again, an appropriate
set of weighting coefficients solves the problem. Recall
that the participant generator is calibrated with n;,4 sched-
ules of each persona. We weight each set of n;,; schedules
with the overall fraction of occupants sharing the corre-
sponding persona. In our prototype, for example, the co-
efficients for the three personas were 0.5, 0.4, and 0.1.

SIMULATION RESULTS

We simulated the behavior of the 100 interacting oc-
cupants over a 24-hour period, 1000 times. The activity
data accumulated from the 100,000 resulting schedules
was used to create the profiles in Figure 3.
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Figure 3: Activity profiles based on the simulated behav-
ior for Personas X (top), Y (middle) and Z (bottom)

From a qualitative point of view, the results are as ex-
pected. The simulated Persona X profiles of Figure 3 re-
semble those of the recorded schedules in Figure 2. Per-
sona Y was designed to exhibit an early schedule and rel-
atively few shared activities, and this behavior is reflected
in Figure 3. Similarly, the profiles for Persona Z are
consistent with the invented attributes, exhibiting a later
schedule and a greater prevalence of shared activities. We
also inspected a sample of the generated schedules, look-
ing at each activity. The schedules appeared plausible.

To quantitatively validate the customization technique,
personas were inferred from the 10000 (n;,4) independent
schedules. To validate the occupant interaction technique,
we also inferred personas from the schedules of the inter-
acting occupants. Shown below is the invented version of
Persona Y, following by the two inferred versions. The
desk meeting intervals have probabilities of 68% for the
independent simulated occupants and 42% for the inter-
acting occupants. For all other attributes, p = 80%.

Persona Y (invented)

...arrives between 08:30 and 09:00

...Jeaves between 17:00 and 18:00

...spends 0.0% to 4.0% of the day in desk meetings
...has a 10.0% chance of meeting with the team
...takes a break onsite 0.0 to 2.0 times per day
...has a 60.0% chance of taking a break offsite

Persona Y (independent simulated occupants)
...arrives between 08:29 and 09:00

...Jeaves between 16:54 and 18:11

...spends 0.0% to 3.8% of the day in desk meetings
...has a 12.3% chance of meeting with the team
...takes a break onsite 0.0 to 2.0 times per day
...has a 59.1% chance of taking a break offsite

Persona Y (interacting simulated occupants)
...arrives between 08:30 and 09:00

...Jeaves between 16:56 and 18:11

...spends 0.0% to 4.9% of the day in desk meetings
...has a 14.3% chance of meeting with the team
...takes a break onsite 0.0 to 2.1 times per day
...has a 63.3% chance of taking a break offsite

Note the agreement between the invented version of
Persona Y and the version inferred from the independently
generated schedules. Although there are differences be-
tween the two sets of intervals, these differences pale by
comparison to the discrepancy one would expect to ob-
serve between predicted and actual occupant behavior. As
a similar level of agreement was achieved for Persona Z,
we have confidence in the customization aspect of our
method.



Similarities between the two inferred versions of Per-
sona Y indicate that occupant interaction was introduced
without severely altering behavioral patterns. It is worth
noting, however, that the prevalence of shared activities
is consistently higher in the version with occupant inter-
action. The most prominent discrepancy occurred in the
team meeting attribute of Persona Z; with an invented
probability of 40%, the independent schedules yielded
40.4%, but with interaction the result was 59.4%. For ev-
ery other attribute, this bias was observable, but tolerable.

DISCUSSION

Deserving mention is the USSU system developed by
Tabak (2008), which implements its own occupant behav-
ior simulation method. The method features both occu-
pant interaction and behavior customization, and also in-
cludes spatial building information. Though USSU likely
satisfies the need for realism, it appears to require nu-
merous input parameters. The method is not schedule-
calibrated, and without recorded schedules to inform sim-
ulated behavior, the simulation user must cope with a sep-
arate set of tasks for each type of occupant, several at-
tributes per task, and various “task groups”. With our
method, architects would benefit from recorded schedules
provided with simulation software. If they opted to supply
only a few persona attributes, or even none whatsoever,
the software would still produce realistic behavior.

We envision a workflow in which, at the beginning
of a project, an architect would select only two parame-
ters: the type of building (eg. office building, household,
shopping mall) and the total number of occupants. The
software would then skip the customization procedure,
and produce realistic simulated behavior using the tasks
and recorded schedules provided for the selected build-
ing type. Later, to account for differences between com-
pany workers, ages, genders, or cultural traits, personas
would be added. This could be done gradually. As an ar-
chitect designs floor plans and selects specific materials,
his/her model might expand from zero personas, to a few
personas with a few attributes each, to perhaps a dozen
detailed personas. At a late stage in the design process,
he/she may even include personas for occasional guests,
or office workers who typically work from home.

CONCLUSION

We have contributed a new method for simulating inter-
acting building occupants exhibiting customized behav-
ior. The behavior customization aspect of the method per-
formed well, and should provide an easy way for archi-
tects to generate fictional occupant schedules specifically
tailored to their own projects. Our treatment of occupant
interaction is simple and viable, though further refine-
ments may be needed to address its tendency to increase
the prevalence of shared activities. In the future, we plan

to enhance the method with spatial information, and in-
tegrate it with models of electrical equipment and other
energy-consuming building subsystems.
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