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ABSTRACT
Building Information Modelling (BIM) has emerged as a
powerful technology that creates a central hub for managing
building energy and resources at all phases of the building
life cycle. Without it, many tools that lack interoperabil-
ity are used, thus massively under-exploiting the efforts of
other building design and management parties; this largely
describes the status quo. However, despite the power of BIM,
it has not been readily adopted by industry, and especially not
at the community and campus scale. Digital Campus Innova-
tion (DCI) is a large multi-year and multidisciplinary project
involving development of a methodology for use of BIM for
operation and maintenance of a portion of Carleton Univer-
sity’s 45 interconnected buildings. Major elements include:
(1) development of highly-detailed BIM models for site and
buildings; (2) conversion from BIM models to building per-
formance simulation (BPS) models; (3) model validation us-
ing measured data; (4) building Fault Detection and Diagnos-
tics (FDD) using advanced algorithms and calibrated mod-
elling; and (5) advanced building performance data visualiza-
tion on top of 3D BIM model. This paper will describe the
methodologies that are being developed while demonstrating
the ongoing processes by a case study of Canal Building, a
part of DCI project. While the project is only one year old,
impactful examples have already demonstrated BIM as an in-
valuable technology that improves indoor environment qual-
ity, reduces energy costs, and has a potential application for
asset management.

INTRODUCTION
In Canada, buildings are responsible for about 50% of total
electricity use, 35% of total greenhouse gas emissions, and
15% of total water consumption [25]. Canadian Universi-
ties have an average energy usage intensity of 2.59 GJ/m2
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per year, 68% more compared to commercial and institu-
tional buildings’ average [24]. Carleton University campus
has an annual utility cost of $12 million, an average of $30/m2

or $400/student. Carleton University Facilities Management
and Planning Department has suggested that numerous op-
portunities exist in building operation to significantly reduce
energy consumption.

Past research showed that proper commissioning and main-
tenance can reduce energy use by 20% or more [23], with
payback period ranging from several days to years [26]. Al-
though often conducted as a one-time performance assurance
activity, the commissioning process can also extend through-
out the operation phase to solve operational problems and im-
prove performance [22]. Past projects have shown continuous
commissioning can reduce energy cost as much as 25% [22].
Thanks to the development of building sensor network and
data storage, building operation data can be used to largely
automate the continuous commissioning process. Thus there
is a tremendous value to provide better access to building per-
formance data and building information.

An efficient and easy-to-use information infrastructure was
not available in the past, but in recent years Building Informa-
tion Modelling (BIM) is becoming as a powerful technology
to establish a comprehensive multi-faceted digital model of
physical and functional aspects of buildings that can support
data communication, analysis and commissioning activities
throughout the building life-cycle [4, 14]. Integrating BIM
in building operation and maintenance can decrease opera-
tion risk and costs, as well as maintain facility management
quality [7], though this application is rarely seen in practice,
especially for university campus. Building information from
BIM models can feed to the automated continuous commis-
sioning process to improve the information flow and reduce
manual input.

Thanks to the interoperability of BIM, Building Performance
Simulation (BPS) can also be added to the picture. BPS
provides quantifiable analysis to evaluate various aspects of
building systems, and over the past 50 years has been devel-
oped into a variety of programs performing simulations such
as energy consumption, thermal comfort and lighting [10], al-
though it is still rarely used in maintenance and operation due
to intensive labour requirements and costs [6]. Integrating



BIM, BPS and building performance data with proper inter-
operability could reduce the cost barrier and fully exploit the
BPS analysis, but more research is needed for large scale im-
plementations [8].

With the help of BIM technology, BIM-enabled Information
Infrastructure (BIM I2) for fault detection and diagnostics
(FDD) proposed by Dong et al. can be adopted [13]. FDD
is used to identify problems in building systems for continu-
ous commissioning process. Compared to conventional FDD
used in many existing Building Energy Management (BEM)
systems, which often focus on controls and mechanical equip-
ment, FDD based on BIM I2 uses a holistic approach that
covers all building system and improves information flow and
diagnostic effectiveness [13]. The extra data made available
by BIM and BPS also enables more feature extractions and
complex model-based diagnostic algorithms. To better visu-
alize the building performance and diagnostics results, tools
like Project Dasher [3] makes it possible to generate hierar-
chical and spatio-temporal representation of the building per-
formance from space level to whole building level by using
data from BIM model.

Digital Campus Innovation Project
In early 2014, Digital Campus Innovation (DCI) project
started its pilot phase of integrating all the above-mentioned
technologies into BIM-enabled information infrastructure on
a campus scale. Similar projects on a building scale have
been investigated recently by other research teams, such as
an office building in Toronto [2] and a two-story recruit bar-
rack in Illinois [13]. The main objective of DCI is to ap-
ply an integrated BIM, BPS and the continuous commission-
ing process on a campus scale, providing a useful platform
for building operators and other stakeholders such that they
can make informed decisions and efficiently explore opera-
tional improvement strategies. The team will also generalize
its methodology for widespread implementation in the future.
The vision is to have a common model that exists and continu-
ously evolves from design to construction and throughout the
operation and maintenance phases, until the reuse or demo-
lition of the buildings. Figure 1 shows the current structure
of the DCI project. Besides building models, other campus
infrastructure will also be digitized and in the future campus-
level analysis and diagnostics will be performed. This paper
will focus on the building level of the DCI project. The high-
lighted parts in Figure 1 will be discussed in the paper with
the case study of Canal Building.

The Canal building was one of the first buildings to be mod-
elled in DCI. It is a seven-story mixed-use building with total
floor area about 7700 m2. The building began its operation
in 2011 and includes a large variety of functional space such
as private offices, open-plan offices, lecture rooms, computer
labs, design labs, research labs, conference rooms and other
facility rooms. There are two small air-handling units (AHU)
designated for the mechanical rooms; the rest of the building
is conditioned by two separate air-handling units. The heating
system uses campus steam generated at a central plant and the
cooling system uses a water glycol loop which also supplies
another building. The air distribution system is single-duct

Figure 1. Digital Campus Innovation Project Structure

VAV with reheat and radiant panels to reduce cold surfaces.
The windows of this building are double-glazed with air gaps
of 13.5mm, and the exterior walls have varied R-values rang-
ing from R-12 to R-24. The building is also equipped with
more than 2500 sensors to collect data needed in the DCI
project. Since the Canal Building represents typical educa-
tion buildings on campus with comprehensive documentation
and abundant sensor data, it serves as a good starting point for
the DCI project and helps to set up a framework for all other
buildings on campus.

BUILDING MODEL DEVELOPMENT
Models for several recently constructed buildings, including
the Canal Building, are constructed first in Autodesk R©Revit
2014 which is the main tool for architectural and analytical
model development. Figure 2 illustrates the entire building
model development process. EnergyPlus 8.1 was selected as
the BPS tool in place of DOE-2 used in Green Building Stu-
dio in Revit, due to its versatility and capability of simulat-
ing complex building system and its continuous development
of new simulation modules [13]. To achieve interoperabil-
ity between BIM and BPS tools, gbXML was selected as the
primary file format for modelling and data storage due to its
simplicity and capability for fast prototyping [12].

Figure 2. Building Model Development Process

Architectural Model Development
The architectural model created in Revit serves as the founda-
tion of BIM I2 for DCI project and therefore affects the results
of all the analysis in later steps. To achieve good accuracy of
the model, the team checked and compared layouts and plans
provided by the facility management department of Carleton
University. Any discrepancy found across the drawings was



resolved through site visits, photography or laser scanning if
possible. Figure 3 shows a comparison of the exterior view
of Canal Building between a photo of the actual building and
and a combined image of Revit model and BPS model.

Figure 3. Real image (left), Revit model (top right) and BPS model (bot-
tom right) of Canal Building

Although Revit is highly capable of developing detailed and
complex models, there is a good possibility that high polygon
models may not be translated to gbXML format or rejected by
BPS tools. The team had to find a balance between the level
of detail and the interoperability of the Revit model in order
to achieve a smooth transition of the model from Revit to the
BPS tool. Strategies used in similar projects for this purpose
were reviewed and tested in DCI project [11, 5]. The fol-
lowing major modelling strategies were adopted by the team
during the development of architectural model:

1. Simplify complex geometries
Most BPS tools have problems interpreting surfaces (like
walls, roofs and floors) or sub-surfaces (like windows, doors)
with irregular shapes or round shapes. Therefore building
components with irregular or complex surfaces and large
number of surfaces were modified in order to simplify geom-
etry, preventing system crashes, errors and long simulation
time.

2. Properly define curtain walls
A curtain wall that makes up a whole building façade is usu-
ally modelled as a single unit in Revit. However in Energy-
Plus, fenestrations can only be represented as sub-surfaces,
which means that the curtain wall has to be modelled as a
window inside a wall. The team therefore translated the cur-
tain wall elements to windows (with frame) with equivalent
thermal and optical properties so that this design can be cor-
rectly interpreted by the BPS tool.

3. Properly define non-space bounding elements
Not all elements need to be input into the BPS tool. For ex-
ample structural elements such as beams and columns in in-
terior spaces often have minimal influence over thermal per-
formance and should not be included to the building energy
model. With simulation requirements in mind, the team iden-
tified elements that can be neglected and set their properties
as non-space bounding.

Analytical Model Development
After the Revit model was properly developed, the team pre-
pared the analytical model in order to output it as a gbXML

file that is compatible with the BPS tools. The analyti-
cal model translates information of ”rooms” in architectural
model to ”spaces and zones”, which are used in the simula-
tion later. To prepare the analytical model properly, the team
adopted the following practices:

1. Properly define spaces
In cases where spaces are not bounded by actual structures,
such as large open spaces controlled by separate HVAC ter-
minal units, space boundary lines were manually defined to
separate the space into appropriate compartments with corre-
sponding thermal interfaces. In some rare cases, where sev-
eral rooms use the same controller and if the rooms are very
different from each other, each room is defined as separate
space.

2. Properly define space boundaries
The boundaries of each space were properly defined to ensure
the accuracy of the geometric model in BPS. In EnergyPlus,
space dimensions are defined from the interior surface, thus
the space boundaries in the analytical model were calculated
from the interior side of each surface.

3. Space volume computations
A space volume computation method was used for the analyt-
ical model to accommodate the varying height of each space.

Model Checking and Conversion
Before exporting the analytical model as a gbXML file, the
team performed following checks to ensure the model was
interoperable:

1. Proper enclosure of all spaces
If a space is not properly enclosed in the model, most BPS
tools will reject it and simulation cannot carry on. If a build-
ing space has disjoint surfaces, surface boundary lines must
be drawn to enclose the space.

2. No nested spaces
Current gbXML format does not support nested spaces, i.e. a
space wholly contained within another space. If this situation
occurs, it was resolved by separating and dividing the sur-
rounding spaces of the nested space using manually defined
space boundary lines.

When the analytical model passed all the checks, it was ex-
ported as a gbXML file. The gbXML file was checked for its
validity before it was input to BPS tool - EnergyPlus in this
case. The BPS model was tested for its functionality; error
and warnings from EnergyPlus simulation results were used
to adjust the analytical model and gbXML file. The process
was repeated for several iterations to finalize the BPS model.

The conversion process from the Revit architectural model to
the BPS model was largely manual due to the different and
even conflicting requirements for these two different types
of models. The team has been continuously searching for
better practices of model development and model conversion
and experimented with different model techniques during pi-
lot phase of DCI project. As more buildings are added to DCI,
a standardized guideline for developing and converting Revit
models will be developed and refined.



MODEL CALIBRATION
When the BPS model is completely set up and the corre-
sponding weather file is selected, a simulation is performed
and results produced. Simulation results can be significantly
different from measured building performance [29], which
makes model calibration a crucial and effective step to ver-
ify and improve the BPS model [21] so that the simulation
can produce meaningful results for building analytics, fault
detection and predictive simulation. Two calibration methods
were proposed for this project: an evidence-based method by
Raftery et al. [27] and an analytical optimization method by
Sun et al. [28]. Evidence-based method uses a manual input
calibration procedure that relies on evidence obtained from
design drawings, measurements, sensor readings, etc. [27].
This method proposed a hierarchy of evidence reliability and
a version control strategy, but can be time consuming and
enough evidence is not always available for all inputs. On the
other hand, the analytical optimization method uses a math-
ematical and statistical procedure to automatically determine
the input value, and has better performance than pure stochas-
tic processes. However tweaking high number of unknown
parameters can still yield unsatisfactory results, so some form
of input parameters calibration before analytical optimization
is required [28]. To combine the advantages of both methods,
a joined evidence-based and analytical optimization method
was developed by Coakley et al. [9] and was adopted in DCI
project. The team has decided to conduct an evidence-based
calibration with available data and follow up with analytical
optimization method to determine input values for variables
that cannot be supported by evidence. This paper focuses on
the evidence-based part of the calibration that has been car-
ried out for Canal Building at this stage of the project. With
each iteration of the calibration process, BIM model and BPS
model were updated and version managed.

Weather data calibration is the most important step of
evidence-based calibration [27] and should be preformed be-
fore building model calibration. Using historical weather data
corresponding to the performance data instead of a standard
weather file can greatly remove the weather factor from the
discrepancy between the simulation results and actual data.
Weather data was obtained from a weather station located on
the rooftop of the building. It measures weather data at five-
minute intervals from four temperature sensors, one humidity
sensor, two wind speed/direction sensors and six pyranome-
ters with different tilt angles. Diffuse radiation is not directly
measured and was extrapolated from different pyranometers.
The weather data was automatically compiled to EnergyPlus
weather file format and used in simulation.

The evidence-based calibration method is applicable for most
parameters in the building model since this project has a large
and growing pool of evidence, lots of effort has been ded-
icated to this ongoing calibration process. Since each zone
has independent schedules and internal load parameters, each
zone was calibrated individually first to improve the accuracy
of the calibration, and then the overall building-level calibra-
tion was performed.

Figure 4. Average faculty office occupancy

One source of evidence for calibration is from design docu-
ments. Most of this information, such as architectural, struc-
tural, and construction drawings, was already incorporated
in the Revit model. Then the model was updated based
on newly available as-built document from Facility Manage-
ment. However, even the as-built documents may be differ-
ent from actual condition and not all the system information
required by BPS were included in those documents. Direct
observation through on-site audit, a more reliable evidence
source than design and as-built document, was used to up-
date the model so that it reflects the actual condition of the
building.

Abundant sensors installed in Canal Building provide build-
ing operation data, which could also be used as a source of
evidence for calibration. For example, the schedules pro-
vided by Carleton University were used as inputs for occu-
pancy schedules in classrooms and teaching labs. For faculty
offices, due to the variation of schedules from day to day and
from person to person, occupancy schedules have to be ex-
trapolated from the building sensor network. With data from
occupancy sensors in individual faculty offices, an average
occupancy schedule for weekdays was extrapolated (Figure
4) and used in the model. Although sensor data is good ev-
idence as it reflects some actual building usage values, sen-
sor calibration and data noise reduction are necessary steps
to take before calibration. For the above example, occupancy
durations shorter than 30 minutes were filtered out from the
data, since those readings were likely noises caused by sensor
error, cleaning staff or other transient occupancy.

In cases where the values of some parameters could neither
be obtained from design documents nor sensor data, an on-
site audit was required. For instance, equipment power den-
sity depends on the number and types of equipment used in
each zone; this information is not documented and there is no
sub-metering in individual rooms and labs. Therefore a walk-
through of all major rooms in Canal Building was carried out
to assess equipment power ratings. For special equipments
such as laboratory equipments, specifications were obtained
from name plates. Special attention was also given to spaces
that hold large amount of equipments (e.g. computer lab) or
special equipments (e.g. research lab). For parameters whose
values can not be verified through auditing, analytic calibra-
tions will be performed later.

To compare the results from calibrated model and actual en-
ergy consumption, it is preferable to have hourly and sub-



Figure 5. Annual lighting and equipment electricity consumption

Figure 6. Daily equipment consumption during 2013 Fall Semester

metered utility data [27]. Unfortunately, only part of the util-
ity data was available at this point and the limited number
of data points was not enough for fine-tuning the building
model input. The utility data available were building plug
load (equipment) electricity consumption and building light-
ing electricity consumption. Other utility data such as cooling
energy consumption and heating steam consumption are still
in the process of calibration.

Figure 5 compares the measured and simulated results of an-
nual plug load and lighting consumption. The lighting energy
consumption calculated based on lighting fixtures design in
BIM file and campus schedule produced an over estimation
of 32% while the simulated plug load has a better agreement
with the measured data with an error of 7%. The plug load in-
puts were calibrated through audit as mentioned above, while
the lighting load inputs were calibrated using document only.
This confirmed the importance of selecting more direct and
reliable evidence for calibration. Figure 6 compares mea-
sured and simulated daily plug load for the Fall Semester in
2013. EnergyPlus uses fixed weekly schedules and the simu-
lation results do not reflect daily variations and small events
such as exams that significantly lowers the average occupancy
rate. These variations due to stochastic behaviours of occu-
pants could have huge impact on energy use on space level
[16] and therefore are important when performing space-level
diagnostics using calibrated BPS results. One approach to im-
prove this is to use stochastic occupant schedule [17] and will
be investigated in the future.

Figure 7. FDD Module Schema

BUILDING DIAGNOSTICS
There are three major types of FDD methods: quantita-
tive model-based, qualitative model-based and process his-
tory based [20]. The goal of DCI project is to employ all
three methods, but in this phase of the project a combination
of qualitative model-based and process history based FDD
is used. Qualitative models such as rule based models are
qualitative relationships from knowledge of the system. Pro-
cess history method is purely based on historical data, sen-
sor and BIM model data in our case. The team developed
a FDD module that analyses the data from both sensor and
BIM model, performed qualitative analysis to extract extra
features from the data. A graphical user interface is under de-
velopment, allowing user to manually generate or to schedule
a diagnostic report. Figure 7 shows the structure of the FDD
module. FDD in the DCI project is focused on three areas:
sensor reliability, energy performance and thermal comfort.
In this paper diagnostics of thermal comfort problem in the
Canal Building will be presented.

Thermal comfort is an important design goal of the HVAC
and control system but can only be verified and studied dur-
ing the operation and maintenance phase of the building life-
cycle. Of all 215 buildings surveyed in U.S., Canada and
Finland, only 11% have more than 80% of the occupants sat-
isfied with thermal comfort [18] while the ASHRAE Stan-
dard 55-2013 and ISO standard 7730:2005 both require 80%
of the occupants to be satisfied with thermal comfort [19, 1].
Some thermal comfort problems are results of over-cooling,
over-heating, or malfunctioning HVAC equipment and there-
fore, accurate and prompt detection of the thermal comfort
problem could often detect energy performance issues. Con-
tinuous monitoring and maintaining proper thermal comfort
could ensure that productivity of the students and faculties
are not negatively affected.

Thermally uncomfortable conditions of a building over an op-
eration period should be quantified first in order to perform
the diagnostics. One methodology is the degree-hour method
proposed in European Standard EN 15251 [15]. This method
uses the product of time and temperature difference outside



Figure 8. Average hourly building temperature degree lower than 21◦C
weighted by floor area

comfort range to aggregate the degree of over-cooling and
over-heating over time. Another metric used is degree out-
side comfort range of each room weighted by its area, floor
area weighted temperature provides a more accurate repre-
sentation of the whole building than average of all thermostat
data. The data used for the analysis is from Nov 1, 2013 to
Oct 31, 2014 on 3-minute intervals. Only reliable sensor mea-
surements within regular office hours were used. The comfort
range is assumed to be 21◦C – 25◦C during office hours.

Based on preliminary analysis, overall temperature of the
Canal Building tended to be too low. Over the whole year
during occupied hours, over 35% of the time at least one room
is below the thermal comfort range, and for every room on av-
erage 13% of the time, the temperature is below 21◦C. This
has been further verified by on-site visit and surveys of oc-
cupants. Low indoor air temperatures can be caused by ei-
ther over-cooling or under-heating. Over-cooling often indi-
cates improper HVAC control and resulting in energy waste;
whereas under-heating indicates that the heating system is too
small to handle the building heating load. Over-cooling could
be possibly fixed by control tweaking; while under-heating
might need equipment upgrades.

Figure 8 separates over-cooling and under-heating occur-
rences of the whole building by plotting the floor area
weighted temperature difference under 21◦C (y axis) against
the outdoor temperature (x axis) for each operating hour of
the whole building. Green dots represent data during the
cooling period, red crosses during heating period, and black
squares for hours when heating is required but not supplied.
As shown in the Figure 8, under-heating (red crosses) occurs
mostly at very low temperatures (<-15◦C) and the average air
temperature were above 20◦C most of the time, so the under-
heating problem is not significant. On the other hand over-
cooling (green dots) was significant in the building. Since
dehumidification process is handled by the cooling coil and
there is no reheat coil in the air handling units, dehumidifi-
cation may also cause low supply air temperature and result
in the over-cooling of the building. A further analysis found
that dehumidification process had no meaningful correlation
with the over-cooling problem.

To further understand the over-cooling problem observed, the
team investigated whether the problem was associated with
a specific room parameter in this mixed-use building. Fig-
ure 9 shows annual degree-hour over-cooling of each room
verses room type, room area, room orientation and window to
wall ratio (WWR) with correlation coefficient (r) values plot-
ted in the title section. The room parameters were automati-
cally calculated from the BIM file. No significant correlations
have been found between over-cooling and room parameters,
except North facing rooms have slightly more over-cooling
than other rooms. This may be caused by variations of solar
radiation and/or Air Handling Unit One (AHU1) which con-
ditions only the north facing rooms, whereas Air Handling
Unit Two (AHU2) conditions all other rooms. Since the over-
cooling problem is not likely associated with room properties,
it’s more likely related to HVAC issues.

Upon further analysis the correlation between the over-
cooling and various HVAC sensor data we have found that
over-cooling problem was caused by high supply air flow and
over-pressurizing of the building. Figure 10 shows some of
the selected plot between floor-area weighted building aver-
age over-cooling temperature and several HVAC parameters
including return air CO2, outdoor air temperature, fresh air
energy flow which is a combined effect of indoor/outdoor
air enthalpy difference and damper position, and cooling coil
chilled water supply. The building tends to over-cool more
when there is higher occupancy indicated by more return air
CO2, and since supply air temperature is constant for the VAV
system, the over-cooling is likely caused by high supply air
flow. The two AHUs are identical, but AHU1 conditioned
15% less floor area and controls the space where receives less
solar radiation, thus showing a stronger correlation (higher r
value) with outside air temperature and fresh air energy flow
than AHU2. Since AHU1 conditions north facing spaces with
lower return air temperature, AHU1 has less need to cool the
air with cooling coil, making its over-cooling points shifted
towards lower chilled water supply. Upon checking build-
ing control, we confirmed this diagnostics: supply air flow
controlled by both AHUs were using the same proportional
control logic designed for full building occupancy based on
supply air CO2 and temperature, whereas almost half of the
building was still unoccupied; the decreased internal heat gain
made the building over-cooled and lowered thermal comfort.

BIM I2 enabled FDD process shows promise and provides in-
depth analysis of the building performance, but the process
is still not fully automated. In the future, quantitative based
models and calibrated BPS models need to be implemented
to achieve fully automated diagnostics and improvement sug-
gestions.

FUTURE WORK
During the next phase of the DCI project, the team will com-
plete the following tasks at the building level:

1) Acquire and calibrate sensor data and hourly sub-metered
utility data for further evidence-based calibration and analyt-
ical optimization calibration.



Figure 9. Annual degree-hour over-cooling verses room parameters

Figure 10. Floor area weighted over-cooling verses HVAC variables

2) Develop diagnostics algorithms for sensor data mining,
quantitative FDD, and predictive simulation for performance
improvement.

3) Apply model based FDD techniques.

4) Standardize the procedures and add other buildings in DCI
to BIM platform.

5) Perform advanced building performance visualization us-
ing Project Dasher.

CONCLUSION
One year into the DCI project, the team has set up the frame-
work with BIM technology. The impact of integrating BIM
and BPS into the operation and maintenance of building was
promising. The BPS model development and calibration pro-
cess and sensor data exploiting processes benefited from BIM
tools like Revit. The process of model development, con-
version and calibration reported in this paper could be im-
plemented for other buildings in the DCI project. Thermal
comfort diagnostics using BIM and BAS data already dis-
covered over-cooling problems in the Canal Building; solv-

ing this problem can improve both thermal comfort and en-
ergy performance of the building. In the future, DCI project
will focus on acquiring more reliable data and provide quan-
titative results of evaluating improvement options by using
a calibrated building model. Next, the methodology will be
generalized from the pilot building and be applied to more
buildings on Carleton University campus.
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