
Dive In! Enabling Progressive Loading for
Real-Time Navigation of Data Visualizations

Michael Glueck
1,2

, Azam Khan
2
, Daniel Wigdor

1

1
Dept. of Computer Science

University of Toronto

{mglueck|daniel}@dgp.toronto.edu

2
Autodesk Research

Toronto, Ontario, Canada

{firstname.lastname}@autodesk.com

Figure 1: The Splash framework enables real-time navigation for client-server visualization systems by progressively loading data.

(a) A user viewing part of a dataset (b) pans to the left and a coarse version of missing data is downloaded and displayed immedi-

ately, until (c) the fine data are finished downloading and are displayed. Splash streamlines the process of creating and automates

retrieving these level-of-detail versions for both data curators and visualization developers.

ABSTRACT

We introduce Splash, a framework reducing development

overhead for both data curators and visualization develop-

ers of client-server visualization systems. Splash stream-

lines the process of creating a multiple level-of-detail ver-

sion of the data and facilitates progressive data download,

thereby enabling real-time, on-demand navigation with ex-

isting visualization toolkits. As a result, system responsive-

ness is increased and the user experience is improved. We

demonstrate the benefit of progressive loading for user in-

teraction on slower networks. Additionally, case study

evaluations of Splash with real-world data curators suggest

that Splash supports iterative refinement of visualizations

and promotes the use of exploratory data analysis.

Author Keywords

Client-server; data visualization; progressive-loading; real-

time interaction

ACM Classification Keywords

H.5.2 [Information interfaces and presentation]: User Inter-

faces. - Graphical user interfaces.

INTRODUCTION

In client-server visualization systems, data is stored on re-

mote servers and then transmitted on-demand to client ap-

plications. This architecture provides flexible, scalable ac-

cess to data across a variety of platforms and devices. How-

ever, supporting real-time visual exploration remains a

complex undertaking, especially as the size of a dataset

grows. For example, if the volume of data is too large to

display coherently on the screen at one time, a developer

must allocate additional development resources toward im-

plementing methods of data reduction, the creation of a

coarser-grain level-of-detail (LOD), and most importantly

navigation, such as zooming and panning. If data is reduced

carelessly or if visual exploration of the data is omitted due

to the added development overhead, the opportunity to find

errors, inconsistencies, or anomalies is lost. Even powerful

automated methods of analysis, such as statistical measures

and tests, or machine learning-based models, can only re-

veal a partial perspective on a dataset. A visual verification

step that allows results to be explored, inspected, and navi-

gated is desirable and beneficial [12].

User interaction in client-server systems typically occurs as

a stepped transaction: user input invokes a network request

for additional data, which must be fulfilled before an update

can be displayed. Subject to network conditions, such as

latency and throughput, these network requests become a

dominant factor hindering a smooth user experience. If a

user must wait for the system to respond, the result is a bot-

tleneck to interaction. Latency has long been known to neg-

atively impact user performance [23]; as little as 10ms of

latency has been found to be noticeable when interacting

with touch screens [25].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

the author(s) must be honored. Abstracting with credit is permitted. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2014, April 26 - May 01 2014, Toronto, ON, Canada

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2473-1/14/04…$15.00.

http://dx.doi.org/10.1145/2556288.2557195

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

561

Navigation operations such as resizing the view, zooming,

scrolling, or panning all require downloading additional

data to the client. Common strategies, such as a priori cli-

ent-side caching, benefit smaller datasets, but do not scale

well as the size of data increases. Facilitating real-time nav-

igation with vast server-stored datasets is non-trivial: it

generally requires (1) that the client system can randomly

access any portion of the dataset, and (2) that the server and

client systems work in tandem to filter, aggregate, or

resample the data on-the-fly to render a visualization in

real-time.

Visual patterns and features seem to automatically jump out

at the human eye; this is precisely why data visualization

lies at the core of exploratory data analysis, an approach

that foregoes a priori assumptions of the data model and

allows patterns to emerge through visual exploration [31].

Not only does visual exploration serve to debug and vali-

date the results of automated methods but also, more im-

portantly, it supports opportunistic discovery. We believe

real-time navigation is critical to visual exploration, as it

facilitates an uninterrupted interaction dialog with the data,

and encourages diverse and flexible questions to be asked

and answered. As Cleveland put it: “To regularly miss sur-

prises by failing to probe thoroughly with visualization

tools is terribly inefficient because the cost of intensive data

analysis is typically very small compared with the cost of

data collection.” [7]

In this paper we present Splash, a framework that enables

easy development and modification of client-server visuali-

zation systems to include smooth and continuous, rather

than stepped, navigation (see Figure 1). This is accom-

plished through two key modifications to the traditional

client-server model. First, on the server-side, Splash stream-

lines the specification of a LOD hierarchy and the pre-

computation of a multi-scale version of the dataset. Second,

on the client-side, Splash manages fetching these LODs

from the server by automatically selecting an appropriate

target LOD to display and then progressively downloading

increasing resolutions until this target is reached. Thus, re-

al-time, on-demand navigation is achieved by ensuring the

highest resolution data can be rendered at interactive frame-

rates and by minimizing the duration of the first network

request associated with an interaction.

We start by demonstrating the user performance benefits of

enabling real-time navigation for visual search tasks com-

mon in exploratory data analysis. Building on these positive

results, we discuss considerations informing the design of

the Splash framework, detail the developer experience, and

describe the architecture of the framework. Next, we report

on deployment case studies evaluating the process of select-

ing a useful LOD hierarchy and aggregate measures. Final-

ly, future directions are discussed.

BACKGROUND AND RELATED WORK

In a visualization, navigation offers users freedom and flex-

ibility to control how data is displayed ad hoc. Using Yi et

al.’s taxonomy of user interaction tasks, navigation falls

under the explore user interaction [32]. Prompt resolution

of interaction transactions is critical to preventing bottle-

necks – but how fast is fast enough? We frame our discus-

sion along two dimensions: (1) flow between inputs, using

Spence’s terms continuous and stepped [30] and (2) system

responsiveness, using Seow’s terms instantaneous and im-

mediate [29]. Continuous interaction characterizes inputs

which can be mapped to a continuous function, such as

click-and-drag panning, while stepped interactions are dis-

crete operations, such as clicking a zoom-in button. Accord-

ing to Seow, instantaneous responses are those that occur

within 100 to 200ms after input, while immediate responses

are between 500 and 1000ms. Thus, navigation through

direct manipulation should be continuous and instantaneous

– what we dub real-time.

Splash maintains real-time navigation by automatically de-

termining the optimal LOD and progressively downloading

additional data, thus mediating the density and download

size of plotted data points. Splash has benefited from a

study of existing interactive visualization toolkits, real-time

interaction with multi-scale data, and progressive down-

loading of visual information, which we summarize here.

Interactive Visualization Toolkits

Interaction has grown in prevalence with the emergence of

generalized visualization toolkits, such as the InfoVis

Toolkit [10] and Prefuse [17], which simplified implemen-

tation for visualization developers. Pad [26] introduced the

zooming user interface, where multi-scale environments

can be explored through panning and zooming navigation.

Pad++ [1] utilized image-based LOD pyramids and degrad-

ed image representations to mediate visual clutter and im-

prove responsiveness; ZVTM [27] extended these princi-

ples to interactive visualizations. More recently, the D3

toolkit [2] incorporated out-of-the-box behaviors for pan-

ning and zooming navigation for web-based visualizations.

While all of these toolkits simplify the transformation of

arbitrary data into visual representations, the onus remains

on the visualization developer to (a) define, generate, and

manage a multi-scale version of the dataset, and (b) select,

load, and cache specific LODs for display. Splash modifies

process (a) above by introducing the data curator role, a

domain expert who explicitly defines a multi-scale data

model. This model-based LOD pyramid ensures that the

important attributes defined by the data curator remain vis-

ually salient. Splash then generates and manages the result-

ing multi-scale dataset. Next, all parts of process (b) are

automatically handled by Splash, ensuring real-time inter-

action is maintained. The visualization developer need only

map data from Splash to the format expected by the visuali-

zation toolkit. Thus, Splash is designed to be used in tan-

dem with existing visualization toolkits.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

562

Real-Time Interaction with Multi-Scale Data

Custom visualization systems have addressed improving

system responsiveness. The Control Project demonstrated

responsiveness of direct-query visualization systems could

be improved by monitoring rendering time and dynamically

reducing visualization complexity to increase frame rates

[19]. ATLAS ensured real-time interaction by initiating

distributed computation of data aggregates prior to being

requested by the visualization, by anticipating user inten-

tions [5]. In contrast, Cloudvista employed a randomized

batch-scheduler to generate aggregates for data ranges re-

lated to the current data view [6]. In both cases, on-the-fly

aggregation of data must be scheduled in advance of a cli-

ent-side request to maintain real-time interaction, due to the

inherent scheduling latency of distributed computation.

Thus, all of these systems are limited by requiring the adop-

tion of custom data storage, computation, and visualization

systems. The Splash framework supports bindings to be

written quickly for existing data servers. Real-time naviga-

tion is achieved through the storage of pre-computed data

aggregates on commodity hardware.

Progressive Download

Displaying a low fidelity representation prior to loading a

high fidelity version has long been utilized to ensure re-

sponsive interaction [4,14,19]. It is commonly found in

bitmap interlacing algorithms, such as Adam7 in the PNG

format, and in geospatial tools, including the popular map

website Google Maps. In addition to the obvious user expe-

rience benefits, this technique has been shown to support

quicker identification of images [16] and enable faster vid-

eo scrubbing [24]. Informed decision-making can be sup-

ported by sacrificing precision for speed through progres-

sively-refined partial query results [13]. Pre-computed ag-

gregates have also been used to facilitate real-time visual

analytics for text [3]. Progressive loading clearly has broad

applications; however, there is a lack of generalized support

for information visualization tools. Using Splash adds pro-

gressive loading to existing interactive visualizations.

Computing LODs for arbitrary datasets in unknown do-

mains was a challenge in the development of Splash. Unlike

down-sampling images, creating lower fidelity aggregates

of arbitrary data is highly task and domain specific [14].

The present work does not seek to contribute novel aggre-

gation methods; for further reading please refer to general

concepts [8,15] and data structure specific guidelines [9].

Instead, we design our framework such that the data model,

LOD hierarchy, and aggregate measures are fully customi-

zable by the data curator, thereby supporting both arbitrary

data types and aggregation methods. This ensures that the

useful aggregate can be selected given the type of data, user

task, and data domain.

The Splash framework is designed to work with existing

visualization workflows. In the next section, we investigate

the benefits and disadvantages of progressive downloading

to user performance in data visualization tasks.

MOTIVATING PROGRESSIVE DOWNLOAD

Progressively-downloading data enables real-time interac-

tion by sequentially loading LODs of increasing resolution:

a coarse LOD is quickly downloaded and displayed first

while the fine LOD is continuously downloading, providing

pleasingly smooth, on-demand interaction (see Figure 1).

Aside from improvements in smoothness, we believed pro-

gressive downloading would improve performance of cer-

tain exploratory data analysis tasks when network through-

put is lower. Intuitively, the scale for potential improvement

depends largely on the utility of the coarse LOD to a given

task. We also considered that progressive downloading in-

curs an additional data download cost over non-progressive

download. To understand whether users would find this an

advantage or disadvantage, we designed a study to contrast

user performance between progressive and non-progressive

data loading methods under differing network throughput

conditions and varying degrees of coarse LOD utility.

Tasks and Coarse LOD Utility

Prior user studies have investigated visual comparisons

across non-navigable data views, such as multiple time-

series plots [18,20,22] and animated charts [28]. Visual

search while navigating has been studied as a streaming

video scrubbing task [24], but not, so far as we are aware,

for data visualization. We draw inspiration from these stud-

ies and propose three visual search tasks for navigation:

coarse feature, global feature, and fine feature (see Figure

2). In each task, the participant scrolls the data visualization

to center the target feature within the viewport. To generate

the coarse LOD, we use an aggregate consisting of the

mean and maximum/minimum, visualized as a line and a

shaded range, respectively. When paired with each of these

three tasks, this aggregate provides varying degrees of as-

sistance, ranging from low, when the coarse LOD provides

no help regarding the target, to high utility, when the target

can be already found merely by inspecting the coarse LOD.

Figure 2: Example target features: (a) the maximum value of

the dataset, (b) the shift in the mean value, and (c) a specific

value. The coarse LOD offers varying utility to identifying the

feature at the fine LOD. (Arrows are illustrative)

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

563

Coarse feature: The coarse feature target is only identifia-

ble when it appears in the viewport, but remains salient in

the coarse LOD (adapted from “random” [24] and “max”

[20,22] tasks). In our study, we chose the maximum value

in the dataset (see Figure 2a). This task simulates high utili-

ty, where visual confirmation of target presence can be

made merely by inspecting the coarse LOD.

Global feature: The direction to the global feature target is

immediately apparent based on overall trends of the data

(adapted from “ordered” task [24]). In our study, this fea-

ture appears as an overall shift in the mean (see Figure 2b).

This task simulates moderate utility, where the trends of the

dataset inherently support user orientation and recovery

from overshoots when scrolling quickly. Thus, lower laten-

cy primarily aids the user, rather than the coarse LOD.

Fine feature: The fine feature target can only be found once

the finer LOD is displayed in the viewport (adapted from

“random” [24] and “comparing values” [18] tasks). In our

study, this feature appears as a small disc superposed only

on the finer LOD (see Figure 2c). This task simulates low

utility because the coarse LOD delays the display of the

target. Since the task emulates careful searching of details,

we posit external validity.

Hypotheses

H1: For task/aggregate pairings with high utility, completion

time will be lower with progressive loading on slow networks.

H2: For task/aggregate pairings with low utility, completion

time will be higher with progressive loading on slow networks.

Participants and Apparatus

Twelve volunteer participants (7 female) with mean age 26

(min: 20, max: 34) were recruited from the community, and

paid $20 for a 60-minute session. Mean reported computer

usage was 35 hours/week; none worked as a data analyst.

Participants performed the study in a private study room

using a desktop computer configuration (2.5 GHz dual-core

/ 3GB RAM) running Windows 7 (64-bit), with a 24-inch

LCD monitor displaying a resolution of 1920x1200 pixels.

Participants were seated 20 inches away from the monitor.

A horizontal scrolling interface, with a scrollbar at the bot-

tom, simulated an interactive time-series visualization. The

viewport was 800x400 pixels (8.5x4.25 inches) in size.

Download speed was simulated: 1.5Mbps for mobile and

25Mbps for broadband, both with a fixed latency of 200ms.

Data were generated using a random-walk function, similar

to [18], with dynamically authored target features (see Fig-

ure 2). The size of the dataset was fixed at six-times the

viewport width to ensure scrolling would be required.

Design

A repeated measures within-subject design, with independ-

ent variables: loading method (non-progressive, progres-

sive), network throughput (broadband, mobile), and target

feature (coarse, global, fine), yielded a 2x2x3 design.

Loading method and network throughput were crossed, and

target feature ordering was counter-balanced, resulting in 4

unique conditions per target feature. In each trial, target

position was a randomly generated position ¼ to ¾ through

the dataset. For each target feature, trials were divided into

6 blocks, each with 3 repetitions of each of the 4 conditions,

yielding 12 trials per block, 72 trials per target feature, and

216 total trials. We recorded task completion time as the

duration between the start of the first scroll operation to the

end of the last scroll operation, thus factoring-out prepara-

tion and acquisition time.

Results

Results are shown in Figure 3. A repeated measures

ANOVA with a Greenhouse-Geisser correction determined

that differences in mean navigation time were statistically

significant between all factors:

 loading method ()

 network throughput ()

 target feature ()

No effect was found between blocks, indicating absence of

learning effects. Post hoc tests using Bonferroni correction

revealed a significant difference in completion time be-

tween fine feature and both coarse and global feature tasks.

These results support our first hypotheses: coarse and glob-

al features were found more quickly (28.7%, 29.8%) in the

mobile throughput condition with progressive loading (H1).

Progressive loading improves user performance on mobile

networks to a level comparable to broadband when the ag-

gregate is sufficiently useful for the task. We were unable

to find support for our second hypothesis: although partici-

pants took slightly longer to find the fine features in the

mobile throughput condition with progressive loading

(5.9%), this difference was not statistically significant (H2).

This suggests that even when utility is low, progressive

loading does not significantly hinder user performance. In

contrast, performance in the broadband throughput condi-

tion indicated negligible differences between progressive

and non-progressive loading across conditions.

Thus, not only does progressive loading provide users with

a smooth real-time navigation experience, it also shows

clear benefits to user performance with minimal drawbacks.

Figure 3: Task completion times. Bars indicate a 95% CI.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

564

SPLASH FRAMEWORK DESCRIPTION

When designing Splash, our goal was a framework that
would be flexible and easily integrated into existing visuali-
zation workflows. Consequently, a logical separation of

client and server developer roles is reflected in the architec-
ture. Splash provides support for two distinct developer
roles: the data curator, who manages the data on the server,

and the visualization developer, who creates the visualiza-
tion for the end user, the data analyst (see Figure 4).

The Splash framework consists of three modules. First, on
the server-side, the data curator uses the Splash Aggregator

to blueprint a multi-scale version of the dataset and define
the aggregate measures used to generate LODs. Running
this utility pre-computes and stores the multi-scale version

of the dataset on the data server, along with the blueprint
metadata (see Figure 4, Steps 1-2).

Second, the data curator implements the Splash Data Inter-

face, a simple API used on the client-side to query the
metadata and multi-scale data LODs (see Figure 4, Step 3).
While this component must be instantiated by the visualiza-
tion developer, no configuration is necessary.

Last, on the client-side, the Splash Cache is used by the
visualization developer to route requests to the data server
(see Figure 4, Steps 4-5). When initialized, the Splash

Cache fetches the metadata from the data server and auto-
matically configures the transport of data between the client
and server. It seamlessly manages progressive downloading
and caching of LODs. The visualization developer simply

routes data requests through Splash; existing visualization
tools require little to no modification as a result.

Abstract interfaces between client and server components

of Splash enable support of a variety of data server technol-
ogies and visualization toolkits. Using Splash, many visual-
izations can be created for a single pre-computed multi-

scale version of a dataset or a single visualization can mix
data from multiple data sources.

We now describe each of these steps in greater detail.

Data Curator: Data Preparation and Access (Steps 1-3)

The following Python snippets illustrate the data curator’s
data model abstraction task. While terse, attributes of these
data structures are referenced in later examples. In practice,

we envision a UI would be used for configuration.

Splash Aggregator (Step 1)

The data curator starts by authoring blueprint metadata (see
Figure 4, Step 1). First, the dataset is uniquely identified
and the interval of the navigable data dimension(s) is de-

fined. For example, consider data from an environment sen-
sor, sampled every minute. Time is the only dimension. The
interval of timestamps to be processed is provided by

start_time and end_time:

dataName = ‘EnvironmentSensor’

dataDimensions = [{

 ‘name’: ‘Time’,

 ‘interval’: [start_time, end_time] }]

Next, the curator defines the mapping from an existing data

sample to a datum representation. Suppose the data source

provides a sample as an array, data. The timestamp of the

sample is stored as the position (along the dimension); mul-
tiple values can be linked to a position. At this stage any

element of data can be modified, such as converting from

strings to timestamps using strptime and mktime.

def datum(data):

 return {

 ‘position’: t.mktime(dt.strptime(data[0])),

 ‘values’: [

 { ‘name’: ‘Temperature’, ‘value’: data[3] },

 { ‘name’: ‘Humidity’, ‘value’: data[4] },

 { ‘name’: ‘Light’, ‘value’: data[2] }]}

A LOD hierarchy defines the size of the discrete bins to be

used for aggregation. In our example, the sensor data is
sampled every minute and is aggregated into hourly and
daily LODs, with relative sizes defined in milliseconds.

Additional variables can be configured to ensure proper
alignment to the start of hours and days.

lods = [

 { ‘name’: ‘minutes’, ‘size’: 60000 },

 { ‘name’: ‘hours’, ‘size’: 3600000 },

 { ‘name’: ‘days’, ‘size’: 86400000 }]

Figure 4: Overview of the Splash framework. The five steps required to integrate Splash into server- and client-side are divided

amongst the data curator and visualization developer roles. Implementation responsibilities of each are indicated by asterisks.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

565

The current LOD abstraction places two limitations on the

richness of the LODs that can be expressed. First, the LODs

must be a strict hierarchy: child LODs must evenly subdi-

vide their parent LOD. Second, parent LODs at the same

depth must have the same number of children LODs. Thus,

semantic hierarchies, such as ontologies cannot generally be

used as LOD hierarchies, since they often exhibit irregular

structure. However, wide ranges of data are supported by

our abstraction, from time-series to gridded geo data.

Finally, data values are mapped to aggregation functions.

The functions meanTmp, stdTmp, maxHum, and minLgt

return the mean, standard deviation, maximum, and mini-

mum, respectively, of a specific value in a list of datum

objects. In this way, different aggregation functions can be

defined for each value of interest, and more than one aggre-

gate can be calculated for each:

measures = [

 { ‘Temperature’: [

 { ‘name’: ‘mean’, ‘function’: meanTmp },

 { ‘name’: ‘std’, ‘function’: stdTmp }]},

 {‘Humidity’: [

 { ‘name’: ‘max’, ‘function’: maxHum }]},

 {‘Light’: [

 { ‘name’: ‘min’, ‘function’: minLgt }]}]

Since the method of binning data points for aggregation is

based on the LOD hierarchy, continuously sampled data

will be discretized in the process of aggregation. This may

be more or less appropriate given the domain of the dataset.

Data Server (Step 2)

The Splash Aggregator utility can be run locally or in the

Cloud (see Figure 4, Step 2). First, the curator-authored

metadata described above is stored on the data server. Sec-

ond, raw data are streamed and converted to datum repre-

sentations, grouped into LOD bins, and then passed to the

aggregation functions specified above. The results are then

stored on the data server. In this way, a pre-computed mul-

ti-scale version of the dataset is generated. The Splash Ag-

gregator utility can be re-run at any time to include addi-

tional aggregate measures or to process newly added data.

Splash Data Interface (Step 3)

To support the client-side Splash Cache, the data curator

need only implement the Splash Data Interface, which con-

sists of two API calls (see Figure 4, Step 3). First, init

retrieves the dataset metadata from the data server and re-

turns a DataSetFormat object. Second, fetch takes an

IntervalRequest, which encapsulates a query interval

along the data dimension(s) and a target LOD, and returns a

collection of DataAggregate objects to the Splash Cache.

Each DataAggregate contains values of all measures (see

Figure 4, Step 1) for a sub-interval of the data dimension(s).

Visualization Developer: Splash Cache (Steps 4-5)

Splash is designed to be used with a variety of visualization

toolkits, so a client-side Splash Cache module generalizes

the process of requesting data (see Figure 4, Step 4-5). In-

ternally, it maintains a dynamic data cache to store retrieved

data and a queue of pending data requests.

Automatic Configuration

The Splash Data Interface is instantiated with a URL to the

data server; a new Splash Cache is created using this Splash

Data Interface. The Splash Cache automatically calls init

and uses the DataSetFormat to dynamically create bind-

ings for the data dimensions, LOD hierarchy, datum format,

and aggregate measures (see Figure 4, Step 4). Thus, the

visualization developer need not configure any dataset spe-

cific details to use Splash. They only need to know the

names of the aggregate measures they wish to visualize.

Fetching and Displaying Data

Whenever the viewport of the visualization is moved or

resized, the updateData method is called (see Figure 4,

Step 4). The Splash Cache, in turn, first checks its dynamic

data cache, then calls fetch for missing data. Each time

the visualization is redrawn, the client application calls the

getData method, which returns all available data points in

the Splash Cache, and then renders the visualization. When

additional data is retrieved, the client application is notified

by a dataLoaded callback. These data points are always

returned as a collection of DataAggregate objects, which

may need to be remapped to be consumed by the visualiza-

tion toolkit. In many cases, existing client visualizations can

integrate Splash by simply requesting data from the Splash

Cache instead of directly querying their present data server.

Target LOD Selection

Splash also manages the selection of an appropriate target

LOD to display, via the getBestLod method. This calcula-

tion takes into account both the size of the data viewport, in

pixels, and the resolution of the display, in dots per inch

(DPI). Splash uses a device independent metric, samples

per inch (SPI), to ensure that the same IntervalRequest

will be displayed identically for the same SPI setting and

visualization dimensions on a variety of devices, regardless

of display size or resolution.

This target LOD is determined by traversing the LOD hier-

archy from finest to coarsest LOD and comparing the inter-

val of one LOD (L1) and the next coarsest LOD (L2),

weighted by the number of subdivisions:

L1.size + (L2.size – L1.size) / L2.subdivs

If this density is greater than the currently displayed densi-

ty, L1 is returned. By default, Splash uses a two-stage pro-

gressive download: given a target LOD, the next coarsest

LOD is fetched first. A configuration parameter allows the

visualization developer to modify the number of coarser

LODs fetched prior to the target LOD.

Usage Example

Here, we present a simplified, but working, example of a

client application written in JavaScript, which highlights the

use of Splash (see Figure 4, Step 5). The drawing routines

of the visualization toolkit are represented as a single meth-

od call, visToolkit.render. For example, this function

would iterate over the contents of data, the collection of

DataAggregate objects, and draw a point for each value.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

566

An additional method call, visToolkit.getDomain, re-

turns the domain of the interval currently displayed. For

example, the array returned might represent the interval

from 12:00 until 18:00 on a particular day.

// Initialize Splash

dataURL = “http://datasource/EnvironmentSensor”;

jsonDataSource = new JSONSplashDataInterface(dataURL);

splash = new SplashCache(callback, jsonDataSource);

splash.setDpi(72);

splash.setSpi(40);

splash.setSize(width, height);

// GetIntervalRequest, interval of data to fetch/display

function getIntervalRequest() {

 var domain = visToolkit.getDomain();

 var reqIntvl = new 1DInterval(domain[0], domain[1]);

 var reqLod = splash.getBestLod(reqIntvl);

 return new IntervalRequest(reqIntvl, reqLod);

}

// Redraw, called when data becomes available (see below)

function redraw() {

 var data = splash.getData(getIntervalRequest());

 visToolkit.render(data);

}

// Update, called on zoom or pan

function update() {

 splash.updateData(getIntervalRequest());

 redraw();

}

// Callback when data is available (dataLoaded)

function callback() {

 redraw();

}

More concretely, we will use D3 as an example visualiza-

tion toolkit. Then, retrieving the domain of the current

view, the visToolkit.getDomain function, is simply:

 x.domain()

where x is the D3 horizontal scale object. Second, convert-

ing DataAggregate objects in the data parameter of

visToolkit.render function to the expected format of a

given D3 visualization is accomplished by a map function:

 data.map(function(d) {

 return { u: d.intvl[0], v: d.Temperature.mean }

 });

where the interval and mean temperature attributes of the

DataAggregate d are renamed u and v, respectively. In a

similar fashion, visualization developers can easily inte-

grate data from Splash into other visualization toolkits.

Framework Availability

Splash will be released as a free web service, available at:

http://www.splash-data.org

Data Types and Aggregate Limitations

Presently, Splash supports both densely and sparsely sam-

pled discrete and continuous data; categorical, numeric, and

string data values; and one- and two-dimensional query

intervals along navigable dimension(s) of the data.

Splash does not support data visualizations where elements

of the visualization are dynamic, for example, a node-edge

graph visualization where nodes can be repositioned. Ele-

ments of visualizations must have fixed positions along the

navigable dimension(s) of the dataset.

Despite these limitations, Splash is able to accommodate a

wide variety of data visualization applications, from time-

series to geographic data. Splash can be used with standard

1D visualizations (e.g., line charts, bar graphs, and dot

plots) and with standard 2D visualizations (e.g., heat maps

and scatterplots). For example, visualizations of financial

data, weather charts, gridded census data, and fixed node-

edge diagrams are all supported. Potential aggregate

measures include classic summary statistics, such as the

mean, standard deviation, and inter-quartile range, and

more complex algorithms, like nearest neighbor clustering.

Theoretical Interaction Latency

The average interaction latency achieved by Splash is af-

fected by two factors, the SPI and the LOD compression

ratio of the multi-scale version of the dataset. The LOD

compression ratio is the average number of samples aggre-

gated at each level of the LOD hierarchy. For example, if

bins of 6 samples are used to aggregate each LOD, the

compression ratio would be 6. The lower the compression

ratio, the more often LOD transitions occur when zooming.

The SPI parameter is used to tune the density of samples

displayed in the visualization. As the SPI increases, more

data is downloaded. We have found that for desktop envi-

ronments, an SPI of 20 to 40 and a compression ratio be-

tween 4 and 8 yields visually pleasing transitions, while still

ensuring real-time interaction across a range of SPI settings.

The impact of LOD compression ratio and SPI on interac-

tion latency is contrasted between progressive and non-

progressive loading methods for mobile 3G and broadband

network conditions (see Figure 5). While interaction latency

on mobile 3G benefits the most (34% to 416%), broadband

also shows improvement (2% to 33% improvement).

Given device characteristics and network conditions, it may

be desirable for the visualization developer to decrease the

SPI or increase the number of progressively loaded LODs

to maintain real-time interaction.

Figure 5: Modeled response times under varying LOD hierar-

chy compression ratios and SPI settings. Progressive loading

vastly improves interaction latency.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

567

http://www.splash-data.org/

DEPLOYMENT STUDY

We conducted a study to evaluate the data curator experi-

ence (see Figure 4, Steps 1-3). In particular, we focused on

the exercise of data model abstraction and aggregation, en-

gaging data curators to consider which attributes of their

data were important for likely analysis tasks.

Three researchers were recruited for participatory case stud-

ies using their own research data. The researchers were

from the domains of computer systems and bioinformatics

research. Since each had a varying degree of programming

experience, researchers played the role of data curators, and

we the role of visualization developers. To this end, we

provided each researcher with a multi-scale visualization

tool, navigable by panning and zooming, with visibility

toggling for each aggregate measure plotted. We did not

coach or offer advice in the data model abstraction and ag-

gregation task.

The study was conducted over three sessions. Before the

first session, we asked participants to select a dataset they

had previously analyzed. We started with a semi-structured

interview to probe their typical workflow and analysis

tools. The capabilities of Splash were demonstrated using

their dataset. We asked the researchers to describe aggre-

gate measures that would enable them to gain insights into

their data in an exploratory analysis task. In the second ses-

sion, we engaged the researcher in a pair-programming ac-

tivity: implementing the LOD hierarchy and aggregate

measures, based on measures from the first session, for the

Splash Aggregator. We then ran the utility to generate the

pre-computed multi-scale version of their data and present-

ed the final visualization. In a final open-ended interview,

we asked them to describe their experience, indicate diffi-

culties encountered, and reflect on the overall utility of

Splash to create interactive analysis tools.

Case Study 1: High-Performance Computing Errors

The first participant is a researcher of computer systems. He

chose to analyze a dataset of memory error reports extract-

ed from BlueGene supercomputer logs. The logs include

the timestamp and number of corrected errors that occurred,

categorized by the correction algorithm used: single symbol

(SSE), double symbol (DSE), and chipkill errors (CK).

He reported his typical analysis is conducted in three steps.

First, shell scripts and command line tools, such as grep,

sed, sort, and awk, are used to pre-process the data. Sec-

ond, the cleansed data is loaded into Matlab, R, or custom-

ized data structures in C and Python to compute statistical

measures and tests, such as CDF plots and autocorrelation

analyses. Finally, Matlab, R, or gnuplot is used to generate

static visualizations for publication. Time-oriented visuali-

zations are seldom used due to the overhead of manually

reframing data plots in their current tools. However, the

researcher noted that such visualizations could be useful in

isolating abnormalities and discerning overall trends.

Since his analyses primarily focus on comparing distribu-

tions of corrected errors, his aggregate measures included

the mean, standard deviation, median, min, and max. Addi-

tionally, the researcher wanted to gain insight into error

overflows. The memory error logging system has a fixed-

size register, capping the count at 2
16

. He employed condi-

tional aggregate measures to track the number of error over-

flows and filter error counts to exclude overflows.

Reflecting on the Splash Aggregator the researcher stated,

“the process seems fairly straightforward.” The researcher

was pleased with the final visualization: general trends were

quickly apparent, and he noted, “relative differences be-

tween error types are immediately clear” (see Figure 6). He

was surprised at the large difference between the unfiltered

and filtered means; commenting that “[filtering overflow

values] could indicate [repeatable] hardware errors as op-

posed to transient [software] errors. This is easily distin-

guishable from the visualization.” This insight would not

have been apparent using his current analysis methods. Ad-

ditionally, the visualization highlighted several time periods

with abnormalities. The researcher was also able to confirm

trends and features he had discovered in his prior analyses.

Overall, he was excited that Splash would enable more ex-

tensive hypothesis testing in the second step of his current

workflow. He was very pleased with the responsiveness and

freedom of navigation provided by the interactive visualiza-

tion, commenting “it’s great that I can quickly zoom into

the details to investigate interesting trends.” He said such an

analysis in his current workflow is currently “more trouble

than it’s worth”, but with Splash he felt compelled to “look

closer.”

Case Study 2: Expression Quantitative Trait Loci (eQTL)

The second participant is a genetics researcher of the hu-

man genome. He chose a dataset that consisted of negative-

log transformed p-values for several thousand single nucle-

otide polymorphisms (SNPs). Locations of SNPs are scat-

tered along a chromosome; in this case a dimension of 250

million locations. Strong p-value scores indicate which

SNPs play the role of eQTLs in the human ileum.

Figure 6: Screenshot of the BlueGene dataset visualization.

Three errors types in stacked charts with linked navigation.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

568

His current analysis workflow consists of generating sta-

tionary scatterplots, called Manhattan plots, using Excel

and visually searching for locations where clusters of strong

p-values occur. This process is very time consuming be-

cause isolating the SNPs involved at specific locations re-

quires manually reframing the plot to view details and then

cross referencing to find the associated SNP marker names.

We prepared an interactive bar chart, analogous to the

Manhattan plot. Local maxima and clusters of strong p-

values were more important to his analysis than the distri-

bution of p-values. The aggregate measures he chose to

implement included the median, the max, and an additional

label of the name of the maximum SNP in a range (see Fig-

ure 7). After exploring the data with this final visualization,

the researcher commented that “the max remains by far the

most useful [aggregate measure]… It helped me answer my

questions about areas of concentrated strong p-values along

the chromosome contrasted against ‘deserts.’” He also not-

ed, “the interactivity is fantastic… the ability to dynamical-

ly zoom in and out… is absolutely necessary.”

This participant had less familiarity programming in Python

than the first participant, but commented that working with

the aggregates available through NumPy was “super sim-

ple”. He said that “adding new aggregate [measures]… is

straightforward if you have reasonable programming

skills”, but might be challenging to those in his field with

little or no programming experience. Overall, he comment-

ed “the type of visualization your software provides is a

necessary first step to eye-balling your data” prior to engag-

ing more complex analyses of asymptotic or periodicity.

Splash made this first step analysis far more accessible.

Case Study 3: Gene Sequence Base Frequency

The third participant is a visualization developer working in

bioinformatics with plant cellular genome data. The data he

chose to analyze is a gene sequence of ~360 thousand bases

(A, C, T, or G) from Arabidopsis Thaliana. It is the entire

sequence of chromosome M.

Current tools he uses to visualize genomic regions, such as

the UCSC Genome Browser, are quite complex. Many data

plots are available and while multi-scale, the interaction

remains stepped and it is difficult to add custom visualiza-

tions. Our participant was interested in developing a “fun”

visualization “to try out something different.”

Since the physical properties of DNA are important, he

wanted to develop an interactive visualization that would

help visually identify regions along the chromosome where

higher frequencies of certain bases occur. He explained,

“promoter regions are typically more A-T rich” (see Figure

8). While this is rarely a primary research question, this

visualization could be used to provide additional context for

other data explorations, such as transcription factor binding

site information and intron splice sites. The researcher im-

plemented an algorithm to aggregate the normalized fre-

quencies of each base along the chromosome.

Reflecting on the pair-programming exercise, the researcher

commented that “the effort to implement [aggregate

measures] was relatively minor; but, it requires knowledge

of programming.” He suggested a UI to facilitate the Splash

Aggregator configuration steps would make it more acces-

sible to a wider range of researchers. As a visualization

developer he appreciated the reusable nature of the pre-

computed LOD data: “that kind of flexibility seems quite

well worth [the configuration involved].” Overall, he was

very positive about the “playfulness” of the real-time inter-

action that Splash enabled. “It helped the data come to life.”

Discussion

Overall, participants agreed that preparing their data for use

with Splash was intuitive and provided a much richer expe-

rience compared to their existing analysis tools. The addi-

tion of real-time interactivity enabled them to freely explore

the data at multiple LODs. Of the three participants, the

Case Study 1 participant was the most intrepid in utilizing

non-standard measures, which we suspect relates to his fa-

miliarity with divide-and-conquer style analyses, as evi-

denced by the first step of his analysis workflow.

Most difficulties encountered were due to uncertainty when

deciding on a LOD hierarchy. This was less of an issue in

Case Study 1, where the time-oriented dataset mapped to

meaningful time ranges, but for both genomic datasets

(Case Study 2 & 3), the researchers felt that defining the

LOD hierarchy was arbitrary. They preferred that it be au-

tomatically generated.

Based on these initial results, we believe that Splash can be

easily integrated into existing early-stage analysis work-

flows, either introducing exploratory visual analysis to do-

mains where it is not currently used or enhancing stationary

plots with real-time navigation.

Figure 7: Screenshot of the eQTL dataset visualization. Max,

median, and the name of the max SNP are plotted.

Figure 8: Screenshot of the ATH CHR-M dataset visualiza-

tion. Normalized frequencies of bases are displayed.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

569

CONCLUSION AND FUTURE WORK

We have introduced Splash, a framework that enables sci-

entists to dive-in and interactively explore their data using

real-time navigation through progressive downloading in

multi-scale client-server visualizations. We provide empiri-

cal evidence to support the use of progressive downloading

for visualizations. The results of our first study suggest that

progressive loading makes data available more quickly.

This immediate display of data could help mitigate common

issues in multi-scale spaces, such as desert fog [21]. Our

second study suggests Splash is easily integrated into exist-

ing analysis workflows, making exploratory data analysis

more accessible to researchers.

Splash is not without its limitations. We intend to add sup-

port for more complex LOD hierarchies, including semantic

and ontological hierarchies. LOD-dependent aggregate

measures would enable semantic zooming [26]. We are also

investigating real-time responsiveness tuning, where LOD

selection and SPI account for network conditions.

The lack of support for features such as real-time interactiv-

ity, continuous feedback, multi-scale representations, and

partial queries, among others, have been identified as con-

tinuing barriers to the wider adoption of existing scientific

and information visualization tools and toolkits [11]. Sup-

porting real-time interaction with visualizations of larger

data, allowing any user to answer the simple yet valuable

question, “What does my data look like” is paramount to

facilitating the broader use of visualization tools. We hope

that Splash will promote the use of exploratory data analy-

sis at early stages of data analysis by mitigating many of

these barriers, placing more powerful visualization tools

directly into the hands of researchers and domain experts.

ACKNOWLEDGEMENTS

We would like to thank our reviewers, study participants,

John Hancock, Katie Barker, John Stasko, and fellow DGP

members for their insightful feedback.

REFERENCES
1. Bederson, B. B., & Hollan, J. D. (1994). Pad++: a zooming

graphical interface for exploring alternate interface physics.
UIST, 17-26.

2. Bostock, M., Ogievetsky, V., & Heer, J. (2011). D³ Data-
Driven Documents. IEEE TVCG, 17(12), 2301-2309.

3. Boukhelifa, N., Chevalier, F., & Fekete, J. (2010). Real-time
aggregation of wikipedia data for visual analytics. IEEE
VAST, 147-154.

4. Card, S.K., Robertson, G.G., & Mackinlay, J.D. (1991). The
information visualizer, an information workspace. CHI, 181-186.

5. Chan, S.M., Xiao, L., Gerth, J., & Hanrahan, P. (2008).
Maintaining interactivity while exploring massive time se-
ries. IEEE VAST, 59-66.

6. Chen, K., Xu, H., Tian, F., & Guo, S. (2011). Cloudvista:
Visual cluster exploration for extreme scale data in the cloud.
SSDBM, 332-350.

7. Cleveland, W.S. (1994). The elements of graphing data.
AT&T Bell Laboratories.

8. Ellis, G., & Dix, A. (2007). A taxonomy of clutter reduction
for information visualisation. IEEE TVCG, 13(6), 1216-1223.

9. Elmqvist, N., & Fekete, J.D. (2010). Hierarchical aggrega-
tion for information visualization: Overview, techniques, and
design guidelines. IEEE TVCG, 16(3), 439-454.

10. Fekete, J.D. (2004). The infovis toolkit. INFOVIS, 167-174.

11. Fekete, J.D., Silva, C. (2012). Managing Data for Visual Ana-
lytics: Opportunities and Challenges. IEEE DEB, 35(3), 27-36.

12. Fekete, J.D., Van Wijk, J.J., Stasko, J.T., & North, C. (2008).
The value of information visualization. Info. Vis., 1-18.

13. Fisher, D., Popov, I., & Drucker, S. (2012). Trust me, I'm
partially right: incremental visualization lets analysts explore
large datasets faster. CHI. 1673-1682.

14. Fredrikson, A. et al. (1999). Temporal, geographical and cate-
gorical aggregations viewed through coordinated displays: a
case study with highway incident data. NPIVM, 26-34.

15. Goldstein, J., & Roth, S. F. (1994). Using aggregation and
dynamic queries for exploring large datasets. CHI, 23-29.

16. Harrison, C., Dey, A.K., & Hudson, S.E. (2010). Evaluation
of progressive image loading schemes. CHI, 1549-1552.

17. Heer, J., Card, S.K., & Landay, J.A. (2005). Prefuse: a toolkit
for interactive information visualization. CHI, 421-430.

18. Heer, J., Kong, N., & Agrawala, M. (2009). Sizing the hori-
zon: the effects of chart size and layering on the graphical
perception of time series visualizations. CHI, 1303-1312.

19. Hellerstein, J.M., Avnur, R.,... & Haas, P.J. (1999). Interactive
data analysis: The control project. Computer, 32(8), 51-59.

20. Javed, W., McDonnel, B., & Elmqvist, N. (2010). Graphical
perception of multiple time series. IEEE TVCG, 16(6), 927-934.

21. Jul, S., & Furnas, G. W. (1998). Critical zones in desert fog:
aids to multiscale navigation. UIST. 97-106.

22. Lam, H., Munzner, T., & Kincaid, R. (2007). Overview use
in multiple visual information resolution interfaces. IEEE
TVCG, 13(6), 1278-1285.

23. MacKenzie, I.S., & Ware, C. (1993). Lag as a determinant of
human performance in interactive systems. CHI, 488-493.

24. Matejka, J., Grossman, T., & Fitzmaurice, G. (2012). Swift:
reducing the effects of latency in online video scrubbing.
CHI, 637-646.

25. Ng, A., Lepinski, J., Wigdor, D., Sanders, S., & Dietz, P.
(2012). Designing for low-latency direct-touch input. UIST,
453-464.

26. Perlin, K., & Fox, D. (1993). Pad: an alternative approach to
the computer interface. CHI, 57-64.

27. Pietriga, E. (2005). A toolkit for addressing hci issues in vis-
ual language environments. IEEE VLHC, 145-152.

28. Robertson, G., Fernandez, R., Fisher, D., Lee, B., & Stasko,
J. (2008). Effectiveness of animation in trend visualization.
IEEE TVCG, 14(6), 1325-1332.

29. Seow, S.C. (2008). Designing and Engineering Time: The
Psychology of Time Perception in Software. Addison-Wesley.

30. Spence, R. (2007). Information Visualization: Design for
Interaction, Second Edition. Pearson Education.

31. Tukey, J. W. (1977). Exploratory Data Analysis. Addison-
Wesley.

32. Yi, J.S., ah Kang, Y., Stasko, J.T., & Jacko, J.A. (2007). To-
ward a deeper understanding of the role of interaction in in-
formation visualization. IEEE TVCG, 13(6), 1224-1231.

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

570

	Dive In! Enabling Progressive Loading for Real-Time Navigation of Data Visualizations
	Abstract
	Author Keywords
	ACM Classification Keywords

	Introduction
	Background and Related Work
	Interactive Visualization Toolkits
	Real-Time Interaction with Multi-Scale Data
	Progressive Download

	Motivating Progressive Download
	Tasks and Coarse LOD Utility
	Hypotheses
	Participants and Apparatus
	Design
	Results

	Splash Framework Description
	Data Curator: Data Preparation and Access (Steps 1-3)
	Splash Aggregator (Step 1)
	Data Server (Step 2)
	Splash Data Interface (Step 3)

	Visualization Developer: Splash Cache (Steps 4-5)
	Automatic Configuration
	Fetching and Displaying Data
	Target LOD Selection
	Usage Example

	Framework Availability
	Data Types and Aggregate Limitations
	Theoretical Interaction Latency

	Deployment Study
	Case Study 1: High-Performance Computing Errors
	Case Study 2: Expression Quantitative Trait Loci (eQTL)
	Case Study 3: Gene Sequence Base Frequency
	Discussion

	Conclusion and Future Work
	Acknowledgements
	References

