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Figure 1: The Splash framework enables real-time navigation for client-server visualization systems by progressively loading data. 

(a) A user viewing part of a dataset (b) pans to the left and a coarse version of missing data is downloaded and displayed immedi-

ately, until (c) the fine data are finished downloading and are displayed. Splash streamlines the process of creating and automates 

retrieving these level-of-detail versions for both data curators and visualization developers.

ABSTRACT 

We introduce Splash, a framework reducing development 

overhead for both data curators and visualization develop-

ers of client-server visualization systems. Splash stream-

lines the process of creating a multiple level-of-detail ver-

sion of the data and facilitates progressive data download, 

thereby enabling real-time, on-demand navigation with ex-

isting visualization toolkits. As a result, system responsive-

ness is increased and the user experience is improved. We 

demonstrate the benefit of progressive loading for user in-

teraction on slower networks. Additionally, case study 

evaluations of Splash with real-world data curators suggest 

that Splash supports iterative refinement of visualizations 

and promotes the use of exploratory data analysis. 
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INTRODUCTION 

In client-server visualization systems, data is stored on re-

mote servers and then transmitted on-demand to client ap-

plications. This architecture provides flexible, scalable ac-

cess to data across a variety of platforms and devices. How-

ever, supporting real-time visual exploration remains a 

complex undertaking, especially as the size of a dataset 

grows. For example, if the volume of data is too large to 

display coherently on the screen at one time, a developer 

must allocate additional development resources toward im-

plementing methods of data reduction, the creation of a 

coarser-grain level-of-detail (LOD), and most importantly 

navigation, such as zooming and panning. If data is reduced 

carelessly or if visual exploration of the data is omitted due 

to the added development overhead, the opportunity to find 

errors, inconsistencies, or anomalies is lost. Even powerful 

automated methods of analysis, such as statistical measures 

and tests, or machine learning-based models, can only re-

veal a partial perspective on a dataset. A visual verification 

step that allows results to be explored, inspected, and navi-

gated is desirable and beneficial [12]. 

User interaction in client-server systems typically occurs as 

a stepped transaction: user input invokes a network request 

for additional data, which must be fulfilled before an update 

can be displayed. Subject to network conditions, such as 

latency and throughput, these network requests become a 

dominant factor hindering a smooth user experience. If a 

user must wait for the system to respond, the result is a bot-

tleneck to interaction. Latency has long been known to neg-

atively impact user performance [23]; as little as 10ms of 

latency has been found to be noticeable when interacting 

with touch screens [25]. 
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Navigation operations such as resizing the view, zooming, 

scrolling, or panning all require downloading additional 

data to the client. Common strategies, such as a priori cli-

ent-side caching, benefit smaller datasets, but do not scale 

well as the size of data increases. Facilitating real-time nav-

igation with vast server-stored datasets is non-trivial: it 

generally requires (1) that the client system can randomly 

access any portion of the dataset, and (2) that the server and 

client systems work in tandem to filter, aggregate, or 

resample the data on-the-fly to render a visualization in 

real-time. 

Visual patterns and features seem to automatically jump out 

at the human eye; this is precisely why data visualization 

lies at the core of exploratory data analysis, an approach 

that foregoes a priori assumptions of the data model and 

allows patterns to emerge through visual exploration [31]. 

Not only does visual exploration serve to debug and vali-

date the results of automated methods but also, more im-

portantly, it supports opportunistic discovery. We believe 

real-time navigation is critical to visual exploration, as it 

facilitates an uninterrupted interaction dialog with the data, 

and encourages diverse and flexible questions to be asked 

and answered. As Cleveland put it: “To regularly miss sur-

prises by failing to probe thoroughly with visualization 

tools is terribly inefficient because the cost of intensive data 

analysis is typically very small compared with the cost of 

data collection.” [7] 

In this paper we present Splash, a framework that enables 

easy development and modification of client-server visuali-

zation systems to include smooth and continuous, rather 

than stepped, navigation (see Figure 1). This is accom-

plished through two key modifications to the traditional 

client-server model. First, on the server-side, Splash stream-

lines the specification of a LOD hierarchy and the pre-

computation of a multi-scale version of the dataset. Second, 

on the client-side, Splash manages fetching these LODs 

from the server by automatically selecting an appropriate 

target LOD to display and then progressively downloading 

increasing resolutions until this target is reached. Thus, re-

al-time, on-demand navigation is achieved by ensuring the 

highest resolution data can be rendered at interactive frame-

rates and by minimizing the duration of the first network 

request associated with an interaction. 

We start by demonstrating the user performance benefits of 

enabling real-time navigation for visual search tasks com-

mon in exploratory data analysis. Building on these positive 

results, we discuss considerations informing the design of 

the Splash framework, detail the developer experience, and 

describe the architecture of the framework. Next, we report 

on deployment case studies evaluating the process of select-

ing a useful LOD hierarchy and aggregate measures. Final-

ly, future directions are discussed. 

BACKGROUND AND RELATED WORK 

In a visualization, navigation offers users freedom and flex-

ibility to control how data is displayed ad hoc. Using Yi et 

al.’s taxonomy of user interaction tasks, navigation falls 

under the explore user interaction [32]. Prompt resolution 

of interaction transactions is critical to preventing bottle-

necks – but how fast is fast enough? We frame our discus-

sion along two dimensions: (1) flow between inputs, using 

Spence’s terms continuous and stepped [30] and (2) system 

responsiveness, using Seow’s terms instantaneous and im-

mediate [29]. Continuous interaction characterizes inputs 

which can be mapped to a continuous function, such as 

click-and-drag panning, while stepped interactions are dis-

crete operations, such as clicking a zoom-in button. Accord-

ing to Seow, instantaneous responses are those that occur 

within 100 to 200ms after input, while immediate responses 

are between 500 and 1000ms. Thus, navigation through 

direct manipulation should be continuous and instantaneous 

– what we dub real-time. 

Splash maintains real-time navigation by automatically de-

termining the optimal LOD and progressively downloading 

additional data, thus mediating the density and download 

size of plotted data points. Splash has benefited from a 

study of existing interactive visualization toolkits, real-time 

interaction with multi-scale data, and progressive down-

loading of visual information, which we summarize here. 

Interactive Visualization Toolkits 

Interaction has grown in prevalence with the emergence of 

generalized visualization toolkits, such as the InfoVis 

Toolkit [10] and Prefuse [17], which simplified implemen-

tation for visualization developers. Pad [26] introduced the 

zooming user interface, where multi-scale environments 

can be explored through panning and zooming navigation. 

Pad++ [1] utilized image-based LOD pyramids and degrad-

ed image representations to mediate visual clutter and im-

prove responsiveness; ZVTM [27] extended these princi-

ples to interactive visualizations. More recently, the D3 

toolkit [2] incorporated out-of-the-box behaviors for pan-

ning and zooming navigation for web-based visualizations. 

While all of these toolkits simplify the transformation of 

arbitrary data into visual representations, the onus remains 

on the visualization developer to (a) define, generate, and 

manage a multi-scale version of the dataset, and (b) select, 

load, and cache specific LODs for display. Splash modifies 

process (a) above by introducing the data curator role, a 

domain expert who explicitly defines a multi-scale data 

model. This model-based LOD pyramid ensures that the 

important attributes defined by the data curator remain vis-

ually salient. Splash then generates and manages the result-

ing multi-scale dataset. Next, all parts of process (b) are 

automatically handled by Splash, ensuring real-time inter-

action is maintained. The visualization developer need only 

map data from Splash to the format expected by the visuali-

zation toolkit. Thus, Splash is designed to be used in tan-

dem with existing visualization toolkits. 
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Real-Time Interaction with Multi-Scale Data 

Custom visualization systems have addressed improving 

system responsiveness. The Control Project demonstrated 

responsiveness of direct-query visualization systems could 

be improved by monitoring rendering time and dynamically 

reducing visualization complexity to increase frame rates 

[19]. ATLAS ensured real-time interaction by initiating 

distributed computation of data aggregates prior to being 

requested by the visualization, by anticipating user inten-

tions [5]. In contrast, Cloudvista employed a randomized 

batch-scheduler to generate aggregates for data ranges re-

lated to the current data view [6]. In both cases, on-the-fly 

aggregation of data must be scheduled in advance of a cli-

ent-side request to maintain real-time interaction, due to the 

inherent scheduling latency of distributed computation. 

Thus, all of these systems are limited by requiring the adop-

tion of custom data storage, computation, and visualization 

systems. The Splash framework supports bindings to be 

written quickly for existing data servers. Real-time naviga-

tion is achieved through the storage of pre-computed data 

aggregates on commodity hardware. 

Progressive Download 

Displaying a low fidelity representation prior to loading a 

high fidelity version has long been utilized to ensure re-

sponsive interaction [4,14,19]. It is commonly found in 

bitmap interlacing algorithms, such as Adam7 in the PNG 

format, and in geospatial tools, including the popular map 

website Google Maps. In addition to the obvious user expe-

rience benefits, this technique has been shown to support 

quicker identification of images [16] and enable faster vid-

eo scrubbing [24]. Informed decision-making can be sup-

ported by sacrificing precision for speed through progres-

sively-refined partial query results [13]. Pre-computed ag-

gregates have also been used to facilitate real-time visual 

analytics for text [3]. Progressive loading clearly has broad 

applications; however, there is a lack of generalized support 

for information visualization tools. Using Splash adds pro-

gressive loading to existing interactive visualizations. 

Computing LODs for arbitrary datasets in unknown do-

mains was a challenge in the development of Splash. Unlike 

down-sampling images, creating lower fidelity aggregates 

of arbitrary data is highly task and domain specific [14]. 

The present work does not seek to contribute novel aggre-

gation methods; for further reading please refer to general 

concepts [8,15] and data structure specific guidelines [9]. 

Instead, we design our framework such that the data model, 

LOD hierarchy, and aggregate measures are fully customi-

zable by the data curator, thereby supporting both arbitrary 

data types and aggregation methods. This ensures that the 

useful aggregate can be selected given the type of data, user 

task, and data domain. 

The Splash framework is designed to work with existing 

visualization workflows. In the next section, we investigate 

the benefits and disadvantages of progressive downloading 

to user performance in data visualization tasks. 

MOTIVATING PROGRESSIVE DOWNLOAD 

Progressively-downloading data enables real-time interac-

tion by sequentially loading LODs of increasing resolution: 

a coarse LOD is quickly downloaded and displayed first 

while the fine LOD is continuously downloading, providing 

pleasingly smooth, on-demand interaction (see Figure 1). 

Aside from improvements in smoothness, we believed pro-

gressive downloading would improve performance of cer-

tain exploratory data analysis tasks when network through-

put is lower. Intuitively, the scale for potential improvement 

depends largely on the utility of the coarse LOD to a given 

task. We also considered that progressive downloading in-

curs an additional data download cost over non-progressive 

download. To understand whether users would find this an 

advantage or disadvantage, we designed a study to contrast 

user performance between progressive and non-progressive 

data loading methods under differing network throughput 

conditions and varying degrees of coarse LOD utility. 

Tasks and Coarse LOD Utility 

Prior user studies have investigated visual comparisons 

across non-navigable data views, such as multiple time-

series plots [18,20,22] and animated charts [28]. Visual 

search while navigating has been studied as a streaming 

video scrubbing task [24], but not, so far as we are aware, 

for data visualization. We draw inspiration from these stud-

ies and propose three visual search tasks for navigation: 

coarse feature, global feature, and fine feature (see Figure 

2). In each task, the participant scrolls the data visualization 

to center the target feature within the viewport. To generate 

the coarse LOD, we use an aggregate consisting of the 

mean and maximum/minimum, visualized as a line and a 

shaded range, respectively. When paired with each of these 

three tasks, this aggregate provides varying degrees of as-

sistance, ranging from low, when the coarse LOD provides 

no help regarding the target, to high utility, when the target 

can be already found merely by inspecting the coarse LOD. 

 

Figure 2: Example target features: (a) the maximum value of 

the dataset, (b) the shift in the mean value, and (c) a specific 

value. The coarse LOD offers varying utility to identifying the 

feature at the fine LOD. (Arrows are illustrative) 
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Coarse feature: The coarse feature target is only identifia-

ble when it appears in the viewport, but remains salient in 

the coarse LOD (adapted from “random” [24] and “max” 

[20,22] tasks). In our study, we chose the maximum value 

in the dataset (see Figure 2a). This task simulates high utili-

ty, where visual confirmation of target presence can be 

made merely by inspecting the coarse LOD. 

Global feature: The direction to the global feature target is 

immediately apparent based on overall trends of the data 

(adapted from “ordered” task [24]). In our study, this fea-

ture appears as an overall shift in the mean (see Figure 2b). 

This task simulates moderate utility, where the trends of the 

dataset inherently support user orientation and recovery 

from overshoots when scrolling quickly. Thus, lower laten-

cy primarily aids the user, rather than the coarse LOD. 

Fine feature: The fine feature target can only be found once 

the finer LOD is displayed in the viewport (adapted from 

“random” [24] and “comparing values” [18] tasks). In our 

study, this feature appears as a small disc superposed only 

on the finer LOD (see Figure 2c). This task simulates low 

utility because the coarse LOD delays the display of the 

target. Since the task emulates careful searching of details, 

we posit external validity. 

Hypotheses 

H1: For task/aggregate pairings with high utility, completion 

time will be lower with progressive loading on slow networks. 

H2: For task/aggregate pairings with low utility, completion 

time will be higher with progressive loading on slow networks. 

Participants and Apparatus 

Twelve volunteer participants (7 female) with mean age 26 

(min: 20, max: 34) were recruited from the community, and 

paid $20 for a 60-minute session. Mean reported computer 

usage was 35 hours/week; none worked as a data analyst. 

Participants performed the study in a private study room 

using a desktop computer configuration (2.5 GHz dual-core 

/ 3GB RAM) running Windows 7 (64-bit), with a 24-inch 

LCD monitor displaying a resolution of 1920x1200 pixels. 

Participants were seated 20 inches away from the monitor. 

A horizontal scrolling interface, with a scrollbar at the bot-

tom, simulated an interactive time-series visualization. The 

viewport was 800x400 pixels (8.5x4.25 inches) in size. 

Download speed was simulated: 1.5Mbps for mobile and 

25Mbps for broadband, both with a fixed latency of 200ms. 

Data were generated using a random-walk function, similar 

to [18], with dynamically authored target features (see Fig-

ure 2). The size of the dataset was fixed at six-times the 

viewport width to ensure scrolling would be required. 

Design 

A repeated measures within-subject design, with independ-

ent variables: loading method (non-progressive, progres-

sive), network throughput (broadband, mobile), and target 

feature (coarse, global, fine), yielded a 2x2x3 design. 

Loading method and network throughput were crossed, and 

target feature ordering was counter-balanced, resulting in 4 

unique conditions per target feature. In each trial, target 

position was a randomly generated position ¼ to ¾ through 

the dataset. For each target feature, trials were divided into 

6 blocks, each with 3 repetitions of each of the 4 conditions, 

yielding 12 trials per block, 72 trials per target feature, and 

216 total trials. We recorded task completion time as the 

duration between the start of the first scroll operation to the 

end of the last scroll operation, thus factoring-out prepara-

tion and acquisition time. 

Results 

Results are shown in Figure 3. A repeated measures 

ANOVA with a Greenhouse-Geisser correction determined 

that differences in mean navigation time were statistically 

significant between all factors:  

  loading method (                      ) 

  network throughput (                      ) 

  target feature (                             ) 

No effect was found between blocks, indicating absence of 

learning effects. Post hoc tests using Bonferroni correction 

revealed a significant difference in completion time be-

tween fine feature and both coarse and global feature tasks. 

These results support our first hypotheses: coarse and glob-

al features were found more quickly (28.7%, 29.8%) in the 

mobile throughput condition with progressive loading (H1). 

Progressive loading improves user performance on mobile 

networks to a level comparable to broadband when the ag-

gregate is sufficiently useful for the task. We were unable 

to find support for our second hypothesis: although partici-

pants took slightly longer to find the fine features in the 

mobile throughput condition with progressive loading 

(5.9%), this difference was not statistically significant (H2). 

This suggests that even when utility is low, progressive 

loading does not significantly hinder user performance. In 

contrast, performance in the broadband throughput condi-

tion indicated negligible differences between progressive 

and non-progressive loading across conditions. 

Thus, not only does progressive loading provide users with 

a smooth real-time navigation experience, it also shows 

clear benefits to user performance with minimal drawbacks. 

 

Figure 3: Task completion times. Bars indicate a 95% CI. 
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SPLASH FRAMEWORK DESCRIPTION 

When designing Splash, our goal was a framework that 
would be flexible and easily integrated into existing visuali-
zation workflows. Consequently, a logical separation of 

client and server developer roles is reflected in the architec-
ture. Splash provides support for two distinct developer 
roles: the data curator, who manages the data on the server, 

and the visualization developer, who creates the visualiza-
tion for the end user, the data analyst (see Figure 4). 

The Splash framework consists of three modules. First, on 
the server-side, the data curator uses the Splash Aggregator 

to blueprint a multi-scale version of the dataset and define 
the aggregate measures used to generate LODs. Running 
this utility pre-computes and stores the multi-scale version 

of the dataset on the data server, along with the blueprint 
metadata (see Figure 4, Steps 1-2). 

Second, the data curator implements the Splash Data Inter-

face, a simple API used on the client-side to query the 
metadata and multi-scale data LODs (see Figure 4, Step 3). 
While this component must be instantiated by the visualiza-
tion developer, no configuration is necessary. 

Last, on the client-side, the Splash Cache is used by the 
visualization developer to route requests to the data server 
(see Figure 4, Steps 4-5). When initialized, the Splash 

Cache fetches the metadata from the data server and auto-
matically configures the transport of data between the client 
and server. It seamlessly manages progressive downloading 
and caching of LODs. The visualization developer simply 

routes data requests through Splash; existing visualization 
tools require little to no modification as a result. 

Abstract interfaces between client and server components 

of Splash enable support of a variety of data server technol-
ogies and visualization toolkits. Using Splash, many visual-
izations can be created for a single pre-computed multi-

scale version of a dataset or a single visualization can mix 
data from multiple data sources.  

We now describe each of these steps in greater detail. 

Data Curator: Data Preparation and Access (Steps 1-3) 

The following Python snippets illustrate the data curator’s 
data model abstraction task. While terse, attributes of these 
data structures are referenced in later examples. In practice, 

we envision a UI would be used for configuration. 

Splash Aggregator (Step 1) 

The data curator starts by authoring blueprint metadata (see 
Figure 4, Step 1). First, the dataset is uniquely identified 
and the interval of the navigable data dimension(s) is de-

fined. For example, consider data from an environment sen-
sor, sampled every minute. Time is the only dimension. The 
interval of timestamps to be processed is provided by 

start_time and end_time: 

dataName = ‘EnvironmentSensor’ 

dataDimensions = [{ 

  ‘name’: ‘Time’, 

  ‘interval’: [ start_time, end_time ] }] 

Next, the curator defines the mapping from an existing data 

sample to a datum representation. Suppose the data source 

provides a sample as an array, data. The timestamp of the 

sample is stored as the position (along the dimension); mul-
tiple values can be linked to a position. At this stage any 

element of data can be modified, such as converting from 

strings to timestamps using strptime and mktime. 

def datum( data ): 

  return { 

    ‘position’: t.mktime(dt.strptime( data[0] )), 

    ‘values’: [ 

      { ‘name’: ‘Temperature’, ‘value’: data[3] }, 

      { ‘name’: ‘Humidity’, ‘value’: data[4] }, 

      { ‘name’: ‘Light’, ‘value’: data[2] } ]} 

A LOD hierarchy defines the size of the discrete bins to be 

used for aggregation. In our example, the sensor data is 
sampled every minute and is aggregated into hourly and 
daily LODs, with relative sizes defined in milliseconds. 

Additional variables can be configured to ensure proper 
alignment to the start of hours and days. 

lods = [ 

  { ‘name’: ‘minutes’, ‘size’: 60000 }, 

  { ‘name’: ‘hours’, ‘size’: 3600000 }, 

  { ‘name’: ‘days’, ‘size’: 86400000 } ] 

 

Figure 4: Overview of the Splash framework. The five steps required to integrate Splash into server- and client-side are divided 

amongst the data curator and visualization developer roles. Implementation responsibilities of each are indicated by asterisks. 
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The current LOD abstraction places two limitations on the 

richness of the LODs that can be expressed. First, the LODs 

must be a strict hierarchy: child LODs must evenly subdi-

vide their parent LOD. Second, parent LODs at the same 

depth must have the same number of children LODs. Thus, 

semantic hierarchies, such as ontologies cannot generally be 

used as LOD hierarchies, since they often exhibit irregular 

structure. However, wide ranges of data are supported by 

our abstraction, from time-series to gridded geo data. 

Finally, data values are mapped to aggregation functions. 

The functions meanTmp, stdTmp, maxHum, and minLgt 

return the mean, standard deviation, maximum, and mini-

mum, respectively, of a specific value in a list of datum 

objects. In this way, different aggregation functions can be 

defined for each value of interest, and more than one aggre-

gate can be calculated for each: 

measures = [ 

  { ‘Temperature’: [ 

    { ‘name’: ‘mean’, ‘function’: meanTmp }, 

    { ‘name’: ‘std’,  ‘function’: stdTmp } ]}, 

  {‘Humidity’: [  

    { ‘name’: ‘max’,  ‘function’: maxHum } ]}, 

  {‘Light’: [  

    { ‘name’: ‘min’,  ‘function’: minLgt } ]}] 

Since the method of binning data points for aggregation is 

based on the LOD hierarchy, continuously sampled data 

will be discretized in the process of aggregation. This may 

be more or less appropriate given the domain of the dataset. 

Data Server (Step 2) 

The Splash Aggregator utility can be run locally or in the 

Cloud (see Figure 4, Step 2). First, the curator-authored 

metadata described above is stored on the data server. Sec-

ond, raw data are streamed and converted to datum repre-

sentations, grouped into LOD bins, and then passed to the 

aggregation functions specified above. The results are then 

stored on the data server. In this way, a pre-computed mul-

ti-scale version of the dataset is generated. The Splash Ag-

gregator utility can be re-run at any time to include addi-

tional aggregate measures or to process newly added data. 

Splash Data Interface (Step 3) 

To support the client-side Splash Cache, the data curator 

need only implement the Splash Data Interface, which con-

sists of two API calls (see Figure 4, Step 3). First, init 

retrieves the dataset metadata from the data server and re-

turns a DataSetFormat object. Second, fetch takes an 

IntervalRequest, which encapsulates a query interval 

along the data dimension(s) and a target LOD, and returns a 

collection of DataAggregate objects to the Splash Cache. 

Each DataAggregate contains values of all measures (see 

Figure 4, Step 1) for a sub-interval of the data dimension(s). 

Visualization Developer: Splash Cache (Steps 4-5) 

Splash is designed to be used with a variety of visualization 

toolkits, so a client-side Splash Cache module generalizes 

the process of requesting data (see Figure 4, Step 4-5). In-

ternally, it maintains a dynamic data cache to store retrieved 

data and a queue of pending data requests. 

Automatic Configuration  

The Splash Data Interface is instantiated with a URL to the 

data server; a new Splash Cache is created using this Splash 

Data Interface. The Splash Cache automatically calls init 

and uses the DataSetFormat to dynamically create bind-

ings for the data dimensions, LOD hierarchy, datum format, 

and aggregate measures (see Figure 4, Step 4). Thus, the 

visualization developer need not configure any dataset spe-

cific details to use Splash. They only need to know the 

names of the aggregate measures they wish to visualize. 

Fetching and Displaying Data  

Whenever the viewport of the visualization is moved or 

resized, the updateData method is called (see Figure 4, 

Step 4). The Splash Cache, in turn, first checks its dynamic 

data cache, then calls fetch for missing data. Each time 

the visualization is redrawn, the client application calls the 

getData method, which returns all available data points in 

the Splash Cache, and then renders the visualization. When 

additional data is retrieved, the client application is notified 

by a dataLoaded callback. These data points are always 

returned as a collection of DataAggregate objects, which 

may need to be remapped to be consumed by the visualiza-

tion toolkit. In many cases, existing client visualizations can 

integrate Splash by simply requesting data from the Splash 

Cache instead of directly querying their present data server. 

Target LOD Selection 

Splash also manages the selection of an appropriate target 

LOD to display, via the getBestLod method. This calcula-

tion takes into account both the size of the data viewport, in 

pixels, and the resolution of the display, in dots per inch 

(DPI). Splash uses a device independent metric, samples 

per inch (SPI), to ensure that the same IntervalRequest 

will be displayed identically for the same SPI setting and 

visualization dimensions on a variety of devices, regardless 

of display size or resolution. 

This target LOD is determined by traversing the LOD hier-

archy from finest to coarsest LOD and comparing the inter-

val of one LOD (L1) and the next coarsest LOD (L2), 

weighted by the number of subdivisions: 

L1.size + (L2.size – L1.size) / L2.subdivs 

If this density is greater than the currently displayed densi-

ty, L1 is returned. By default, Splash uses a two-stage pro-

gressive download: given a target LOD, the next coarsest 

LOD is fetched first. A configuration parameter allows the 

visualization developer to modify the number of coarser 

LODs fetched prior to the target LOD. 

Usage Example 

Here, we present a simplified, but working, example of a 

client application written in JavaScript, which highlights the 

use of Splash (see Figure 4, Step 5). The drawing routines 

of the visualization toolkit are represented as a single meth-

od call, visToolkit.render. For example, this function 

would iterate over the contents of data, the collection of 

DataAggregate objects, and draw a point for each value. 
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An additional method call, visToolkit.getDomain, re-

turns the domain of the interval currently displayed. For 

example, the array returned might represent the interval 

from 12:00 until 18:00 on a particular day. 

// Initialize Splash 

dataURL = “http://datasource/EnvironmentSensor”; 

jsonDataSource = new JSONSplashDataInterface( dataURL ); 

splash = new SplashCache( callback, jsonDataSource ); 

splash.setDpi( 72 ); 

splash.setSpi( 40 ); 

splash.setSize( width, height ); 

// GetIntervalRequest, interval of data to fetch/display 

function getIntervalRequest() { 

  var domain = visToolkit.getDomain(); 

  var reqIntvl = new 1DInterval( domain[0], domain[1] ); 

  var reqLod = splash.getBestLod( reqIntvl ); 

  return new IntervalRequest( reqIntvl, reqLod ); 

} 

// Redraw, called when data becomes available (see below) 

function redraw() { 

  var data = splash.getData( getIntervalRequest() ); 

  visToolkit.render( data ); 

} 

// Update, called on zoom or pan 

function update() { 

  splash.updateData( getIntervalRequest() ); 

  redraw(); 

} 

// Callback when data is available (dataLoaded) 

function callback() { 

  redraw(); 

} 

More concretely, we will use D3 as an example visualiza-

tion toolkit. Then, retrieving the domain of the current 

view, the visToolkit.getDomain function, is simply: 

  x.domain() 

where x is the D3 horizontal scale object. Second, convert-

ing DataAggregate objects in the data parameter of 

visToolkit.render function to the expected format of a 

given D3 visualization is accomplished by a map function: 

  data.map( function(d) { 

    return { u: d.intvl[0], v: d.Temperature.mean } 

  }); 

where the interval and mean temperature attributes of the 

DataAggregate d are renamed u and v, respectively. In a 

similar fashion, visualization developers can easily inte-

grate data from Splash into other visualization toolkits. 

Framework Availability 

Splash will be released as a free web service, available at: 

http://www.splash-data.org 

Data Types and Aggregate Limitations 

Presently, Splash supports both densely and sparsely sam-

pled discrete and continuous data; categorical, numeric, and 

string data values; and one- and two-dimensional query 

intervals along navigable dimension(s) of the data. 

Splash does not support data visualizations where elements 

of the visualization are dynamic, for example, a node-edge 

graph visualization where nodes can be repositioned. Ele-

ments of visualizations must have fixed positions along the 

navigable dimension(s) of the dataset. 

Despite these limitations, Splash is able to accommodate a 

wide variety of data visualization applications, from time-

series to geographic data. Splash can be used with standard 

1D visualizations (e.g., line charts, bar graphs, and dot 

plots) and with standard 2D visualizations (e.g., heat maps 

and scatterplots). For example, visualizations of financial 

data, weather charts, gridded census data, and fixed node-

edge diagrams are all supported. Potential aggregate 

measures include classic summary statistics, such as the 

mean, standard deviation, and inter-quartile range, and 

more complex algorithms, like nearest neighbor clustering. 

Theoretical Interaction Latency 

The average interaction latency achieved by Splash is af-

fected by two factors, the SPI and the LOD compression 

ratio of the multi-scale version of the dataset. The LOD 

compression ratio is the average number of samples aggre-

gated at each level of the LOD hierarchy. For example, if 

bins of 6 samples are used to aggregate each LOD, the 

compression ratio would be 6. The lower the compression 

ratio, the more often LOD transitions occur when zooming. 

The SPI parameter is used to tune the density of samples 

displayed in the visualization. As the SPI increases, more 

data is downloaded. We have found that for desktop envi-

ronments, an SPI of 20 to 40 and a compression ratio be-

tween 4 and 8 yields visually pleasing transitions, while still 

ensuring real-time interaction across a range of SPI settings.  

The impact of LOD compression ratio and SPI on interac-

tion latency is contrasted between progressive and non-

progressive loading methods for mobile 3G and broadband 

network conditions (see Figure 5). While interaction latency 

on mobile 3G benefits the most (34% to 416%), broadband 

also shows improvement (2% to 33% improvement). 

Given device characteristics and network conditions, it may 

be desirable for the visualization developer to decrease the 

SPI or increase the number of progressively loaded LODs 

to maintain real-time interaction. 

 

Figure 5: Modeled response times under varying LOD hierar-

chy compression ratios and SPI settings. Progressive loading 

vastly improves interaction latency. 

Session: Designing and Understanding Visualizations CHI 2014, One of a CHInd, Toronto, ON, Canada

567

http://www.splash-data.org/


DEPLOYMENT STUDY 

We conducted a study to evaluate the data curator experi-

ence (see Figure 4, Steps 1-3). In particular, we focused on 

the exercise of data model abstraction and aggregation, en-

gaging data curators to consider which attributes of their 

data were important for likely analysis tasks. 

Three researchers were recruited for participatory case stud-

ies using their own research data. The researchers were 

from the domains of computer systems and bioinformatics 

research. Since each had a varying degree of programming 

experience, researchers played the role of data curators, and 

we the role of visualization developers. To this end, we 

provided each researcher with a multi-scale visualization 

tool, navigable by panning and zooming, with visibility 

toggling for each aggregate measure plotted. We did not 

coach or offer advice in the data model abstraction and ag-

gregation task. 

The study was conducted over three sessions. Before the 

first session, we asked participants to select a dataset they 

had previously analyzed. We started with a semi-structured 

interview to probe their typical workflow and analysis 

tools. The capabilities of Splash were demonstrated using 

their dataset. We asked the researchers to describe aggre-

gate measures that would enable them to gain insights into 

their data in an exploratory analysis task. In the second ses-

sion, we engaged the researcher in a pair-programming ac-

tivity: implementing the LOD hierarchy and aggregate 

measures, based on measures from the first session, for the 

Splash Aggregator. We then ran the utility to generate the 

pre-computed multi-scale version of their data and present-

ed the final visualization. In a final open-ended interview, 

we asked them to describe their experience, indicate diffi-

culties encountered, and reflect on the overall utility of 

Splash to create interactive analysis tools. 

Case Study 1: High-Performance Computing Errors 

The first participant is a researcher of computer systems. He 

chose to analyze a dataset of memory error reports extract-

ed from BlueGene supercomputer logs. The logs include 

the timestamp and number of corrected errors that occurred, 

categorized by the correction algorithm used: single symbol 

(SSE), double symbol (DSE), and chipkill errors (CK). 

He reported his typical analysis is conducted in three steps. 

First, shell scripts and command line tools, such as grep, 

sed, sort, and awk, are used to pre-process the data. Sec-

ond, the cleansed data is loaded into Matlab, R, or custom-

ized data structures in C and Python to compute statistical 

measures and tests, such as CDF plots and autocorrelation 

analyses. Finally, Matlab, R, or gnuplot is used to generate 

static visualizations for publication. Time-oriented visuali-

zations are seldom used due to the overhead of manually 

reframing data plots in their current tools. However, the 

researcher noted that such visualizations could be useful in 

isolating abnormalities and discerning overall trends. 

Since his analyses primarily focus on comparing distribu-

tions of corrected errors, his aggregate measures included 

the mean, standard deviation, median, min, and max. Addi-

tionally, the researcher wanted to gain insight into error 

overflows. The memory error logging system has a fixed-

size register, capping the count at 2
16

. He employed condi-

tional aggregate measures to track the number of error over-

flows and filter error counts to exclude overflows. 

Reflecting on the Splash Aggregator the researcher stated, 

“the process seems fairly straightforward.” The researcher 

was pleased with the final visualization: general trends were 

quickly apparent, and he noted, “relative differences be-

tween error types are immediately clear” (see Figure 6). He 

was surprised at the large difference between the unfiltered 

and filtered means; commenting that “[filtering overflow 

values] could indicate [repeatable] hardware errors as op-

posed to transient [software] errors. This is easily distin-

guishable from the visualization.” This insight would not 

have been apparent using his current analysis methods. Ad-

ditionally, the visualization highlighted several time periods 

with abnormalities. The researcher was also able to confirm 

trends and features he had discovered in his prior analyses.  

Overall, he was excited that Splash would enable more ex-

tensive hypothesis testing in the second step of his current 

workflow. He was very pleased with the responsiveness and 

freedom of navigation provided by the interactive visualiza-

tion, commenting “it’s great that I can quickly zoom into 

the details to investigate interesting trends.” He said such an 

analysis in his current workflow is currently “more trouble 

than it’s worth”, but with Splash he felt compelled to “look 

closer.” 

Case Study 2: Expression Quantitative Trait Loci (eQTL) 

The second participant is a genetics researcher of the hu-

man genome. He chose a dataset that consisted of negative-

log transformed p-values for several thousand single nucle-

otide polymorphisms (SNPs). Locations of SNPs are scat-

tered along a chromosome; in this case a dimension of 250 

million locations. Strong p-value scores indicate which 

SNPs play the role of eQTLs in the human ileum. 

 

Figure 6: Screenshot of the BlueGene dataset visualization. 

Three errors types in stacked charts with linked navigation. 
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His current analysis workflow consists of generating sta-

tionary scatterplots, called Manhattan plots, using Excel 

and visually searching for locations where clusters of strong 

p-values occur. This process is very time consuming be-

cause isolating the SNPs involved at specific locations re-

quires manually reframing the plot to view details and then 

cross referencing to find the associated SNP marker names. 

We prepared an interactive bar chart, analogous to the 

Manhattan plot. Local maxima and clusters of strong p-

values were more important to his analysis than the distri-

bution of p-values. The aggregate measures he chose to 

implement included the median, the max, and an additional 

label of the name of the maximum SNP in a range (see Fig-

ure 7). After exploring the data with this final visualization, 

the researcher commented that “the max remains by far the 

most useful [aggregate measure]… It helped me answer my 

questions about areas of concentrated strong p-values along 

the chromosome contrasted against ‘deserts.’” He also not-

ed, “the interactivity is fantastic… the ability to dynamical-

ly zoom in and out… is absolutely necessary.” 

This participant had less familiarity programming in Python 

than the first participant, but commented that working with 

the aggregates available through NumPy was “super sim-

ple”. He said that “adding new aggregate [measures]… is 

straightforward if you have reasonable programming 

skills”, but might be challenging to those in his field with 

little or no programming experience. Overall, he comment-

ed “the type of visualization your software provides is a 

necessary first step to eye-balling your data” prior to engag-

ing more complex analyses of asymptotic or periodicity. 

Splash made this first step analysis far more accessible. 

Case Study 3: Gene Sequence Base Frequency 

The third participant is a visualization developer working in 

bioinformatics with plant cellular genome data. The data he 

chose to analyze is a gene sequence of ~360 thousand bases 

(A, C, T, or G) from Arabidopsis Thaliana. It is the entire 

sequence of chromosome M. 

Current tools he uses to visualize genomic regions, such as 

the UCSC Genome Browser, are quite complex. Many data 

plots are available and while multi-scale, the interaction 

remains stepped and it is difficult to add custom visualiza-

tions. Our participant was interested in developing a “fun” 

visualization “to try out something different.” 

Since the physical properties of DNA are important, he 

wanted to develop an interactive visualization that would 

help visually identify regions along the chromosome where 

higher frequencies of certain bases occur. He explained, 

“promoter regions are typically more A-T rich” (see Figure 

8). While this is rarely a primary research question, this 

visualization could be used to provide additional context for 

other data explorations, such as transcription factor binding 

site information and intron splice sites. The researcher im-

plemented an algorithm to aggregate the normalized fre-

quencies of each base along the chromosome. 

Reflecting on the pair-programming exercise, the researcher 

commented that “the effort to implement [aggregate 

measures] was relatively minor; but, it requires knowledge 

of programming.” He suggested a UI to facilitate the Splash 

Aggregator configuration steps would make it more acces-

sible to a wider range of researchers. As a visualization 

developer he appreciated the reusable nature of the pre-

computed LOD data: “that kind of flexibility seems quite 

well worth [the configuration involved].” Overall, he was 

very positive about the “playfulness” of the real-time inter-

action that Splash enabled. “It helped the data come to life.” 

Discussion 

Overall, participants agreed that preparing their data for use 

with Splash was intuitive and provided a much richer expe-

rience compared to their existing analysis tools. The addi-

tion of real-time interactivity enabled them to freely explore 

the data at multiple LODs. Of the three participants, the 

Case Study 1 participant was the most intrepid in utilizing 

non-standard measures, which we suspect relates to his fa-

miliarity with divide-and-conquer style analyses, as evi-

denced by the first step of his analysis workflow. 

Most difficulties encountered were due to uncertainty when 

deciding on a LOD hierarchy. This was less of an issue in 

Case Study 1, where the time-oriented dataset mapped to 

meaningful time ranges, but for both genomic datasets 

(Case Study 2 & 3), the researchers felt that defining the 

LOD hierarchy was arbitrary. They preferred that it be au-

tomatically generated. 

Based on these initial results, we believe that Splash can be 

easily integrated into existing early-stage analysis work-

flows, either introducing exploratory visual analysis to do-

mains where it is not currently used or enhancing stationary 

plots with real-time navigation. 

 

Figure 7: Screenshot of the eQTL dataset visualization. Max, 

median, and the name of the max SNP are plotted. 

 

Figure 8: Screenshot of the ATH CHR-M dataset visualiza-

tion. Normalized frequencies of bases are displayed. 
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CONCLUSION AND FUTURE WORK 

We have introduced Splash, a framework that enables sci-

entists to dive-in and interactively explore their data using 

real-time navigation through progressive downloading in 

multi-scale client-server visualizations. We provide empiri-

cal evidence to support the use of progressive downloading 

for visualizations. The results of our first study suggest that 

progressive loading makes data available more quickly. 

This immediate display of data could help mitigate common 

issues in multi-scale spaces, such as desert fog [21]. Our 

second study suggests Splash is easily integrated into exist-

ing analysis workflows, making exploratory data analysis 

more accessible to researchers. 

Splash is not without its limitations. We intend to add sup-

port for more complex LOD hierarchies, including semantic 

and ontological hierarchies. LOD-dependent aggregate 

measures would enable semantic zooming [26]. We are also 

investigating real-time responsiveness tuning, where LOD 

selection and SPI account for network conditions. 

The lack of support for features such as real-time interactiv-

ity, continuous feedback, multi-scale representations, and 

partial queries, among others, have been identified as con-

tinuing barriers to the wider adoption of existing scientific 

and information visualization tools and toolkits [11]. Sup-

porting real-time interaction with visualizations of larger 

data, allowing any user to answer the simple yet valuable 

question, “What does my data look like” is paramount to 

facilitating the broader use of visualization tools. We hope 

that Splash will promote the use of exploratory data analy-

sis at early stages of data analysis by mitigating many of 

these barriers, placing more powerful visualization tools 

directly into the hands of researchers and domain experts. 
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