

Dream Lens: Exploration and Visualization of
Large-Scale Generative Design Datasets

 Justin Matejka, Michael Glueck, Erin Bradner,
Ali Hashemi, Tovi Grossman, and George Fitzmaurice

Autodesk Research, Toronto Ontario Canada
{first.last}@autodesk.com

Figure 1. Conceptual illustration of a collection of design variations for a single task: lifting a computer monitor 80mm off a desk.

ABSTRACT
๠is paper presents Dream Lens, an interactive visual
analysis tool for exploring and visualizing large-scale
generative design datasets. Unlike traditional computer aided
design, where users create a single model, with generative
design, users specify high-level goals and constraints, and
the system automatically generates hundreds or thousands of
candidates all meeting the design criteria. Once a large
collection of design variations is created, the designer is left
with the task of finding the design, or set of designs, which
best meets their requirements. ๠is is a complicated task
which could require analyzing the structural characteristics
and visual aesthetics of the designs. Two studies are
conducted which demonstrate the usability and usefulness of
the Dream Lens system, and a generatively designed dataset
of 16,800 designs for a sample design problem is described
and publicly released to encourage advancement in this area.

INTRODUCTION
Over the past 20 years, 3D modelling and CAD tools have
seen major advancements in the functionality which they
offer and the complexity of designs which they can create.

Despite these advancements, the overall approach and
interactive workflow used to design geometry has undergone
little change: users leverage a set of primary creation and
editing tools to build towards a single candidate design – a
somewhat bottom-up approach.

However, with ever increasing computing power and new
simulation methods, a relatively new technique of
“generative design” has been introduced [27]. With this top-
down approach, the designer specifies high-level goals and
constraints to the system, and allows the system to
automatically generate geometry meeting those goals. Using
this emerging computational workflow, a designer is no
longer constrained to creating a single design solution. By
varying the goals, constraints, or algorithm parameters, a
divergent generative design system can create many
solutions, and this technique has been applied to problems as
diverse as creating lightweight airplane partitions [38],
designing furniture [39], and optimizing office layouts [25]
(Figure 2). With high-performance computing and cloud
services, this process can be massively parallelized, allowing
such systems to generate thousands of design alternatives.

With this additional power and capability, comes the
daunting task for the user to navigate through the candidate
designs and find a single or set of suitable designs for their
needs. ๠is is a complicated task as it could require analyzing
structural characteristics of the designs, as well as examining
their visual aesthetics. Few previous systems have been
developed to help visualize and explore design alternatives

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3173943

for geometry [11, 12, 23], and most of those were designed
to support only a small number of designs.

Figure 2. A selection of objects using a divergent generative
design approach. From left to right: airplane partition,
truss-based chair, office layout, and the Elbo chair.

In this paper, we present an interactive visual analysis tool
that helps designers explore a large space of 3D design
solutions. Building upon a prior framework for exploring
large collections of video data [24], the system allows users
to inspect both the visual appearance of the geometric
models, as well as the associated metadata describing their
physical properties. In addition to visually exploring the
solution set, users can rank designs using an example based
approach, to help narrow the results to designs with the most
desirable features, and view attribute examples, to help
understand the impact of each attribute within the metadata.

Our work contributes a system for exploring large collections
of 3D models that have subtle variations in their aesthetics
and physical properties, and we make our extensive dataset
publicly available to encourage further work in this area.
Initial feedback from two user studies indicates the potential
benefits of the system and the overall excitement around the
concept of visualizing generative design solutions.

RELATED WORK

Dataset Exploration
๠e Video Lens framework [24] and associated Baseball
Video Lens system were developed for searching and
filtering through large collections of video and associated
metadata. ๠e Dream Lens system builds upon the Video
Lens framework, by extending the functionality of existing
components, and introducing new components and
interactions specifically for the domain of exploring a large
collection of generatively designed 3D objects.

๠ere are a large number of research projects dedicated to the
general task of multi-dimensional dataset exploration [15,
19, 28] over a large set of domains including publications
[21], online shopping [32], and image search [8, 33]. ๠e
VisOpt Slider [20] looks at a similar task of design
exploration, and presents a unique approach to encoding the
parameter space of an attribute directly on a slider widget.

Interaxis [18] looks at the difficult problem of mapping
multi-dimensional data onto a two-dimensional scatter plot.
๠ey address this by letting users drag examples to the
extreme ends of the scatter plot to define how each access
should behave. Our work uses a similar “by example”
approach to defining rankings based on user preferences.

Design Optimization and Generative Design
While generative design [4] is still a relatively new and
emerging area, there have been a number of projects looking
into the areas of generative design and design synthesis.

GEM-NI is a graph-based generative design tool allowing
designers to explore multiple design alternatives in parallel
[37]. While focused on direct-manipulation tools, the system
also has a “Design Gallery” for parameter range exploration,
although it is limited to viewing several dozen designs. Ulu
and Kara [31] present an algorithm for generatively creating
structures to support existing objects. ๠e resulting designs
are created by specifying points on the object and ground
where the support structure should connect. ๠is type of
design problem is similar to the “monitor stand” example
problem described in this work. However while their work
focuses on the algorithmic details of the solver and provides
limited support for creating design variations, our work uses
an existing solver, and looks at the problem of filtering
through a large set of variations.

Recent work by Doraiswamy et al. [13], and Ashour &
Kolarevic [3] have looked at generatively producing building
designs considering properties such as “the view” and
daylight. ๠ese papers note that aesthetic considerations are
often ignored in optimization models [7, 14, 30], yet are
influential in the design process. To overcome this, they build
aesthetic characteristics into the simulation model. Our
approach for aesthetic considerations is to dedicate a large
portion of the interface to viewing the design geometry.

Design Variations and Comparisons
A number of systems have looked at how to compare
multiple 3D models, including 3D Diff [12] and Mesh Git
[11], or design results when varying an input parameter space
[23, 29]. However those systems are designed for comparing
two or three 3D models, or several dozen graphical
variations, and do not look into the problem of comparing
larger collections. Lienhard et al. [22] create “thumbnail
galleries” for a set of procedurally generated models. ๠ese
galleries are very effective for showing a range of possible
designs, but do not support visualizing the parameters.

Systems such as ShapeSynth [5], Fit and Diverse [35], work
by Alhashim et al. [1], Jain et al. [16], and Kalogerakis et al.
[17] have the ability to produce a large collection of design
variations given a relatively small set of examples as input.
Using a different approach, Yumer et al. [36] developed a
system to procedurally generate thousands of high-quality
models using autoencoder networks. However, these systems
have relatively limited support for interactively exploring the
collection of generated models.

THE DATASET
๠is section describes the process used to create a large
collection of generatively designed solutions to a single
design problem. Data sets of this type are non-trivial to set
up, and time consuming to generate. We believe the
dissemination of high-quality generatively designed datasets

is important for advancing research in this emerging area,
and are unaware of any such publicly available data. To this
end, the full dataset is available for download (~58GB) 1.

To create a collection of design variations, we used Project
Dreamcatcher [40], an internally developed experimental
platform for producing generative design solutions to
engineering design problems. ๠e system allows a user to
input the requirements and constraints in the form and
structural loads of their design, rather than designing the
solution manually. Multiple shape and topology optimization
algorithms are employed to synthesize model geometries that
optimally satisfy these criteria [2, 6, 34].

Problem Definition
We wanted to test the Dream Lens system with a broad range
of designers, and given the time requirements for creating
large sets of design solutions, we wanted to do this with a
single dataset. To accomplish this, we needed a design
problem and related dataset that was easy to understand
without any specialized domain knowledge, could be used
by a broad range of people, and was a problem that could be
satisfied by a wide variety of designs options.

๠e design task we came up with which satisfies the above
criteria is to create a 3D printed “monitor stand” to raise a
monitor off the surface of a desk (Figure 2). Specifically, the
stand is customized for the base of a Dell UltraSharp 2407
monitor and needs to raise the base 80mm above the tabletop.

Using a traditional CAD approach, we would design the
stand itself, and then perhaps run a simulation to ensure that
our design could support the required weight. However, to
approach this problem from a generative design/shape
synthesis perspective, we instead provide a set of input
geometries, constraints, and forces – and allow the
simulation engine to generate a design.

Figure 3. Sample design task, raising a computer monitor
off the surface of a desk.

In this case, the designer supplied geometry consists of three
disks at the bottom which represent the “feet” where the
monitor stand will contact the desk, and three flat sections
placed 80mm above the desk which trace the shape of the
monitor’s base. Additionally, the tabletop is modelled as an
“obstacle” to prevent the generated geometry from extending
below the desk’s surface (Figure 4).

1 www.autodeskresearch.com/publications/dreamlens

Figure 4. Problem definition describing the locations of the
feet, platforms, and desk surface geometry, and the position
and direction of the static forces.

๠e static weight of the monitor is 8.3kg, so the platforms
need to support at least 8.3kg × 9.8N/kg = 81.3N of force. To
account for additional loads (when placing the monitor on
the stand, for example), the stand should be able to support a
load of at least 200N, and the ability to support heavier loads
is desirable as well. ๠e weight of the monitor is modeled as
two independent forces: a middle load on the middle
platform, and an outer load distributed evenly to the two
outside platforms (Figure 4).

An example design solution to this problem with middle and
outer loads of 500N each, is shown in Figure 5. In addition
to the geometry of the design, a number of properties are
calculated including the static properties of: Center of Mass
(x, y, z), Weight, Overhang Percentage, Surface Area,
Area/Volume Ratio, as well as properties related to the
performance under the load conditions: Maximum
Displacement, Max. Strain, Total Strain, Max. Vonmises, and
Objective Value (for the simulation).

Figure 5. A single design, produced with middle and outer
loads of 500N each.

Variation Creation
๠e previous section describes the general definition used to
model the problem, and the process used to generate a single
design. ๠is is an example of convergent generative design,
where the algorithm converges to a single solution. But
rather than looking at a single option, we are interested in
design difficulties when the computer generates thousands of
variations to choose from. We refer to this as divergent
generative design. In many parametric design systems [3, 13,
36, 37], variations are created by varying some combination
of the parameters used for describing the geometry. In our

24”

80mm

Edge loads

Middle load
Middle platform

Desk (obstacle)

Fixed “feet”

Edge platforms

case, rather than varying parameters of the geometry directly,
we vary the parameters of the problem definition which is fed
to the simulation engine, which in turn results in a rich
variety of design outputs.

๠ere are four parameters in the problem definition and
solver configuration which we choose to vary (with the
parameter values listed in brackets):

MIDDLE LOAD: ๠e load directed downward on the middle
section of the platform. [100N, 250N, 500N, 1000N, 2000N].

OUTER LOAD: ๠e load directed downward on the outer
sections of the platform, set independently of the middle
load. [100N, 250N, 500N, 1000N, 2000N].

VOXEL SIZE: A parameter of the solver which sets how big
the voxels (the 3D version of a 2D pixel) will be when
performing calculations. [1.5mm, 3.0mm, 4.5mm].

MU: Another parameter of the solver, which indicates a
constant value for volume minimization within the solver.
[-0.000008, -.0.000004, -0.000002].

Finally, since topology optimization is an iterative process, a
new design is created at each iteration, and the result at any
intermediate iteration represents a “valid” design. Set-ups
ran for 74 iterations, producing 74 designs each.

Combining these factors leads to 16,800 total designs:

×

5
5
3
3
74

MIDDLE LOADS
EDGE LOADS
VOXEL SIZES
MU VALUES
ITERATIONS

 16,800 Total Designs

Each design took an average of 3.1 minutes to generate,
requiring over 36 days of GPU time in total. ๠e system used
10 GPUs in parallel, completing the process in four days.

While all designs in this “full” collection are at least
marginally unique, successive iterations from the same run
vary only slightly. To minimize the number of very similar
designs, a collection with results from six iterations (20, 30,
40, 50, 60, 74) was created. Additionally, “extreme outlier”
designs with computed properties more than 4 standard
deviations from the mean were removed, resulting in a
“filtered” set of 1,242 designs (a number of which are shown
in Figure 1). All of the designs meet the criteria of raising the
monitor 80mm, yet exhibit a high degree of variation in both
visual appearance and physical characteristics.

In the end, our dataset contains the 3D geometry of each
design, a static rendering of each design from a consistent
viewpoint, and a metadata file describing all the input
parameters used, and properties calculated for each design.

THE DREAM LENS SYSTEM
To address the task of searching and filtering through a large
collection of design variations, we created the Dream Lens

system. While the system was developed for exploring sets
of 3D model designs created with a generative design
process, we believe it would prove useful for any large set of
design variations, independent of how they were created.

Design Goals
๠e development of the Dream Lens system was directed by
two main design goals:

D1: Highlight both Appearance, and Properties
We have found that users of generative design solutions tend
to fall into two broad categories: ๠e “engineer” types, who
heavily focus on the simulated properties (such as weight,
strain, etc.) of the produced designs, and pay little or no
attention to the appearance of the artifact; and the “artist”
types, who are less concerned with the model properties, but
care greatly about the aesthetics of the generated design. We
believe both usage types are valid and important, and want
the Dream Lens system to support both types of users (and
those in between). Additionally, by emphasizing both the
properties and appearance of the designs, perhaps the
“engineers” may be encouraged to appreciate the aesthetics
a bit more, and the “artists” might better appreciate the
physical properties, creating a more well-rounded design.

D2: Encourage Exploration
When introduced to the idea of algorithms producing
thousands of candidate designs, some people question the
need for variation and would rather the computer “just pick
the best one for me”. We believe that the real power of a
divergent generative design system is that it can produce a
collection of designs where picking the “best” is a non-trivial
task due to opposing factors which need to be reconciled
(weight vs. strength, for example), or the aesthetics of the
design are important and need to be considered. We feel
encouraging and simplifying exploration of the design space
is important to make design-choice tasks more successful.

Implementation
Dream Lens is a C# Microsoft WPF application built as an
extension to the Video Lens Framework [24]. In order to take
the initial framework (which was designed for exploring
video collections) and make it suitable for exploring design
variations, Dream Lens both extends the functionality of
components developed in Video Lens, and introduces new
components and interactions specifically suited for this new
domain. Specifically, Dream Lens makes use of Single
Attribute Controllers (SAC) and Multi-Attribute Grid
(MAG) components from Video Lens (with modest
improvements); while the Attribute Example View, Design
Viewer (for 2D images and 3D models), Stacked Model
View, Interactive Design Tooltip, and Ranking by Example
controls were newly developed expressly for this work.

The Interface
๠e Dream Lens interface (Figure 6) is split into two main
sections: the design viewer on the left, and a collection of
tools for visualizing, selecting, and filtering the parameters
on the right – giving relatively equal screen space to the
appearance and the properties of the designs (D1).

๠roughout the interface a constant mapping of “1 dot = 1
design” is followed. ๠at is, each dot in any of the controls
in the property explorer represents a single design. As the
cursor hovers over designs in one control, those designs are
highlighted in all the other controls, and selections made in
one control are immediately reflected in the others. On
startup, the interface is loaded with the 1,242 designs from
the “filtered” dataset.

Figure 6. Dream Lens interface.

Single-Attribute Controllers (SAC)
Each attribute from the metadata is represented by a single
attribute controller (SAC) [24]. ๠e SAC is labeled with the
attribute name on the left, and has a strip showing the values
of that attribute on the right (Figure 7). ๠e value strip
contains one dot for each design, showing the distribution of
values with the attribute.

Figure 7. ๠ree example Single-Attribute Controllers. In the
bottom one, a selection has been made, as indicated by the
‘x’ button, which will clear the selection.

Filtering events based on a single attribute is accomplished
through clicking or dragging within the value strip. Since the
SACs are linked, selections made in one SAC are
immediately reflected in all others.

Figure 8. ๠e full collection of single-attribute controls,
separated in two columns.

An enhancement to the SACs over the implementation
described in Video Lens is the colouring of the individual
data points. Previously the individual points were rendered

in greyscale, here, the points respect the color mapping set in
the multi-attribute grid (described later in this section).

๠e single-attribute controllers are arranged in two columns,
with the “Input Parameters” on the left, and the “Model
Characteristics” on the right (Figure 8). ๠e input parameters
column contains data about the setup and parameters used in
the creation of each design, and the model characteristics
columns contains the computed properties of the designs.

Attribute Examples
When exploring a collection of designs, it is useful to see
what effect individual parameters have on the design. For
example, questions such as, “What does changing the middle
load do to the design?” and “What does a model with a high
overhang percentage look like compared to one with a low
overhang?” are common during the exploration process. To
help answer these questions, right clicking on the attribute
launches a large spring-loaded panel showing a set of four
examples from the value range for that attribute (Figure 9).

Figure 9. Attribute Example view for Center of Mass X.

๠e representative models are chosen by first calculating four
key values from across the range of the variable: namely the
minimum value, the maximum value, and the values one and
two-thirds between them. Our initial thought was to then
select the model closest to each of the four key values,
however that model may have unique characteristics not
related to the variable in question, thus not serving as a very
good “representative” example. Instead, for each of the key
values, the 10 closest models are found. ๠en, the centroid of
these models is computed by averaging all of the attributes
for these designs, and the most “representative” example of
this group is calculated as the design with the lowest root
mean square error (RMSE) from the centroid.

Figure 10. Representative designs for, Middle Load and
Overhang Percentage.

Figure 10 shows the representative models selected and
displayed for the middle load and overhang percentage

Multi-Attribute
Grid View

Design
Viewer

Single Attribute
Controllers

Ranking
Controls

attribute labels

clear selection for this attribute

value strips

attribute
examples

low
value

high
value

Middle Load

Overhang Percentage

low high

100 N 250 N 1000 N 2000 N

15.4% 24.5% 30.2% 38.6%

attributes. We can see that an increased middle load results
in a more substantial “center leg”, and models with a high
overhang leave much of the platform unsupported.

Multi-Attribute Grid (MAG)
๠e top-right corner of the interface contains the Multi-
Attribute Grid (MAG) component [24]. ๠is component
displays a two-dimensional grid (Figure 11A) with attributes
mapped to each of the horizontal and vertical axes (Figure
11B,C). Attributes can also be mapped to the colour and size
of the data points (Figure 11D,E). ๠ese mappings can be
changed by dragging-and-dropping attribute labels from the
SACs to the respective positions around the MAG. By
dragging attributes to the different axes/dot controls, we can
see the relationship between multiple variables.

Figure 11. Multi-Attribute Grid (MAG) showing the
relationship between Weight and Total Load.

Design Viewer
On the left side of the interface is the Design Viewer, for
viewing the geometry of the design solutions. On startup, it
displays small thumbnail images for all 1,242 designs in the
filtered dataset (Figure 12). By default, the designs are sorted
by weight, with the lightest designs at the top, and the
heaviest designs at the bottom. However, the sort order can
be changed by dragging-and-dropping a label from a single-
attribute controller to the “sort-by” control at the bottom
right corner of the design viewer (Figure 13).

Figure 12. ๠e design viewer with the initial (top left), and
filtered views with 1242, 186, 77, and 6 design options.

As the collection of designs is reduced, less thumbnails are
displayed, and the images are scaled to fill the space (Figure

12). When displaying less than 100 designs, the thumbnail
images are replaced with interactive 3D models. ๠is affords
two large advantages over the static 2D images. First, the
models can be coloured to respect the colour setting from the
multi-attribute grid. Second, the camera position for these
models can be manipulated to look at different parts of the
model. ๠e camera manipulations performed on one
thumbnail are propagated to all models so one can orbit and
zoom around all the models in concert, and view all designs
from the same viewpoint.

When there are many designs, the images are quite small. To
address this, a large tooltip is displayed to show an enlarged
image of the design (Figure 13). Pressing the ‘f’ key when
the tooltip is enabled saves the design to the list of
“favourites” (as indicated by the star icon).

Figure 13. A design tooltip displayed when the cursor is over
a model thumbnail.

We found it useful to see what a design looked like a few
iterations earlier, or a few iterations later. Using the scroll
wheel while the tooltip is active moves through successive
iterations of the model in the “full” dataset (Figure 13).

Model Stacking
Besides looking at the models individually in a grid view, we
wanted to explore the idea of viewing the models in a shared
3D space. To enable a visualization of this type, we created
a “stacked” mode where rather than displaying each 3D
model in its own grid cell, their viewports are each enlarged,
positioned on top of each other, and composited (Figure 14).

Figure 14. ๠e standard 3D grid view (left), animating to the
stacked view (right).

With this view, users can directly see the differences in
topology or geometry among a small set of models and when
stacking a larger number of models it is possible to see
regions of high and overlap, in addition to common features
among the individual designs (Figure 15).

๠e desired effect of the stacked view is to have each design
contribute equally to each pixel of the display. Conceptually,
the colour for each pixel in the display is equal to the sum of
all values at that pixel for each individual design, divided by

A

B

C

D

E

1242 designs 186 designs

77 designs 6 designs (default view) 6 designs (rotated and scaled)

2D thumbnails
≥ 100 designs

3D models
< 100 designs

sort-by
controller

active iteration

favourite
indicator

controlled via the
scrollwheel

the number of models. Rather than directly manipulating
pixel values, we used an alternative (and more performant)
method to achieve the same result through standard alpha
blending and a particular series of individual layer opacities.
Namely, each layer has an opacity of 1/݊, where n is the
height of the current layer (i.e., the bottom, or first, layer has
an opacity of 1, the second 1/2, the third 1/3, etc.). When
composited with default alpha blending [26], the desired
effect of each model contributing equally to the composite.

Figure 15. Sample stacked views for 4 (left) and 100 (right),
similar (top) and dissimilar (bottom) designs.

Using 3D models with 5000 faces each, the standard WPF
3DModelViewer control, and an ATI 1080Ti graphics card,
the a model stack of 100 designs can be navigated with an
update rate of 15 frames per second.

Interacting with the Stack

Besides being able to navigate the stack of models with pan,
zoom, and orbit controls, we implemented three techniques
for interacting with the stack to filter the set of selected
designs by interacting directly with the model geometry:
chisel, select, and edge (Figure 16).

Figure 16. ๠e effects of the chisel, select, and edge tools in
the stacked model mode.

๠e chisel tool uses the interaction metaphor of a sculptor
“chiseling” away at a block of marble to arrive at the desired
design. When clicking on the stack with the chisel tool, all of
the designs which have material under the cursor are filtered
out. ๠is is accomplished by performing a hit-test on each of
the 3D viewports, and removing the models where there is
an intersection with the cursor.

๠e inverse of the chisel tool is the select tool, where clicking
on the stack of models causes all models which do not have

material under the cursor to be removed, leaving only those
models which do have material under the cursor.

๠e final tool for filtering in the stacked view is the edge tool,
where the user draws a curve along the stack indicating a
desired outline of the design, and only designs matching the
requested edge profile are kept. If there is a particular
“principle curve” the user would like, they can orient the
model stack to where that edge is visible, and directly draw
the desired curve to find all matching models.

Figure 17. Graphical representation of the edge tool.

๠e edge tool works by having the user to draw a stroke over
the model stack, which is shown as a yellow highlight
(Figure 17). ๠e points from this stroke are smoothed, and
two strokes offset from the initial stroke at a distance of 30
pixels are calculated. Along these offset strokes, four points
are selected, resulting in two “groups” of four points each.
๠e algorithm then performs a hit test at these eight points,
and finds models which are a “hit” in all points of one group,
but a “miss” in all points of the other group. In this way, the
algorithm finds the models which have an edge within the
thickness of the highlighted stroke since the models “exist”
on one side of the center line, but do not on the other.

Ranking by Example
๠e final component of the interface is the ranking panel.
When faced with a large collection of design options, a
common desire is to “rank” all of the designs. We have found
it is often the case that users do not know exactly what
criteria to use in constructing their ranking, but they do know
which designs they like, and which ones they do not.

Figure 18. Steps involved in creating a ranking (A-C), and
optionally, adjusting the importance weightings of the
various attributes (D).

Taking advantage of this fact, we implemented a “ranking by
example” interface were users choose some designs they like
and (optionally) some designs they dislike, and the system
automatically ranks the designs such that those most similar

4 Similar Designs

4 Dissimlar Designs

100 Similar Designs

100 Dissimlar Designs

Chisel

Select

Edge

Group #2 Collected
PointsGroup #1

A

B

C

D

to the “liked” designs and dissimilar from the “disliked”
designs ranked the highest (Figure 18).

To select “liked” or “disliked” designs, the user drags the
thumbnail for the design onto the ‘+’ or ‘-’ labels respectively
(Figure 18A). Once one example has been selected, a strip
plot similar to those found in the single-attribute controllers
appears, ranking all designs from highest-ranked on the left,
to lowest-ranked on the right (Figure 18B). Additional
examples can be specified to refine the ranking (Figure 18C).

Figure 19. Top Nine view for the specified ranking.

๠e ranking is determined by analyzing the attributes of the
liked and disliked designs (as detailed below). ๠e arrow to
the right of the strip plot expands the attribute weighting
controls, allowing the weights to be manually adjusted.

Once a ranking has been created, the ranking behaves like
the other “standard” SACs in terms of hovering and filtering
behavior. It can also be dragged to the “sort-by” widget on
the design viewer to sort the designs by this ranking, or to
any of the axes/dot property controls of the MAG. Clicking
on the “Top Nine” button allows the user to quickly see the
highest ranked designs (Figure 19).

Ranking Algorithm
At a high level, the ranking algorithm works by calculating a
score for each candidate design based on its similarity to each
of the “liked” designs and dissimilarity from each of the
“disliked” designs. By ordering the candidate designs by this
score, we can see which designs are ranked the highest.

Specifically, the ranking algorithm takes three sets of
designs, the liked and disliked designs, as well as the full set
of all available designs:

Besides the lists of designs, we also need a list of attributes
to be used for calculating the ranking:

We found using model characteristics rather than input
parameters resulted in rankings which more closely matched
user expectations, and used the following eight model

characteristics: center of mass (x,y,z), weight, total strain,
surface area, overhang percentage, and area to volume ratio.

Given the above lists, the first step is to calculate the relative
“weights” of the individual attributes, that is, compute a
metric to determine how important each attribute is to the
user’s ranking. We do this by seeing how closely together
each of the attributes are within the liked and disliked sets.
For example, if all of the liked designs were very similar in
weight, but not similar in total strain, we infer that weight is
an important factor in the user’s preferences, while total
strain is not. ๠is is calculated by first normalizing the values
for all attributes to the range of [0..1] and by computing the
standard error for each attribute (erra) within each of the
liked and disliked sets. ๠en, we normalize the standard
errors between 0 and 1, and use that as the weighting factor:

Next, a likeScore is calculated for each candidate design by
computing its distance from each of the liked designs using
a RMSE calculation with the difference between the
individual attributes scaled by the weighting factor:

A similar calculation is used to compute the dislikeScore,
and then the totalScore is calculated as:

Since the likeScore and dislikeScore are normalized
between 0 and 1, the total score will be a value between 0
and 2, with lower totalScores representing higher rankings.

We tested other algorithms for computing the rankings (such
as linear regression), but found our approach gave more
“predictable” results and has the desirable properties of
producing results even if only one example is provided, and
ensuring that if only one design is chosen for each of the liked
and disliked categories, those designs are guaranteed to be at
the top and bottom of the ranking, respectively.

Example Tasks
To demonstrate how the Dream Lens system could be used,
we present walkthroughs for three sample tasks.

Task 1: Find models most suitable for 3D printing
For many 3D printing technologies, a combination of low
weight and low overhang is desirable. To find designs best
satisfying these criteria, first drag the weight and overhang
pct properties to the axes of the multi-attribute grid (Figure
20, Step 1). Since there are no designs which combine the
lowest of each property, the user performs a lasso selection
around the designs near the bottom of the curve. ๠is “Pareto
frontier” [10], represents those designs which most optimally
combine low-weight and low-overhang (Figure 15, Step 2).

Figure 20. Steps to find those designs which best combine a
low weight with a low overhang percentage.

Task 2: Find designs which satisfy multiple parties

When working in a collaborative environment, it is common
to have multiple stakeholders with differing opinions on how

Figure 21. Possible workflow for reconciling preferences of
multiple stakeholders.

the design should look or function. One approach to finding
designs which will best satisfy multiple people is to have
them each create a ranking with examples of designs they
like (Figure 21, Step 1). By dragging the rankings for each
person (Ann and Bob) to the MAG, we can find designs in
the lower-left quadrant which score the highest on each of
their personal rankings (Figure 21, Step 2). Another approach
is to look at the “Top 9” results for each of the rankings, and
see if Bob can find any designs he likes at the top of Ann’s
rankings, or vice versa (Figure 21, Step 2 alternate).

Task 3: Find inspiration from “non-standard” designs

Interviews with users of generative design software [9] have
suggested that in many cases the computed geometry is used
as a starting point for design exploration, rather than the end
product. In this use case, the user might want to see some
examples of “non-standard” designs produced by the system,
as a way to spark their own creativity.

Figure 22. Possible steps for finding “non-standard” results
within the dataset.

To do this, a user might have noticed that some attributes
have most designs highly clustered in one area, with a
smaller number of designs distributed in the other regions.
๠ey could right-click on the attribute label to see what the
designs look like at the extreme ends of the variable (Figure
22, Step 1). Alternately, they could select the sparsely
populated region of the slider to see only those designs which
are on the “fringes” (Figure 22, Step 2). ๠ese designs could
then be stacked in the model viewer and the chisel tool used
to remove the “standard” designs.

At first glance, these results (Figure 22, A-C) appear like they
might not work, that they could tip over. However, this
problem definition assumes the base will be “bolted” or
solidly affixed to the table surface. So, if affixed to the table
surface, designs A-C would actually work, and could serve
as inspiration for other designs incorporating a more
“lopsided” or “suspended” look.

EVALUATION

To evaluate Dream Lens, we ran two studies: one lab study
with expert computer users, to validate that users with
minimal training could complete a variety of tasks, and a
larger scale qualitative study with professional designers to
gather subjective feedback and suggestions.

Step 1

Step 2

Results
(a subset)

Step 1

Step 2

Step 2
(alternate)

(or 2)
Step 1

(or 1)
Step 2

Results
(a subset)

Lab Study
For the qualitative study, six paid volunteers (3 male, 3
female) were recruited between the ages of 22-48 (mean =
32). None of the participants had used generative design
software. Four of the participants reported performing design
tasks (graphic design, UI design) as part of their job.

Figure 23. ๠e task descriptions and completion times from
the lab study. Black bar indicates median completion times.

๠e study took approximately 40 minutes: 5 minutes where
the proctor described the task of designing a monitor stand,
5 minutes demonstrating the functionality of the system, then
the participant took 5 minutes to become comfortable using
the system. In the final 25 minutes the participant completed
a series of 10 tasks (including three tasks similar to those
described in the previous section) (Figure 23). ๠e set of
tasks were designed to replicate common scenarios which
arise when exploring a generative design dataset.

All participants completed all tasks in less than 95 seconds,
and four of the participants had average completion times of
less than 40 seconds. In the post-study questionnaire, all
participants rated the system either “easy” or “very easy” to
use, and thought it would be “useful” or “very useful” to a
designer in the generative design process.

Qualitative Feedback Sessions
To gather feedback from design professionals, 17 designers
(2 female, 15 male) participated in one hour sessions where
they were led through a series of tasks.

Many participants commented on the amount of data being
displayed. Some users liked being exposed to so much:

I like programs that have as many variables as possible. I like
to see all of my options. –P3

While others felt the interface was overwhelming:

The sliders are visually intensive. Do I really need a mini
graph? A lot of things are fighting for my attention. – P12

In terms of the individual features, users were particularly
drawn to the ranking panel…

I like that the algorithm does the work, and you can adjust it
afterwards. – P10

It’s somehow classifying what I call ‘branchy’. I can’t believe
what it’s doing. Oh wow! – P9

…as well as the stacked-model view:

With the models stacked, it feels like I’m working with a much
smaller dataset, and the chisel tool feels more “natural” than
working with the data filters. – P1

Overall, the participants enjoyed using the Dream Lens
system, and were excited about the possibilities a Dream
Lens-like system could mean for their design workflow.

DISCUSSION AND FUTURE WORK
We used the “filtered” dataset of 1,242 designs rather than
the full set of 16,800 primarily because the designs from
successive iterations were very similar. Better handling of
very similar designs, such as clustering or grouping visually
similar designs in the design view, would be a useful step for
dealing with even larger, or less-diverse datasets. Although
we removed “extreme outlier” designs, during the studies we
found that the outlier designs which remained were some of
the most interesting for users. It would be interesting to look
at how to include extreme designs, without having those
designs negatively affect the data visualizations. In addition
to more diverse and larger datasets, it would be useful to
explore how to handle datasets with a larger number of
parameters. In Dream Lens, 20 parameters per-model are
exposed, while in Video Lens [24], each event has 43
parameters – a different organization might be required if the
dataset has a larger number of parameters per object.

In the stacked model view, we prototyped a flat (non-shaded)
rendering, and volumetric rendering, but preferred the
appearance and of the composited shaded rendering. Moving
to a volumetric renderer might allow for a larger number of
models to be “stacked”, but would lose the crisp rendering of
the edges of the individual models. Exploring alternative
rendering techniques for this type of visualization would be
an interesting future direction.

Due to the amount of time required to generate designs,
Dream Lens works by loading in a large set of pre-generated
designs to explore. It would be interesting to use Dream Lens
in the early stages of generation to examine a sample of
designs to “guide” the generation engine towards types of
designs and parameters that the user likes. Additionally, after
choosing a design, it would be interesting to be able to send
that back to the simulation engine and ask it to “make more
like this one” to enable a more iterative design process.

Overall, we believe Dream Lens represents a novel
contribution to the area of interactively exploring large
collections of 3D models, particularly those with subtle
variations in their aesthetic and physical properties.
Combined with contributing a dataset of 16,800 generatively
designed solutions to the same design problem, we hope our
work can serve to inspire future research in this area.

0 30 sec 60 sec 90 sec

REFERENCES
1. Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R. and Zhang,

H. 2014. Topology-varying 3D Shape Creation via
Structural Blending. ACM Trans. Graph. 33, 4: 158:1–
158:10. http://doi.org/10.1145/2601097.2601102

2. Allaire, G., Jouve, F. and Toader, A.-M. 2004.
Structural optimization using sensitivity analysis and a
level-set method. Journal of computational physics
194, 1: 363–393.

3. Ashour, Y. and Kolarevic, B. 2015. Optimizing
Creatively in Multi-objective Optimization.
Proceedings of the Symposium on Simulation for
Architecture & Urban Design (SimAUD ’15), Society
for Computer Simulation International, 128–135.
Retrieved March 24, 2017 from
http://dl.acm.org/citation.cfm?id=2873021.2873039

4. Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A.,
Glueck, M. and Khan, A. 2010. Embedded Rationality:
A Unified Simulation Framework for Interactive Form
Finding. International Journal of Architectural
Computing 8, 4: 399–418. http://doi.org/10.1260/1478-
0771.8.4.399

5. Averkiou, M., Kim, V.G., Zheng, Y. and Mitra, N.J.
2014. ShapeSynth: Parameterizing Model Collections
for Coupled Shape Exploration and Synthesis. Comput.
Graph. Forum 33, 2: 125–134.
http://doi.org/10.1111/cgf.12310

6. Bendsoe, M.P. and Sigmund, O. 2013. Topology
optimization: theory, methods, and applications.
Springer Science & Business Media.

7. Benjamin, D. 2012. Beyond Efficiency. S. Marble,
Design workflow: 14–27.

8. Ben-Yitzhak, O., Yogev, S., Golbandi, N., Har’El, N.,
Lempel, R., Neumann, A., Ofek-Koifman, S.,
Sheinwald, D., Shekita, E. and Sznajder, B. 2008.
Beyond basic faceted search. Proceedings of the
international conference on Web search and web data
mining - WSDM ’08, ACM Press, 33. Retrieved from
http://portal.acm.org/citation.cfm?doid=1341531.13415
39

9. Bradner, E., Iorio, F. and Davis, M. 2014. Parameters
Tell the Design Story: Ideation and Abstraction in
Design Optimization. Proceedings of the Symposium
on Simulation for Architecture & Urban Design
(SimAUD ’14), Society for Computer Simulation
International, 26:1–26:8. Retrieved March 24, 2017
from
http://dl.acm.org/citation.cfm?id=2664323.2664349

10. Corne, D., Knowles, J.D. and Oates, M.J. 2000. ๠e
Pareto Envelope-Based Selection Algorithm for Multi-
objective Optimisation. Proceedings of the 6th
International Conference on Parallel Problem Solving
from Nature (PPSN VI), Springer-Verlag, 839–848.
Retrieved April 4, 2017 from
http://dl.acm.org/citation.cfm?id=645825.669102

11. Denning, J.D. and Pellacini, F. 2013. MeshGit: Diffing
and Merging Meshes for Polygonal Modeling. ACM
Trans. Graph. 32, 4: 35:1–35:10.
http://doi.org/10.1145/2461912.2461942

12. Doboš, J. and Steed, A. 2012. 3D Diff: An Interactive
Approach to Mesh Differencing and Conflict
Resolution. SIGGRAPH Asia 2012 Technical Briefs
(SA ’12), ACM, 20:1–20:4.
http://doi.org/10.1145/2407746.2407766

13. Doraiswamy, H., Ferreira, N., Lage, M., Vo, H.,
Wilson, L., Werner, H., Park, M. and Silva, C. 2015.
Topology-based Catalogue Exploration Framework for
Identifying View-enhanced Tower Designs. ACM
Trans. Graph. 34, 6: 230:1–230:13.
http://doi.org/10.1145/2816795.2818134

14. Gaspar-Cunha, A., Loyens, D. and Hattum, F. van.
2011. Aesthetic Design Using Multi-Objective
Evolutionary Algorithms. Evolutionary Multi-Criterion
Optimization, Springer, Berlin, Heidelberg, 374–388.
http://doi.org/10.1007/978-3-642-19893-9_26

15. Hearst, M. 2008. UIs for Faceted Navigation: Recent
Advances and Remaining Open Problems.
International Journal of Machine Learning and
Computing, 337–343. Retrieved from
http://research.microsoft.com/en-
us/um/people/ryenw/hcir2008/doc/HCIR08-
Proceedings.pdf

16. Jain, A., ๠ormählen, T., Ritschel, T. and Seidel, H.-P.
2012. Exploring Shape Variations by 3D-Model
Decomposition and Part-based Recombination.
Comput. Graph. Forum 31, 2pt3: 631–640.
http://doi.org/10.1111/j.1467-8659.2012.03042.x

17. Kalogerakis, E., Chaudhuri, S., Koller, D. and Koltun,
V. 2012. A Probabilistic Model for Component-based
Shape Synthesis. ACM Trans. Graph. 31, 4: 55:1–
55:11. http://doi.org/10.1145/2185520.2185551

18. Kim, H., Choo, J., Park, H. and Endert, A. 2016.
InterAxis: Steering Scatterplot Axes via Observation-
Level Interaction. IEEE Transactions on Visualization
and Computer Graphics 22, 1: 131–140.
http://doi.org/10.1109/TVCG.2015.2467615

19. Koren, J., Zhang, Y. and Liu, X. 2008. Personalized
Interactive Faceted Search. Proceedings of the 17th
International Conference on World Wide Web (WWW
’08), ACM, 477–486.
http://doi.org/10.1145/1367497.1367562

20. Koyama, Y., Sakamoto, D. and Igarashi, T. 2014.
Crowd-powered Parameter Analysis for Visual Design
Exploration. Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14), ACM, 65–74.
http://doi.org/10.1145/2642918.2647386

21. Lee, B., Smith, G., Robertson, G.G., Czerwinski, M.
and Tan, D.S. 2009. FacetLens: Exposing Trends and

Relationships to Support Sensemaking Within Faceted
Datasets. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09),
ACM, 1293–1302.
http://doi.org/10.1145/1518701.1518896

22. Lienhard, S., Specht, M., Neubert, B., Pauly, M. and
Müller, P. 2014. ๠umbnail Galleries for Procedural
Models. Comput. Graph. Forum 33, 2: 361–370.
http://doi.org/10.1111/cgf.12317

23. Marks, J., Andalman, B., Beardsley, P.A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister,
H., Ruml, W., Ryall, K., Seims, J. and Shieber, S. 1997.
Design Galleries: A General Approach to Setting
Parameters for Computer Graphics and Animation.
Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH ’97), ACM Press/Addison-Wesley
Publishing Co., 389–400.
http://doi.org/10.1145/258734.258887

24. Matejka, J., Grossman, T. and Fitzmaurice, G. 2014.
Video lens: rapid playback and exploration of large
video collections and associated metadata. Proceedings
of the 27th annual ACM symposium on User interface
software and technology, ACM, 541–550.

25. Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L.,
Wang, R., Zhao, D. and Benjamin, D. Project Discover:
An Application of Generative Design for Architectural
Space Planning.

26. Porter, T. and Duff, T. 1984. Compositing Digital
Images. Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH ’84), ACM, 253–259.
http://doi.org/10.1145/800031.808606

27. Shea, K., Aish, R. and Gourtovaia, M. 2005. Towards
integrated performance-driven generative design tools.
Automation in Construction 14, 2: 253–264.
http://doi.org/10.1016/j.autcon.2004.07.002

28. Stuart-Moore, J., Evans, M. and Jacobs, P. 2006.
Interface Design for Browsing Faceted Metadata.
Proceedings of the 6th ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL ’06), ACM,
349–349. http://doi.org/10.1145/1141753.1141844

29. Terry, M. and Mynatt, E.D. 2002. Side Views:
Persistent, On-demand Previews for Open-ended
Tasks. Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’02), ACM, 71–80.
http://doi.org/10.1145/571985.571996

30. Turrin, M., von Buelow, P. and Stouffs, R. 2011.
Design explorations of performance driven geometry in
architectural design using parametric modeling and
genetic algorithms. Advanced Engineering Informatics

25, 4: 656–675.
http://doi.org/10.1016/j.aei.2011.07.009

31. Ulu, N.G. and Kara, L.B. 2015. DMS2015-33:
Generative interface structure design for supporting
existing objects. Journal of Visual Languages &
Computing 31, Part B: 171–183.
http://doi.org/10.1016/j.jvlc.2015.10.016

32. Vandic, D., Frasincar, F. and Kaymak, U. 2013. Facet
Selection Algorithms for Web Product Search.
Proceedings of the 22Nd ACM International
Conference on Conference on Information &
Knowledge Management (CIKM ’13), ACM, 2327–
2332. http://doi.org/10.1145/2505515.2505664

33. Voigt, M., Werstler, A., Polowinski, J. and Meißner, K.
2012. Weighted Faceted Browsing for Characteristics-
based Visualization Selection ๠rough End Users.
Proceedings of the 4th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS
’12), ACM, 151–156.
http://doi.org/10.1145/2305484.2305509

34. Wang, M.Y., Wang, X. and Guo, D. 2003. A level set
method for structural topology optimization. Computer
methods in applied mechanics and engineering 192, 1:
227–246.

35. Xu, K., Zhang, H., Cohen-Or, D. and Chen, B. 2012.
Fit and Diverse: Set Evolution for Inspiring 3D Shape
Galleries. ACM Trans. Graph. 31, 4: 57:1–57:10.
http://doi.org/10.1145/2185520.2185553

36. Yumer, M.E., Asente, P., Mech, R. and Kara, L.B.
2015. Procedural Modeling Using Autoencoder
Networks. Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology
(UIST ’15), ACM, 109–118.
http://doi.org/10.1145/2807442.2807448

37. Zaman, L., Stuerzlinger, W., Neugebauer, C.,
Woodbury, R., Elkhaldi, M., Shireen, N. and Terry, M.
2015. GEM-NI: A System for Creating and Managing
Alternatives In Generative Design. Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15), ACM, 1201–1210.
http://doi.org/10.1145/2702123.2702398

38. Generative Design at Airbus | Customer Stories |
Autodesk. Retrieved January 8, 2018 from
https://www.autodesk.com/customer-stories/airbus

39. Here’s What You Get When You Design a Chair With
Algorithms. WIRED. Retrieved January 8, 2018 from
https://www.wired.com/2016/10/elbo-chair-autodesk-
algorithm/

40. Project Dreamcatcher | Autodesk Research. Retrieved
April 5, 2017 from
https://autodeskresearch.com/projects/dreamcatcher

