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Figure 1. Conceptual illustration of a collection of design variations for a single task: lifting a computer monitor 80mm off a desk.

ABSTRACT 
๠is paper presents Dream Lens, an interactive visual 
analysis tool for exploring and visualizing large-scale 
generative design datasets. Unlike traditional computer aided 
design, where users create a single model, with generative 
design, users specify high-level goals and constraints, and 
the system automatically generates hundreds or thousands of 
candidates all meeting the design criteria. Once a large 
collection of design variations is created, the designer is left 
with the task of finding the design, or set of designs, which 
best meets their requirements. ๠is is a complicated task 
which could require analyzing the structural characteristics 
and visual aesthetics of the designs. Two studies are 
conducted which demonstrate the usability and usefulness of 
the Dream Lens system, and a generatively designed dataset 
of 16,800 designs for a sample design problem is described 
and publicly released to encourage advancement in this area. 

INTRODUCTION 
Over the past 20 years, 3D modelling and CAD tools have 
seen major advancements in the functionality which they 
offer and the complexity of designs which they can create. 

Despite these advancements, the overall approach and 
interactive workflow used to design geometry has undergone 
little change: users leverage a set of primary creation and 
editing tools to build towards a single candidate design – a 
somewhat bottom-up approach. 

However, with ever increasing computing power and new 
simulation methods, a relatively new technique of 
“generative design” has been introduced [27]. With this top-
down approach, the designer specifies high-level goals and 
constraints to the system, and allows the system to 
automatically generate geometry meeting those goals. Using 
this emerging computational workflow, a designer is no 
longer constrained to creating a single design solution. By 
varying the goals, constraints, or algorithm parameters, a 
divergent generative design system can create many 
solutions, and this technique has been applied to problems as 
diverse as creating lightweight airplane partitions [38], 
designing furniture [39], and optimizing office layouts [25] 
(Figure 2). With high-performance computing and cloud 
services, this process can be massively parallelized, allowing 
such systems to generate thousands of design alternatives. 

With this additional power and capability, comes the 
daunting task for the user to navigate through the candidate 
designs and find a single or set of suitable designs for their 
needs. ๠is is a complicated task as it could require analyzing 
structural characteristics of the designs, as well as examining 
their visual aesthetics. Few previous systems have been 
developed to help visualize and explore design alternatives 
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for geometry [11, 12, 23], and most of those were designed 
to support only a small number of designs. 

 

Figure 2. A selection of objects using a divergent generative 
design approach. From left to right: airplane partition, 
truss-based chair, office layout, and the Elbo chair. 

In this paper, we present an interactive visual analysis tool 
that helps designers explore a large space of 3D design 
solutions. Building upon a prior framework for exploring 
large collections of video data [24], the system allows users 
to inspect both the visual appearance of the geometric 
models, as well as the associated metadata describing their 
physical properties. In addition to visually exploring the 
solution set, users can rank designs using an example based 
approach, to help narrow the results to designs with the most 
desirable features, and view attribute examples, to help 
understand the impact of each attribute within the metadata.  

Our work contributes a system for exploring large collections 
of 3D models that have subtle variations in their aesthetics 
and physical properties, and we make our extensive dataset 
publicly available to encourage further work in this area. 
Initial feedback from two user studies indicates the potential 
benefits of the system and the overall excitement around the 
concept of visualizing generative design solutions.  

RELATED WORK 

Dataset Exploration 
๠e Video Lens framework [24] and associated Baseball 
Video Lens system were developed for searching and 
filtering through large collections of video and associated 
metadata. ๠e Dream Lens system builds upon the Video 
Lens framework, by extending the functionality of existing 
components, and introducing new components and 
interactions specifically for the domain of exploring a large 
collection of generatively designed 3D objects.  

๠ere are a large number of research projects dedicated to the 
general task of multi-dimensional dataset exploration [15, 
19, 28] over a large set of domains including publications 
[21], online shopping [32], and image search [8, 33]. ๠e 
VisOpt Slider [20] looks at a similar task of design 
exploration, and presents a unique approach to encoding the 
parameter space of an attribute directly on a slider widget. 

Interaxis [18] looks at the difficult problem of mapping 
multi-dimensional data onto a two-dimensional scatter plot. 
๠ey address this by letting users drag examples to the 
extreme ends of the scatter plot to define how each access 
should behave. Our work uses a similar “by example” 
approach to defining rankings based on user preferences. 

Design Optimization and Generative Design 
While generative design [4] is still a relatively new and 
emerging area, there have been a number of projects looking 
into the areas of generative design and design synthesis.  

GEM-NI is a graph-based generative design tool allowing 
designers to explore multiple design alternatives in parallel 
[37]. While focused on direct-manipulation tools, the system 
also has a “Design Gallery” for parameter range exploration, 
although it is limited to viewing several dozen designs. Ulu 
and Kara [31] present an algorithm for generatively creating 
structures to support existing objects. ๠e resulting designs 
are created by specifying points on the object and ground 
where the support structure should connect. ๠is type of 
design problem is similar to the “monitor stand” example 
problem described in this work. However while their work 
focuses on the algorithmic details of the solver and provides 
limited support for creating design variations, our work uses 
an existing solver, and looks at the problem of filtering 
through a large set of variations.  

Recent work by Doraiswamy et al. [13], and Ashour & 
Kolarevic [3] have looked at generatively producing building 
designs considering properties such as “the view” and 
daylight. ๠ese papers note that aesthetic considerations are 
often ignored in optimization models [7, 14, 30], yet are 
influential in the design process. To overcome this, they build 
aesthetic characteristics into the simulation model. Our 
approach for aesthetic considerations is to dedicate a large 
portion of the interface to viewing the design geometry. 

Design Variations and Comparisons 
A number of systems have looked at how to compare 
multiple 3D models, including 3D Diff [12] and Mesh Git 
[11], or design results when varying an input parameter space 
[23, 29]. However those systems are designed for comparing 
two or three 3D models, or several dozen graphical 
variations, and do not look into the problem of comparing 
larger collections. Lienhard et al. [22] create “thumbnail 
galleries” for a set of procedurally generated models. ๠ese 
galleries are very effective for showing a range of possible 
designs, but do not support visualizing the parameters. 

Systems such as ShapeSynth [5], Fit and Diverse [35], work 
by Alhashim et al. [1], Jain et al. [16], and Kalogerakis et al. 
[17] have the ability to produce a large collection of design 
variations given a relatively small set of examples as input. 
Using a different approach, Yumer et al. [36] developed a 
system to procedurally generate thousands of high-quality 
models using autoencoder networks. However, these systems 
have relatively limited support for interactively exploring the 
collection of generated models. 

THE DATASET 
๠is section describes the process used to create a large 
collection of generatively designed solutions to a single 
design problem. Data sets of this type are non-trivial to set 
up, and time consuming to generate. We believe the 
dissemination of high-quality generatively designed datasets 



 

 

is important for advancing research in this emerging area, 
and are unaware of any such publicly available data. To this 
end, the full dataset is available for download (~58GB) 1.  

To create a collection of design variations, we used Project 
Dreamcatcher [40], an internally developed experimental 
platform for producing generative design solutions to 
engineering design problems. ๠e system allows a user to 
input the requirements and constraints in the form and 
structural loads of their design, rather than designing the 
solution manually. Multiple shape and topology optimization 
algorithms are employed to synthesize model geometries that 
optimally satisfy these criteria [2, 6, 34].  

Problem Definition 
We wanted to test the Dream Lens system with a broad range 
of designers, and given the time requirements for creating 
large sets of design solutions, we wanted to do this with a 
single dataset. To accomplish this, we needed a design 
problem and related dataset that was easy to understand 
without any specialized domain knowledge, could be used 
by a broad range of people, and was a problem that could be 
satisfied by a wide variety of designs options. 

๠e design task we came up with which satisfies the above 
criteria is to create a 3D printed “monitor stand” to raise a 
monitor off the surface of a desk (Figure 2). Specifically, the 
stand is customized for the base of a Dell UltraSharp 2407 
monitor and needs to raise the base 80mm above the tabletop. 

Using a traditional CAD approach, we would design the 
stand itself, and then perhaps run a simulation to ensure that 
our design could support the required weight. However, to 
approach this problem from a generative design/shape 
synthesis perspective, we instead provide a set of input 
geometries, constraints, and forces – and allow the 
simulation engine to generate a design. 

 
Figure 3. Sample design task, raising a computer monitor 
off the surface of a desk. 

In this case, the designer supplied geometry consists of three 
disks at the bottom which represent the “feet” where the 
monitor stand will contact the desk, and three flat sections 
placed 80mm above the desk which trace the shape of the 
monitor’s base. Additionally, the tabletop is modelled as an 
“obstacle” to prevent the generated geometry from extending 
below the desk’s surface (Figure 4). 

                                                           
1 www.autodeskresearch.com/publications/dreamlens 

 

Figure 4. Problem definition describing the locations of the 
feet, platforms, and desk surface geometry, and the position 
and direction of the static forces. 

๠e static weight of the monitor is 8.3kg, so the platforms 
need to support at least 8.3kg × 9.8N/kg = 81.3N of force. To 
account for additional loads (when placing the monitor on 
the stand, for example), the stand should be able to support a 
load of at least 200N, and the ability to support heavier loads 
is desirable as well. ๠e weight of the monitor is modeled as 
two independent forces: a middle load on the middle 
platform, and an outer load distributed evenly to the two 
outside platforms (Figure 4). 

An example design solution to this problem with middle and 
outer loads of 500N each, is shown in Figure 5. In addition 
to the geometry of the design, a number of properties are 
calculated including the static properties of: Center of Mass 
(x, y, z), Weight, Overhang Percentage, Surface Area, 
Area/Volume Ratio, as well as properties related to the 
performance under the load conditions: Maximum 
Displacement, Max. Strain, Total Strain, Max. Vonmises, and 
Objective Value (for the simulation). 

 
Figure 5. A single design, produced with middle and outer 
loads of 500N each. 

Variation Creation 
๠e previous section describes the general definition used to 
model the problem, and the process used to generate a single 
design. ๠is is an example of convergent generative design, 
where the algorithm converges to a single solution. But 
rather than looking at a single option, we are interested in 
design difficulties when the computer generates thousands of 
variations to choose from. We refer to this as divergent 
generative design. In many parametric design systems [3, 13, 
36, 37], variations are created by varying some combination 
of the parameters used for describing the geometry. In our 
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case, rather than varying parameters of the geometry directly, 
we vary the parameters of the problem definition which is fed 
to the simulation engine, which in turn results in a rich 
variety of design outputs. 

๠ere are four parameters in the problem definition and 
solver configuration which we choose to vary (with the 
parameter values listed in brackets): 

MIDDLE LOAD: ๠e load directed downward on the middle 
section of the platform. [100N, 250N, 500N, 1000N, 2000N]. 

OUTER LOAD: ๠e load directed downward on the outer 
sections of the platform, set independently of the middle 
load. [100N, 250N, 500N, 1000N, 2000N]. 

VOXEL SIZE: A parameter of the solver which sets how big 
the voxels (the 3D version of a 2D pixel) will be when 
performing calculations. [1.5mm, 3.0mm, 4.5mm]. 

MU: Another parameter of the solver, which indicates a 
constant value for volume minimization within the solver.  
[-0.000008, -.0.000004, -0.000002]. 

Finally, since topology optimization is an iterative process, a 
new design is created at each iteration, and the result at any 
intermediate iteration represents a “valid” design. Set-ups 
ran for 74 iterations, producing 74 designs each. 

Combining these factors leads to 16,800 total designs: 

× 

5 
5 
3 
3 
74 

MIDDLE LOADS 
EDGE LOADS 
VOXEL SIZES 
MU VALUES 
ITERATIONS 

 16,800     Total Designs 

Each design took an average of 3.1 minutes to generate, 
requiring over 36 days of GPU time in total. ๠e system used 
10 GPUs in parallel, completing the process in four days. 

While all designs in this “full” collection are at least 
marginally unique, successive iterations from the same run 
vary only slightly. To minimize the number of very similar 
designs, a collection with results from six iterations (20, 30, 
40, 50, 60, 74) was created. Additionally, “extreme outlier” 
designs with computed properties more than 4 standard 
deviations from the mean were removed, resulting in a 
“filtered” set of 1,242 designs (a number of which are shown 
in Figure 1). All of the designs meet the criteria of raising the 
monitor 80mm, yet exhibit a high degree of variation in both 
visual appearance and physical characteristics.  

In the end, our dataset contains the 3D geometry of each 
design, a static rendering of each design from a consistent 
viewpoint, and a metadata file describing all the input 
parameters used, and properties calculated for each design.  

THE DREAM LENS SYSTEM 
To address the task of searching and filtering through a large 
collection of design variations, we created the Dream Lens 

system. While the system was developed for exploring sets 
of 3D model designs created with a generative design 
process, we believe it would prove useful for any large set of 
design variations, independent of how they were created.  

Design Goals  
๠e development of the Dream Lens system was directed by 
two main design goals: 

D1: Highlight both Appearance, and Properties 
We have found that users of generative design solutions tend 
to fall into two broad categories: ๠e “engineer” types, who 
heavily focus on the simulated properties (such as weight, 
strain, etc.) of the produced designs, and pay little or no 
attention to the appearance of the artifact; and the “artist” 
types, who are less concerned with the model properties, but 
care greatly about the aesthetics of the generated design. We 
believe both usage types are valid and important, and want 
the Dream Lens system to support both types of users (and 
those in between). Additionally, by emphasizing both the 
properties and appearance of the designs, perhaps the 
“engineers” may be encouraged to appreciate the aesthetics 
a bit more, and the “artists” might better appreciate the 
physical properties, creating a more well-rounded design. 

D2: Encourage Exploration 
When introduced to the idea of algorithms producing 
thousands of candidate designs, some people question the 
need for variation and would rather the computer “just pick 
the best one for me”. We believe that the real power of a 
divergent generative design system is that it can produce a 
collection of designs where picking the “best” is a non-trivial 
task due to opposing factors which need to be reconciled 
(weight vs. strength, for example), or the aesthetics of the 
design are important and need to be considered. We feel 
encouraging and simplifying exploration of the design space 
is important to make design-choice tasks more successful. 

Implementation 
Dream Lens is a C# Microsoft WPF application built as an 
extension to the Video Lens Framework [24]. In order to take 
the initial framework (which was designed for exploring 
video collections) and make it suitable for exploring design 
variations, Dream Lens both extends the functionality of 
components developed in Video Lens, and introduces new 
components and interactions specifically suited for this new 
domain. Specifically, Dream Lens makes use of Single 
Attribute Controllers (SAC) and Multi-Attribute Grid 
(MAG) components from Video Lens (with modest 
improvements); while the Attribute Example View, Design 
Viewer (for 2D images and 3D models), Stacked Model 
View, Interactive Design Tooltip, and Ranking by Example 
controls were newly developed expressly for this work.  

The Interface 
๠e Dream Lens interface (Figure 6) is split into two main 
sections: the design viewer on the left, and a collection of 
tools for visualizing, selecting, and filtering the parameters 
on the right – giving relatively equal screen space to the 
appearance and the properties of the designs (D1). 



 

 

๠roughout the interface a constant mapping of “1 dot = 1 
design” is followed. ๠at is, each dot in any of the controls 
in the property explorer represents a single design. As the 
cursor hovers over designs in one control, those designs are 
highlighted in all the other controls, and selections made in 
one control are immediately reflected in the others. On 
startup, the interface is loaded with the 1,242 designs from 
the “filtered” dataset.  

 
Figure 6. Dream Lens interface. 

Single-Attribute Controllers (SAC) 
Each attribute from the metadata is represented by a single 
attribute controller (SAC) [24]. ๠e SAC is labeled with the 
attribute name on the left, and has a strip showing the values 
of that attribute on the right (Figure 7). ๠e value strip 
contains one dot for each design, showing the distribution of 
values with the attribute.  

 

Figure 7. ๠ree example Single-Attribute Controllers. In the 
bottom one, a selection has been made, as indicated by the 
‘x’ button, which will clear the selection. 

Filtering events based on a single attribute is accomplished 
through clicking or dragging within the value strip. Since the 
SACs are linked, selections made in one SAC are 
immediately reflected in all others.  

 
Figure 8. ๠e full collection of single-attribute controls, 
separated in two columns. 

An enhancement to the SACs over the implementation 
described in Video Lens is the colouring of the individual 
data points. Previously the individual points were rendered 

in greyscale, here, the points respect the color mapping set in 
the multi-attribute grid (described later in this section). 

๠e single-attribute controllers are arranged in two columns, 
with the “Input Parameters” on the left, and the “Model 
Characteristics” on the right (Figure 8). ๠e input parameters 
column contains data about the setup and parameters used in 
the creation of each design, and the model characteristics 
columns contains the computed properties of the designs. 

Attribute Examples 
When exploring a collection of designs, it is useful to see 
what effect individual parameters have on the design. For 
example, questions such as, “What does changing the middle 
load do to the design?” and “What does a model with a high 
overhang percentage look like compared to one with a low 
overhang?” are common during the exploration process. To 
help answer these questions, right clicking on the attribute 
launches a large spring-loaded panel showing a set of four 
examples from the value range for that attribute (Figure 9). 

 

Figure 9. Attribute Example view for Center of Mass X. 

๠e representative models are chosen by first calculating four 
key values from across the range of the variable: namely the 
minimum value, the maximum value, and the values one and 
two-thirds between them. Our initial thought was to then 
select the model closest to each of the four key values, 
however that model may have unique characteristics not 
related to the variable in question, thus not serving as a very 
good “representative” example. Instead, for each of the key 
values, the 10 closest models are found. ๠en, the centroid of 
these models is computed by averaging all of the attributes 
for these designs, and the most “representative” example of 
this group is calculated as the design with the lowest root 
mean square error (RMSE) from the centroid.  

 
Figure 10. Representative designs for, Middle Load  and 
Overhang Percentage. 

Figure 10 shows the representative models selected and 
displayed for the middle load and overhang percentage 
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attributes. We can see that an increased middle load results 
in a more substantial “center leg”, and models with a high 
overhang leave much of the platform unsupported. 

Multi-Attribute Grid (MAG) 
๠e top-right corner of the interface contains the Multi-
Attribute Grid (MAG) component [24]. ๠is component 
displays a two-dimensional grid (Figure 11A) with attributes 
mapped to each of the horizontal and vertical axes (Figure 
11B,C). Attributes can also be mapped to the colour and size 
of the data points (Figure 11D,E). ๠ese mappings can be 
changed by dragging-and-dropping attribute labels from the 
SACs to the respective positions around the MAG. By 
dragging attributes to the different axes/dot controls, we can 
see the relationship between multiple variables. 

 
Figure 11. Multi-Attribute Grid (MAG) showing the 
relationship between Weight and Total Load. 

Design Viewer 
On the left side of the interface is the Design Viewer, for 
viewing the geometry of the design solutions. On startup, it 
displays small thumbnail images for all 1,242 designs in the 
filtered dataset (Figure 12). By default, the designs are sorted 
by weight, with the lightest designs at the top, and the 
heaviest designs at the bottom. However, the sort order can 
be changed by dragging-and-dropping a label from a single-
attribute controller to the “sort-by” control at the bottom 
right corner of the design viewer (Figure 13). 

 
Figure 12. ๠e design viewer with the initial (top left), and 
filtered views with 1242, 186, 77, and 6 design options. 

As the collection of designs is reduced, less thumbnails are 
displayed, and the images are scaled to fill the space (Figure 

12). When displaying less than 100 designs, the thumbnail 
images are replaced with interactive 3D models. ๠is affords 
two large advantages over the static 2D images. First, the 
models can be coloured to respect the colour setting from the 
multi-attribute grid. Second, the camera position for these 
models can be manipulated to look at different parts of the 
model. ๠e camera manipulations performed on one 
thumbnail are propagated to all models so one can orbit and 
zoom around all the models in concert, and view all designs 
from the same viewpoint.  

When there are many designs, the images are quite small. To 
address this, a large tooltip is displayed to show an enlarged 
image of the design (Figure 13). Pressing the ‘f’ key when 
the tooltip is enabled saves the design to the list of 
“favourites” (as indicated by the star icon). 

 
Figure 13. A design tooltip displayed when the cursor is over 
a model thumbnail. 

We found it useful to see what a design looked like a few 
iterations earlier, or a few iterations later. Using the scroll 
wheel while the tooltip is active moves through successive 
iterations of the model in the “full” dataset (Figure 13). 

Model Stacking 
Besides looking at the models individually in a grid view, we 
wanted to explore the idea of viewing the models in a shared 
3D space. To enable a visualization of this type, we created 
a “stacked” mode where rather than displaying each 3D 
model in its own grid cell, their viewports are each enlarged, 
positioned on top of each other, and composited (Figure 14).  

 
Figure 14. ๠e standard 3D grid view (left), animating to the 
stacked view (right). 

With this view, users can directly see the differences in 
topology or geometry among a small set of models and when 
stacking a larger number of models it is possible to see 
regions of high and overlap, in addition to common features 
among the individual designs (Figure 15). 

๠e desired effect of the stacked view is to have each design 
contribute equally to each pixel of the display. Conceptually, 
the colour for each pixel in the display is equal to the sum of 
all values at that pixel for each individual design, divided by 
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the number of models. Rather than directly manipulating 
pixel values, we used an alternative (and more performant) 
method to achieve the same result through standard alpha 
blending and a particular series of individual layer opacities. 
Namely, each layer has an opacity of 1/݊, where n is the 
height of the current layer (i.e., the bottom, or first, layer has 
an opacity of 1, the second 1/2, the third 1/3, etc.). When 
composited with default alpha blending [26], the desired 
effect of each model contributing equally to the composite. 

 
Figure 15. Sample stacked views for 4 (left) and 100 (right), 
similar (top) and dissimilar (bottom) designs. 

Using 3D models with 5000 faces each, the standard WPF 
3DModelViewer control, and an ATI 1080Ti graphics card, 
the a model stack of 100 designs can be navigated with an 
update rate of 15 frames per second. 

Interacting with the Stack 

Besides being able to navigate the stack of models with pan, 
zoom, and orbit controls, we implemented three techniques 
for interacting with the stack to filter the set of selected 
designs by interacting directly with the model geometry: 
chisel, select, and edge (Figure 16). 

 

Figure 16. ๠e effects of the chisel, select, and edge tools in 
the stacked model mode. 

๠e chisel tool uses the interaction metaphor of a sculptor 
“chiseling” away at a block of marble to arrive at the desired 
design. When clicking on the stack with the chisel tool, all of 
the designs which have material under the cursor are filtered 
out. ๠is is accomplished by performing a hit-test on each of 
the 3D viewports, and removing the models where there is 
an intersection with the cursor.  

๠e inverse of the chisel tool is the select tool, where clicking 
on the stack of models causes all models which do not have 

material under the cursor to be removed, leaving only those 
models which do have material under the cursor. 

๠e final tool for filtering in the stacked view is the edge tool, 
where the user draws a curve along the stack indicating a 
desired outline of the design, and only designs matching the 
requested edge profile are kept. If there is a particular  
“principle curve” the user would like, they can orient the 
model stack to where that edge is visible, and directly draw 
the desired curve to find all matching models. 

 

Figure 17. Graphical representation of the edge tool. 

๠e edge tool works by having the user to draw a stroke over 
the model stack, which is shown as a yellow highlight 
(Figure 17). ๠e points from this stroke are smoothed, and 
two strokes offset from the initial stroke at a distance of 30 
pixels are calculated. Along these offset strokes, four points 
are selected, resulting in two “groups” of four points each. 
๠e algorithm then performs a hit test at these eight points, 
and finds models which are a “hit” in all points of one group, 
but a “miss” in all points of the other group. In this way, the 
algorithm finds the models which have an edge within the 
thickness of the highlighted stroke since the models “exist” 
on one side of the center line, but do not on the other. 

Ranking by Example 
๠e final component of the interface is the ranking panel. 
When faced with a large collection of design options, a 
common desire is to “rank” all of the designs. We have found 
it is often the case that users do not know exactly what 
criteria to use in constructing their ranking, but they do know 
which designs they like, and which ones they do not. 

 
Figure 18. Steps involved in creating a ranking (A-C), and 
optionally, adjusting the importance weightings of the 
various attributes (D). 

Taking advantage of this fact, we implemented a “ranking by 
example” interface were users choose some designs they like 
and (optionally) some designs they dislike, and the system 
automatically ranks the designs such that those most similar 
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to the “liked” designs and dissimilar from the “disliked” 
designs ranked the highest (Figure 18). 

To select “liked” or “disliked” designs, the user drags the 
thumbnail for the design onto the ‘+’ or ‘-’ labels respectively 
(Figure 18A). Once one example has been selected, a strip 
plot similar to those found in the single-attribute controllers 
appears, ranking all designs from highest-ranked on the left, 
to lowest-ranked on the right (Figure 18B). Additional 
examples can be specified to refine the ranking (Figure 18C).  

 
Figure 19. Top Nine view for the specified ranking. 

๠e ranking is determined by analyzing the attributes of the 
liked and disliked designs (as detailed below). ๠e arrow to 
the right of the strip plot expands the attribute weighting 
controls, allowing the weights to be manually adjusted. 

Once a ranking has been created, the ranking behaves like 
the other “standard” SACs in terms of hovering and filtering 
behavior. It can also be dragged to the “sort-by” widget on 
the design viewer to sort the designs by this ranking, or to 
any of the axes/dot property controls of the MAG. Clicking 
on the “Top Nine” button allows the user to quickly see the 
highest ranked designs (Figure 19). 

Ranking Algorithm 
At a high level, the ranking algorithm works by calculating a 
score for each candidate design based on its similarity to each 
of the “liked” designs and dissimilarity from each of the 
“disliked” designs. By ordering the candidate designs by this 
score, we can see which designs are ranked the highest. 

Specifically, the ranking algorithm takes three sets of 
designs, the liked and disliked designs, as well as the full set 
of all available designs: 

 
Besides the lists of designs, we also need a list of attributes 
to be used for calculating the ranking: 

 
We found using model characteristics rather than input 
parameters resulted in rankings which more closely matched 
user expectations, and used the following eight model 

characteristics: center of mass (x,y,z), weight, total strain, 
surface area, overhang percentage, and area to volume ratio. 

Given the above lists, the first step is to calculate the relative 
“weights” of the individual attributes, that is, compute a 
metric to determine how important each attribute is to the 
user’s ranking. We do this by seeing how closely together 
each of the attributes are within the liked and disliked sets. 
For example, if all of the liked designs were very similar in 
weight, but not similar in total strain, we infer that weight is 
an important factor in the user’s preferences, while total 
strain is not. ๠is is calculated by first normalizing the values 
for all attributes to the range of [0..1] and by computing the 
standard error for each attribute (erra) within each of the 
liked and disliked sets. ๠en, we normalize the standard 
errors between 0 and 1, and use that as the weighting factor: 

 
Next, a likeScore is calculated for each candidate design by 
computing its distance from each of the liked designs using 
a RMSE calculation with the difference between the 
individual attributes scaled by the weighting factor: 

 

A similar calculation is used to compute the dislikeScore, 
and then the totalScore is calculated as: 

 
Since the likeScore and dislikeScore are normalized 
between 0 and 1, the total score will be a value between 0 
and 2, with lower totalScores representing higher rankings. 

We tested other algorithms for computing the rankings (such 
as linear regression), but found our approach gave more 
“predictable” results and has the desirable properties of 
producing results even if only one example is provided, and 
ensuring that if only one design is chosen for each of the liked 
and disliked categories, those designs are guaranteed to be at 
the top and bottom of the ranking, respectively. 

Example Tasks 
To demonstrate how the Dream Lens system could be used, 
we present walkthroughs for three sample tasks. 

Task 1: Find models most suitable for 3D printing 
For many 3D printing technologies, a combination of low 
weight and low overhang is desirable. To find designs best 
satisfying these criteria, first drag the weight and overhang 
pct properties to the axes of the multi-attribute grid (Figure 
20, Step 1). Since there are no designs which combine the 
lowest of each property, the user performs a lasso selection 
around the designs near the bottom of the curve. ๠is “Pareto 
frontier” [10], represents those designs which most optimally 
combine low-weight and low-overhang (Figure 15, Step 2). 



 

 

  

Figure 20. Steps to find those designs which best combine a 
low weight with a low overhang percentage.  

Task 2: Find designs which satisfy multiple parties 

When working in a collaborative environment, it is common 
to have multiple stakeholders with differing opinions on how  

 

Figure 21. Possible workflow for reconciling preferences of 
multiple stakeholders. 

the design should look or function. One approach to finding 
designs which will best satisfy multiple people is to have 
them each create a ranking with examples of designs they 
like (Figure 21, Step 1). By dragging the rankings for each 
person (Ann and Bob) to the MAG, we can find designs in 
the lower-left quadrant which score the highest on each of 
their personal rankings (Figure 21, Step 2). Another approach 
is to look at the “Top 9” results for each of the rankings, and 
see if Bob can find any designs he likes at the top of Ann’s 
rankings, or vice versa (Figure 21, Step 2 alternate). 

Task 3: Find inspiration from “non-standard” designs 

Interviews with users of generative design software [9] have 
suggested that in many cases the computed geometry is used 
as a starting point for design exploration, rather than the end 
product. In this use case, the user might want to see some 
examples of “non-standard” designs produced by the system, 
as a way to spark their own creativity. 

 

Figure 22. Possible steps for finding “non-standard” results 
within the dataset. 

To do this, a user might have noticed that some attributes 
have most designs highly clustered in one area, with a 
smaller number of designs distributed in the other regions. 
๠ey could right-click on the attribute label to see what the 
designs look like at the extreme ends of the variable (Figure 
22, Step 1). Alternately, they could select the sparsely 
populated region of the slider to see only those designs which 
are on the “fringes” (Figure 22, Step 2). ๠ese designs could 
then be stacked in the model viewer and the chisel tool used 
to remove the “standard” designs. 

At first glance, these results (Figure 22, A-C) appear like they 
might not work, that they could tip over. However, this 
problem definition assumes the base will be “bolted” or 
solidly affixed to the table surface. So, if affixed to the table 
surface, designs A-C would actually work, and could serve 
as inspiration for other designs incorporating a more 
“lopsided” or “suspended” look.  

EVALUATION 

To evaluate Dream Lens, we ran two studies: one lab study 
with expert computer users, to validate that users with 
minimal training could complete a variety of tasks, and a 
larger scale qualitative study with professional designers to 
gather subjective feedback and suggestions. 

Step 1

Step 2

Results
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Step 1

Step 2

Step 2
(alternate)

(or 2)
Step 1

(or 1)
Step 2

Results
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Lab Study 
For the qualitative study, six paid volunteers (3 male, 3 
female) were recruited between the ages of 22-48 (mean = 
32). None of the participants had used generative design 
software. Four of the participants reported performing design 
tasks (graphic design, UI design) as part of their job. 

 

Figure 23. ๠e task descriptions and completion times from 
the lab study. Black bar indicates median completion times. 

๠e study took approximately 40 minutes: 5 minutes where 
the proctor described the task of designing a monitor stand, 
5 minutes demonstrating the functionality of the system, then 
the participant took 5 minutes to become comfortable using 
the system. In the final 25 minutes the participant completed 
a series of 10 tasks (including three tasks similar to those 
described in the previous section) (Figure 23). ๠e set of 
tasks were designed to replicate common scenarios which 
arise when exploring a generative design dataset. 

All participants completed all tasks in less than 95 seconds, 
and four of the participants had average completion times of 
less than 40 seconds. In the post-study questionnaire, all 
participants rated the system either “easy” or “very easy” to 
use, and thought it would be “useful” or “very useful” to a 
designer in the generative design process.  

Qualitative Feedback Sessions 
To gather feedback from design professionals, 17 designers 
(2 female, 15 male) participated in one hour sessions where 
they were led through a series of tasks. 

Many participants commented on the amount of data being 
displayed. Some users liked being exposed to so much: 

I like programs that have as many variables as possible. I like 
to see all of my options. –P3 

While others felt the interface was overwhelming: 

The sliders are visually intensive. Do I really need a mini 
graph? A lot of things are fighting for my attention. – P12 

In terms of the individual features, users were particularly 
drawn to the ranking panel… 

I like that the algorithm does the work, and you can adjust it 
afterwards. – P10 

It’s somehow classifying what I call ‘branchy’. I can’t believe 
what it’s doing. Oh wow! – P9 

…as well as the stacked-model view: 

With the models stacked, it feels like I’m working with a much 
smaller dataset, and the chisel tool feels more “natural” than 
working with the data filters. – P1 

Overall, the participants enjoyed using the Dream Lens 
system, and were excited about the possibilities a Dream 
Lens-like system could mean for their design workflow. 

DISCUSSION AND FUTURE WORK 
We used the “filtered” dataset of 1,242 designs rather than 
the full set of 16,800 primarily because the designs from 
successive iterations were very similar. Better handling of 
very similar designs, such as clustering or grouping visually 
similar designs in the design view, would be a useful step for 
dealing with even larger, or less-diverse datasets. Although 
we removed “extreme outlier” designs, during the studies we 
found that the outlier designs which remained were some of 
the most interesting for users. It would be interesting to look 
at how to include extreme designs, without having those 
designs negatively affect the data visualizations. In addition 
to more diverse and larger datasets, it would be useful to 
explore how to handle datasets with a larger number of 
parameters. In Dream Lens, 20 parameters per-model are 
exposed, while in Video Lens [24], each event has 43 
parameters – a different organization might be required if the 
dataset has a larger number of parameters per object. 

In the stacked model view, we prototyped a flat (non-shaded) 
rendering, and volumetric rendering, but preferred the 
appearance and of the composited shaded rendering. Moving 
to a volumetric renderer might allow for a larger number of 
models to be “stacked”, but would lose the crisp rendering of 
the edges of the individual models. Exploring alternative 
rendering techniques for this type of visualization would be 
an interesting future direction. 

Due to the amount of time required to generate designs, 
Dream Lens works by loading in a large set of pre-generated 
designs to explore. It would be interesting to use Dream Lens 
in the early stages of generation to examine a sample of 
designs to “guide” the generation engine towards types of 
designs and parameters that the user likes. Additionally, after 
choosing a design, it would be interesting to be able to send 
that back to the simulation engine and ask it to “make more 
like this one” to enable a more iterative design process. 

Overall, we believe Dream Lens represents a novel 
contribution to the area of interactively exploring large 
collections of 3D models, particularly those with subtle 
variations in their aesthetic and physical properties. 
Combined with contributing a dataset of 16,800 generatively 
designed solutions to the same design problem, we hope our 
work can serve to inspire future research in this area. 
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