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Abstract—In this paper we consider the problem of reconstructing the 3D position and surface normal of points on an unknown,

arbitrarily-shaped refractive surface. We show that two viewpoints are sufficient to solve this problem in the general case, even if the

refractive index is unknown. The key requirements are 1) knowledge of a function that maps each point on the two image planes to a

known 3D point that refracts to it, and 2) light is refracted only once. We apply this result to the problem of reconstructing the time-

varying surface of a liquid from patterns placed below it. To do this, we introduce a novel “stereo matching” criterion called refractive

disparity, appropriate for refractive scenes, and develop an optimization-based algorithm for individually reconstructing the position

and normal of each point projecting to a pixel in the input views. Results on reconstructing a variety of complex, deforming liquid

surfaces suggest that our technique can yield detailed reconstructions that capture the dynamic behavior of free-flowing liquids.

Index Terms—Stereo, time-varying imagery, shape-from-X, transparency, refractive index estimation.

Ç

1 INTRODUCTION

MODELING the time-varying surface of a liquid has
attracted the attention of many research fields, from

computer graphics [10], [14], [36], [39] and fluid mechanics
[20] to oceanography [11], [28], [32], [58]. While great strides
have been achieved in the development of computer
simulators that are physically accurate and visually correct
[14], [36], capturing the time-varying behavior of a real
liquid remains a challenging problem.

From the point of view of computer vision, analyzing the
behavior of liquids from videos poses several difficulties
compared to traditional 3D photography applications:

. No prior scene model. Spatiotemporal evolution is
constrained only by the laws of fluid mechanics,
making it difficult to assume a low-degree-of-free-
dom parametric model for such a scene [4], [57].

. Nonlinear light path. Liquid surfaces bend the incident
light and, hence, a point below the surface will project
along a nonlinear path to a viewpoint above it.

. Shape-dependent appearance modulation. Absorption,
scattering, and Fresnel transmission cause the ap-
pearance of points below the surface to depend on the
light’s path and, hence, on the surface shape [18].

. Turbulent behavior. Liquid flow is an inherently
volumetric phenomenon whose complete character-
ization requires capturing both its time-varying sur-
face and a vector field describing internal motion [59].

. Instantaneous 3D capture. Since liquids are dynamic
and can flow rapidly, shape recovery must rely on
instantaneously-captured information.

As a first step, in this paper we consider the problem of
reconstructing the time-varying 3D surface of an unknown
liquid by exploiting its refractive properties. To do this, we
place a known, textured pattern below the liquid’s surface
and capture image sequences of the pattern from two
known viewpoints above the liquid (Fig. 1). Our focus is on
imposing as few restrictions as possible on the scene—we
assume that the liquid has a constant but unknown index of
refraction and that its instantaneous 3D shape is arbitrary,
as long as light coming from the pattern is refracted at most
once before reaching the input viewpoints.

The reconstruction of refractive surfaces from photo-
graphs has a long history in photogrammetry [15], [24], [37],
[42]. These techniques assume a low-parameter model for
the surface (e.g., a plane) and solve a generalized structure
from motion problem in which camera parameters, surface
parameters, and 3D coordinates of feature points below the
surface are estimated simultaneously. In related work,
Treibitz et al. [51] show that a vision system observing a
scene immersed under a planar refractive surface becomes
multiperspective. They present a calibration technique to
estimate the geometry involved and recover the 3D position
of objects immersed in the refractive medium. In computer
vision, the reconstruction of time-varying refractive sur-
faces was first studied by Murase [40]. Their work focused
on water (whose refractive index is known) and followed a
“shape-from-distortion” approach [2], [29], [40], [42], [56].
In their approach, 3D shape is recovered by analyzing one
distorted image of a known pattern that is placed under-
water. Unfortunately, it is impossible in general to
reconstruct the 3D shape of a general refractive surface
from one image, even if its refractive index is known. The
inherently ill-posed nature of the problem has prompted a
variety of assumptions, including statistical assumptions
about the pattern’s appearance over time [40], known
average water height [29], [42], known points on the surface
or surface integrability [50], and special optics [32], [58].
These assumptions break down when the refractive index is
unknown or when the liquid undergoes significant defor-
mations that cause changes in shape and height (e.g.,
pouring water in an empty tank). A different way to
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approach refractive distortion is to break up the observed
surface into a triangulated mesh, where each triangle acts as
a general linear camera (GLC) that warps the background
[12], [13]. Solving for the parameters of these GLCs gives the
Gaussian and mean curvature, but the 3D shape remains
ambiguous. Another common technique for reconstructing
water surfaces is known as the “optical wave-slope
measurement” approach [29], [30], [42], [56]. This approach
involves immersing optical components and a color or
intensity gradient in the liquid so that distinct surface
slopes map to distinct colors or intensities. This method is
most appropriate for measuring small capillary or wind-
driven waves and is unsuitable for the more general cases
we consider. More recent work has focused on tomography-
based approaches. Trifonov et al. [52] immerse target
transparent objects in a transparent liquid with matching
refractive index and measure the attenuation of a backlight
from various views. In [25], transparent objects are
immersed in a solution that fluoresces under laser illumina-
tion and are scanned with a sheet of laser light.

A closely related problem is the reconstruction of highly
specular surfaces, such as mirrors [5], [19], [26], [43], [46],
[47], [48], [50]. Mirrors interact with light in much the same
way that refractive surfaces do—light incident at a point is
reflected according to the point’s surface normal, thereby
tracing a nonlinear path. Blake [5] proposed using a moving
observer to recover the differential properties of a smooth
mirror surface from the observed motion of specularities.
Sanderson et al. [45] were the first to analyze the ambiguities
in single-view mirror reconstruction and to propose a stereo
camera configuration for resolving them. Our work, which is
based on a novel analysis of two-view ambiguities for
refractive scenes, exploits some of the same basic insights.
Recently, there have been several approaches for recovering
the 3D shape of mirror surfaces [1], [6], [7], [31], [54], [55], as
well as near-specular and glossy surfaces [9], [16].

Reconstructing transparent liquid surfaces is even more
challenging than mirrors for three reasons. First, the
interaction between light and a mirror does not depend
on the mirror’s material properties, but it does depend on a
liquid’s refractive index. When this index is unknown, it
must be estimated along with 3D shape. Second, the
nonlinearity of light paths cannot be taken for granted in
the case of fluctuating liquid surfaces, whose distance from

a pattern below the surface may approach zero, diminishing
the effect of refraction. To guarantee stable shape solutions,
a reconstruction algorithm must be immune to such
degeneracies. Third, establishing accurate pixel-wise corre-
spondences between patterns and their distorted images is
much easier in the case of a mirror. In liquids, the
distortions are both geometric and radiometric (due to
absorption, Fresnel effect, etc.) and can vary significantly
from one instant to the next.

The starting point for our work is a novel geometrical
result showing that two viewpoints are sufficient to
compute both the shape and the refractive index of an
unknown, generic refractive surface. The only requirements
are 1) knowledge of a function that maps each point on the
image plane to a known 3D point that refracts to it, and
2) light is refracted only once. Compared to mirrors, this is a
stronger two-view result because it shows that the refractive
index ambiguity, not present in mirror scenes, can be
resolved without additional views.

On the practical side, our interest is in algorithms that can
capture the detailed dynamic behavior of free-flowing
liquids. To this end, our work has four contributions. First,
we formulate a novel optimization criterion, called refractive
disparity, appropriate for refractive scenes, that is designed to
remain stable when refraction diminishes. Second, we
develop an algorithm for individually reconstructing the
position and normal of each point projecting to the input
views. The algorithm is closer to traditional triangulation [23]
and bundle adjustment [22], [53] than to voxel-based stereo
[6] and imposes no constraints on the liquid’s shape or its
evolution. Third, we show that refraction stereo can produce
a detailed, full-resolution depth map and a separate, full-
resolution normal map for the unknown surface. Fourth, we
present experimental results for a variety of complex
deforming liquid surfaces. These results suggest that refrac-
tion stereo can yield detailed reconstructions that capture the
complexity and dynamic behavior of liquids.

2 REFRACTION STEREO GEOMETRY

Consider an unknown, smooth, transparent surface that is
viewed by two calibrated cameras under perspective
projection (Fig. 1). We assume that the surface bounds a
homogeneous transparent medium (e.g., water or alcohol)
with an unknown refractive index. Our goal is to compute
the refractive index of the medium and the 3D coordinates
and surface normal at each point on the unknown surface.
To do this, we place a known reference pattern below the
surface and compute a pixel-to-pattern correspondence
function, Cðq; tÞ, that gives the 3D coordinates of the point
on the pattern refracting to pixel q at time t. In the
following, we assume that this function is known and
concentrate on the instantaneous reconstruction problem at
time t. We consider the problem of estimating the
correspondence function in Section 5. To simplify notation,
we omit the time parameter in the following discussion.

Let q be a pixel in the input views and let CðqÞ be the
point refracting to q. Suppose that this refraction occurs at
distance d from the image plane, at a point pðdÞ on the ray
through pixel q (Fig. 1). The relation between pixel q and
points CðqÞ and pðdÞ is governed by Snell’s law, which
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Fig. 1. Geometry of refraction stereo. For each pixel q in an input view,

the goal is to reconstruct the 3D position and surface normal of point p

on the refractive surface.



describes how light is redirected at the boundary between

two different media [18]. Snell’s law can be expressed as

two independent geometric constraints (Fig. 2):

. a deflection constraint, establishing a sinusoidal rela-
tion between incoming and outgoing light directions

sin �o ¼ r sin �i; ð1Þ

where �i is the angle between the surface normal and

the ray through CðqÞ and pðdÞ; �o is the angle

between the surface normal and the ray through

pixel q; and r is the refractive index;
. and a planarity constraint, forcing the surface normal

at pðdÞ to lie on the plane defined by point CðqÞ and
the ray through q; we call this plane the refraction
plane of pixel q.

These two constraints give us a relation between the pixel,

a known 3D point that refracts to it, and the unknown

surface. Unfortunately, they are not sufficient to determine

how far from the image plane the refraction occurs even

when we do know the refractive index. This is because, for

every hypothetical distance, there is a 1D set of possible

normals that satisfy the planarity and deflection constraints.

Each of these normals lies on the pixel’s refraction plane and

satisfies (1) for some value of the refractive index (Fig. 3).

Hence, the unit surface normal that satisfies Snell’s law for

pixel q can be expressed as a two-parameter family, nðd; rÞ,
parameterized by the distance d and the unknown refractive

index, r. A closed-form expression for this normal is1

nðd; rÞ ¼ ~nðd; rÞ
k~nðd; rÞk ; ð2Þ

~nðd; rÞ ¼ r k iðdÞ ^ ok uþ ðr½ iðdÞ � o� � 1Þ o; ð3Þ

where ^ denotes vector product, iðdÞ is the unit vector in the

direction of the incoming ray to pðdÞ, o is the unit vector in

the direction of the outgoing ray from surface point pðdÞ to

pixel q, and u is the vector perpendicular to o on the

refraction plane

iðdÞ ¼ c� d o�CðqÞ
kc� d o�CðqÞÞk ; o ¼ c� q

kc� qk ;

u ¼ o ^ ðiðdÞ ^ oÞ
ko ^ ðiðdÞ ^ oÞk :

ð4Þ

When the refractive index has a known value r0, there is
only one consistent normal, nðd; r0Þ, for each distance d.
Sanderson et al. [45] were the first to point out that this
distance-normal ambiguity for a pixel q can be resolved
with the help of a second viewpoint.2 Intuitively, a second
viewpoint allows us to “verify” whether or not a particular
distance hypothesis d is correct (Fig. 1): Given such a
hypothesis and given the projection q0 of point pðdÞ in the
second camera, we simply need to verify that point Cðq0Þ on
the reference pattern refracts to pixel q0.

While this hypothesis-verification procedure leads di-
rectly to an algorithm when the surface has a known
refractive index, it leaves open the question of how to
reconstruct surfaces whose 3D shape and refractive index
are unknown. In this case, the surface normal lies in the full,
two-parameter family, N ¼ fnðd; rÞ j d; r 2 IRþg. One ap-
proach would be to use a third viewpoint to verify that a
hypothetical refractive index r and distance d are consistent
with the pixel-pattern correspondences in the three views.

Rather than use a third viewpoint, we prove that two views
are, in fact, sufficient to estimate the 3D shape and refractive
index of an unknown, generic surface. Intuitively, generic
surfaces embody the notion of nondegeneracy—they are
smooth surfaces whose differential properties remain un-
changed if we deform their surface by an infinitesimal
amount [33]. As such, they are especially suitable for
modeling the complex, unconstrained shape of a liquid.
Theorem 1 tells us if the liquid’s surface is generic, the family,
N , of ambiguous solutions is discrete (see footnote 1).

Theorem 1. N is a zero-dimensional manifold for almost all
pixels in the projection of a generic surface.

Theorem 1 holds for continuous CðqÞ and suggests that
it might be possible to compute the refractive index of a
surface by choosing a single pixel q and finding the distance
and refractive index that are consistent with CðqÞ and the
pixel-to-pattern correspondences in the second viewpoint.
In practice, image noise and the possibility of multiple
discrete solutions dictate an alternative strategy where
measurements from multiple pixels contribute to the
estimation of the refractive index. We consider the
algorithmic implications of this result below.

3 DYNAMIC REFRACTION STEREO ALGORITHM

In order to reconstruct a liquid’s surface at a time instant t,
we need to answer three basic questions: 1) How do we
compute the pixel-to-pattern correspondence function
Cðq; tÞ, 2) how do we compute the refractive index, and
3) how do we assign a distance and a normal to each pixel?

To compute Cðq; tÞwe rely on a procedure that computes
the correspondences for time t ¼ 0 and then propagates them
through time using optical flow estimation.
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Fig. 2. Geometry of refraction. The figure shows a face-on view of the

refraction plane defined by the incoming and outgoing light directions,

iðdÞ and o, respectively, from point pðdÞ.

1. See the Appendix for a derivation, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI. 2011.24.

2. Sanderson et al. [45] made this observation in the context of
reconstructing opaque specular, rather than refractive, surfaces. Their
analysis applies equally well to the case of refractive surfaces with a known
refractive index.



Since the refractive index is the same for all pixels, we seek
a value that most closely satisfies the refractive stereo
geometry across all pixels and all frames. We perform a
discrete 1D search in an interval of plausible refractive
indices and, for each hypothesized refractive index value,
attempt to reconstruct the scene for all pixels and frames. We
then choose the value that produces the smallest reconstruc-
tion error. This leads to the following general algorithm
whose steps are discussed in the following sections:

. Step 1. Initialize pixel-to-pattern correspondences,
Cðq; 0Þ.

. Step 2. For each frame t > 0, estimate 2D optical flow
to compute Cðq; tÞ from Cðq; t� 1Þ.

. Step 3. For every refractive index r 2 fr1; . . . ; rng,
every frame t, and every pixel q

- assuming refractive index r for the liquid,
estimate the 3D position p and normal n of the
surface point projecting to pixel q at time t.

- estimate the reconstruction error (Section 4.2)

eðr; t; qÞ ¼ REðp;nÞ: ð5Þ

. Step 4. Set r� as

r� ¼ arg min
r

X

t;q

eðr; t; qÞ; ð6Þ

and return the distances and normals reconstructed

with this index value.

4 PIXEL-WISE SHAPE ESTIMATION

The key step in refraction stereo is an optimization procedure

that assigns a 3D point p and a surface normal n to each pixel.

The procedure assumes that the refractive index has a

known value r and computes the p;n that are most

consistent with Snell’s law and the pixel-to-pattern corre-

spondence function for the input views.
For a given pixel q, the optimization works in two stages.

In the first stage, we conduct a 1D optimization along the

ray through pixel q. The goal is to find the distance d that

globally minimizes a novel criterion, called the refractive

disparity (RD). This criterion is specifically designed to

avoid instabilities due to degenerate refraction paths (e.g.,

when the liquid’s surface is close to the reference pattern).
The optimal d-value gives us initial estimates, pðdÞ and

nðd; rÞ, for the 3D coordinates and surface normal of a point

that projects to pixel q. These estimates are further refined
in a second, bundle adjustment stage in which all five
parameters (two for the normal, three for the position) are
optimized simultaneously.

4.1 Measuring Refractive Disparity

Each value of d defines an implicit correspondence between
four known points (Fig. 1): pixel q, point CðqÞ on the
reference pattern that refracts to q, the projection q0 of pðdÞ
in the second viewpoint, and point Cðq0Þ. This correspon-
dence must be consistent with Snell’s law.

In their work on reconstructing mirror-like surfaces,
Bonfort and Sturm [6] noted that such a correspondence

gives us two “candidate” normals for pðdÞ which must be
identical when this hypothesis is correct. These normals
are obtained by applying (2) twice, once for each
viewpoint. Specifically, the first normal, n1 ¼ nðd; rÞ,
ensures that point CðqÞ on the reference pattern refracts
to pixel q via point pðdÞ. The second normal, n2, enforces

a similar condition for the second viewpoint, i.e., it ensures
that point Cðq0Þ refracts to pixel q0 via point pðdÞ. We obtain
n2 by applying (2) to pixel q0, using its distance from point
pðdÞ. Since points on a smooth surface have a unique
normal, a necessary condition for pðdÞ being on the “true”
surface is that n1 ¼ n2.

Unfortunately, even though it is possible, in principle, to

directly measure the alignment of vectors n1 and n2, such a
measurement becomes unstable when the distance between
the surface and the reference pattern approaches zero. This
is because, as refraction diminishes, (2) becomes singular,
normals cannot be estimated accurately, and the 3D
reconstruction problem degenerates to standard stereo. In
practice, this causes instability for low liquid heights,

making direct comparison of normals uninformative and
inappropriate for reconstruction.

Instead of measuring the alignment of the two normals
n1 and n2 directly, we perform an indirect measurement
that is not singular when refraction diminishes. The main
idea is that if n1 and n2 were truly aligned, “swapping”
them would still force point CðqÞ to refract to pixel q and

point Cðq0Þ to pixel q0. We therefore define the criterion by
asking two questions (Fig. 4a):

. Suppose the normal at pðdÞ is n2; which point on the
reference pattern will refract to q?

. Suppose the normal at pðdÞ is n1; which point on the
reference pattern will refract to q0?

MORRIS AND KUTULAKOS: DYNAMIC REFRACTION STEREO 1521

Fig. 3. Single-viewpoint ambiguities. (Left) A view of pixel q’s refraction plane is shown. (Middle) Given a refractive index r1, we can find, for each

distance d2 to the surface, a normal that refracts point CðqÞ to its corresponding pixel q. (Right) Similarly, given a distance d1, we can find, for each

refractive index r2, a normal that refracts point CðqÞ to pixel q.



Now suppose that points t; t0 are the points that refract to
pixels q;q0, respectively. The distance between t and CðqÞ
and, similarly, the distance between t0 and Cðq0Þ can be
thought of as a measure of disparity. Intuitively, this distance
tells us how swapping the normals n1;n2 affects consistency
with the available pixel-to-pattern correspondences. To
evaluate a hypothesis d, we simply sum these distances:

Refractive Disparity

RDðdÞ ¼ kt�CðqÞk2 þ kt0 �Cðq0Þk2 : ð7Þ

When the distance between the true surface and the
reference pattern is large, refractive disparity is equivalent
to a direct measurement of the alignment between vectors
n1;n2, i.e., it is zero if and only if n1 ¼ n2. On the other
hand, as the liquid’s true surface approaches the reference
pattern, refractive disparity diminishes. This is because the
refractive effect of changing a point’s surface orientation
diminishes as well (Fig. 4b). As a result, the minimization
can be applied to any image pixel for which CðqÞ is known,
regardless of whether or not the ray through the pixel
actually intersects the liquid’s surface.

To compute point t for a given d value, we trace a ray
from the first viewpoint through pixel q, refract it at
point pðdÞ according to normal n2, and intersect it with the
(known) surface of the reference pattern. Point t0 is
computed in an identical manner. To find the distance d
that globally minimizes refractive disparity along the ray,
we use Matlab’s fminbnd() function, which is based on
golden-section search [44].

4.2 Computing 3D Position and Orientation

Even though refractive disparity minimization yields good
reconstructions in practice, it has two shortcomings. First, it
treats the cameras asymmetrically because optimization
occurs along the ray through one pixel. Second, it only
optimizes the distance along that ray, not the 3D coordi-
nates and orientation of a surface point. We therefore use an
additional step that adjusts all shape parameters (p and n)
in order to minimize a symmetric image reprojection error.

To evaluate the consistency of p and n, we check
whether the refractions caused by such a point are
consistent with the refractions observed in the input views.
In particular, let qp;q

0
p be the point’s projections in the two

cameras and suppose that t; t0 are the points on the
reference pattern that refract to qp;q

0
p, respectively, via

point p. To compute the reprojection error, we measure the
distance between pixels qp;q

0
p and the “true” refracted

image of t; t0 (Fig. 4c):

REðp;nÞ ¼ kqp �C�1ðtÞk2 þ kq0p �C�1ðt0Þk2

þ �Gðkp� p0k; �Þ�1;
ð8Þ

where C�1ð:Þ denotes the inverse of the pixel-to-pattern
correspondence function, Gð:; �Þ is the Gaussian with
standard deviation �, and p0 is the starting point of the
optimization. The Gaussian term ensures that the optimiza-
tion will return a point p whose projection, qp, always
remains in the neighborhood of the originally chosen pixel q
in Steps 1 and 2 of the Dynamic Refraction Stereo algorithm
(Section 3). We used � ¼ 4 and � ¼ 200 for all of our
experiments. To minimize the RE functional with respect to
p and n we use the downhill simplex method [44].

5 IMPLEMENTATION DETAILS

5.1 Estimating Pixel-to-Pattern Correspondences

Accurate 3D shape recovery requires knowing the pixel-to-
pattern correspondence function Cðq; tÞwith high accuracy.
While color-based techniques have been used to estimate
this function for image-based rendering applications [10],
they are not appropriate for reconstruction for several
reasons. First, different liquids absorb different wave-
lengths by different amounts [49], altering a pattern’s
appearance in a liquid-dependent way. Second, since light
absorption depends on distance traveled within the liquid
and since this distance depends on the liquid’s instanta-
neous shape, the appearance of the same point on a pattern
will change through time. Third, the intensity of light
transmitted through the surface depends on the Fresnel
effect [18] and varies with wavelength and the angle of
incidence. This makes it difficult to use color as a means to
localize points on a pattern with subpixel accuracy.

In order to avoid these complications, we use a
monochrome checkered pattern and rely on corners to
establish and maintain pixel-to-pattern correspondences
(Figs. 5a and 5b). We assume that the liquid’s surface is
undisturbed at time t ¼ 0 and use the Harris corner detector
[21] to detect corners at subpixel resolution. This gives us
the initial pixel-to-pattern correspondences. To track the
location of individual corners in subsequent frames while
avoiding drift, we estimate flow between the current frame
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Fig. 4. Optimization criteria for refraction stereo. (a) Measuring refractive disparity. Normals are drawn according to the refractions they produce.

(b) For small surface-to-pattern distances, swapping n1 and n2 does not influence the distance between CðqÞ and t significantly. (c) Measuring

image reprojection error at one of the viewpoints.



and the frame at time t ¼ 0, using the flow estimates from
the previous frame as an initial guess. We compute flow
with a translation-only version of the Lucas-Kanade
inverse-compositional algorithm [3] and use Levenberg-
Marquardt minimization to obtain subpixel registration.
This algorithm is applied to an 11� 11 pixel neighborhood
around each corner. We use the registration error returned
by the algorithm as a means to detect failed localization
attempts. In the case of failure, the flow computed for that
corner is not used and the corner’s previously known
location is propagated instead. This allows our tracker to
overcome temporary obscurations due to blur, splashes, or
extreme refractive distortions (Fig. 5c). The above proce-
dure gives values of the correspondence function Cðq; tÞ for
a subset of the pixels. To evaluate the function for every
pixel, we use bilinear interpolation.

5.2 Fusing 3D Positions and Orientations

Refraction stereo yields a separate 3D position and 3D
normal for each pixel. While this is a richer shape
descriptor, the problem of reconstructing a single surface
that is consistent with both types of data is still open. A key
difficulty is that point and normal measurements have
different noise properties, and hence a surface computed
via normal integration and a surface computed by fitting a
mesh to the 3D points will not necessarily agree. As a first
step, we used simulations and ground-truth experiments to
estimate the reliability of each data source as a function of
surface height, i.e., distance from the plane of the reference
pattern (Fig. 6). Since reconstructed normals are highly

reliable for large heights, we used this analysis to set a
height threshold below which normals are deemed less
reliable than positions. That portion of the surface is
reconstructed from positional data. For the remaining
pixels, we reconstruct the surface via normal integration
using the Ikeuchi-Horn algorithm [27] and merge the
results. In cases where all reconstructed positions are above
the height threshold, we rely on normal integration to
compute 3D shape and use the average 3D position to
eliminate the integrated surface’s height ambiguity.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

Fig. 5a shows our setup. The checkered pattern at the
bottom of the tank was in direct contact with the water to
avoid secondary refractions. During our experiments, the
pattern was brightly lit from below to avoid specular
reflections and to enable use of a small aperture for the
cameras (and hence, a large depth of field). Images were
acquired at a rate of 60 Hz with a pair of synchronized
Sony DXC-9000 progressive-scan cameras, whose electro-
nic shutter was set to 1/500 sec to avoid motion blur. Both
cameras were approximately 1 meter above the tank
bottom and were calibrated using the Matlab Calibration
Toolbox [8].

6.2 Simulations

To evaluate the stability of our algorithms, we performed
simulations that closely matched the experimental conditions
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Fig. 5. (a) Experimental setup. (b) Typical close-up view of pattern, seen through water surface. (c) Distorted view, corresponding to tracking failure

at the central corners.

Fig. 6. Reconstruction accuracy as a function of water height, for real (dotted line) and simulated (solid line) flat water surfaces. Bars indicate standard

deviation. Simulations are for a 0.08 pixel localization error; in real flat water experiments, corner localization precision was measured to be~0:1 pixels.



in the lab (e.g., relative position of cameras, pattern-to-
camera distances, feature localization errors, etc.). We
simulated the reconstruction error for planar water surfaces
as a function of the surface-to-pattern height, and for various
levels of error in corner localization and camera calibration.
We modeled the localization error by perturbing the image
coordinates of the projected corners by a Gaussian with a
fixed standard deviation. For each height, we reconstructed
10,000 individual points and measured their deviation from
the ground-truth plane (Fig. 6). These simulations confirm
that the accuracy of reconstructed normals degrades quickly
for water heights less than 4 mm. Importantly, the accuracy of
distance computations is not sensitive to variations in water
height, confirming the stability of our optimization-based
framework for refractive stereo (Section 4.1). We also
compared the effect of localization error on the results (Fig. 7).

In addition, we ran simulations to test the stability of
refractive index estimation. We simulated a stationary
sinusoidal surface whose average height was 40 mm and
whose amplitude was 2 mm. We then computed the total
reconstruction error for various combinations of true and
hypothesized refractive index values (Fig. 8). We used a
localization error of 0.1 pixels for these simulations to reflect
our actual experimental conditions. These simulations show
that our objective function has a minimum very close to the
expected refractive index. Also note that the valley around
the minimum becomes more shallow as the refractive index
increases.

6.3 Accuracy Experiments

Since ground truth was not available, we assessed our
algorithm’s accuracy by applying it to the reconstruction of
flat water surfaces whose height from the tank bottom

ranged from 4 to 15 mm. For each water height, we
reconstructed a point p and a normal n independently for
each of 1,836 pixels in the two image planes, giving rise to
as many 3D points and normals. No smoothing or
postprocessing was performed. To assess the accuracy of
the reconstructed points, we fit a plane using least squares
and measured the points’ RMS distance from this plane. To
assess accuracy in the reconstructed normals, we computed
the average normal and measured the mean distance of
each reconstructed normal from the average normal. These
results, also shown in Fig. 6, closely match the behavior
predicted by our simulations. They suggest that reconstruc-
tions are highly precise, with distance variations around
0.25 mm (i.e., within 99.97 percent of the surface-to-camera
distance) and normal variations on the order of 2 degrees
for water heights above 8 mm.

6.4 Experiments with Dynamic Surfaces

Figs. 11, 12, and 13 show reconstructions for several
dynamic water surfaces. The experiments test our algor-
ithm’s capabilities under a variety of conditions—from
rapidly fluctuating water that is high above the tank bottom
to water that is being poured into an empty tank where the
water height is very small and refraction is degenerate or
near-degenerate for many pixels.

Several observations can be made from these experi-
ments. First, our tracking-based framework allows us to
maintain accurate pixel-to-pattern correspondences for 100s
of frames, enabling dynamic reconstructions that last
several seconds. Second, the reconstructed distances remain
stable despite large variations in water height and are
accurate enough to show fine surface effects, even in cases
where the total water height never exceeds 6 mm (e.g., the
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Fig. 7. (Left) Reconstruction accuracy as a function of water height for several values of pixel localization error. (Right) Normal reconstruction error

for the same pixel localization error values.

Fig. 8. Total reconstruction error as a function of hypothesized refractive index r. Simulations are shown for five different ground-truth refractive

indices.



“pour” sequence). Third, the reconstructed normal maps, as

predicted, show fine surface fluctuations at larger heights
but degrade to noise level for water heights near zero.

Qualitatively, when there is sufficient water in the tank,

they appear to contain less noise than depth maps. Fourth,
our normal integration algorithm seems to oversmooth fine

surface details that are clearly present in the depth and
normal maps. This suggests that a more sophisticated

approach is needed here (e.g., [41]). The following para-
graphs discuss our results in more detail.

Ripple sequence (Fig. 11). The ripple sequence shows a

drop of water dripping into a tank with approximately

25 mm of water in it.3 The drop causes layers of circular
waves to emanate from the point of contact. There are a

combination of large and fine-scale waves in the sequence,
making for an interesting reconstruction problem. We

achieved a good reconstruction of depth and normals since
the surface depth provided sufficient refraction for reliable

readings in both categories. The normals provide better

resolution of the fine ripples. The initial splash caused when
the drop first hits the water produced strong distortions of

the underlying pattern which our system was unable to
track. We thus reinitialized the system immediately after

the worst distortions had elapsed and were able to capture
the expanding circular waves.

In the depth maps, errors are more common at points of

greatest distortion of the ripple, causing sharp peaks (bright

or dark spots in Fig. 11). Despite these depth errors, the
corresponding normals appear to be correct and the normal

maps are very smooth, allowing tiny leading ripples to be
easily identified.

Pour sequence (Fig. 12). This sequence shows water being

poured into an empty tank, spreading across the pattern
from left to right. This sequence tests our system’s ability to

cope with water heights that are zero or near zero. The

sequence also exhibits large shape variations due to ripples,
as well as bubbles forming on the surface. Our reconstruc-

tion successfully handled the height variations using
refractive disparity: Although reconstructed normals ex-

hibited increased noise in the shallow portions, the depths
were reconstructed faithfully. Note that the large regions of

noise in the normal maps correspond to areas with no water.
Also note that the reconstructed height maps are smooth at

the water edges, suggesting robustness to shallow water.

In areas of nonzero water height, the normal maps
provide fine detail of the surface, lacking much of the noise
evident in the height maps. For instance, fine waves and
ripples can be seen in the normal maps at all three time
instants shown in Fig. 12. By comparison, only the larger-
scale waves appear in the height map because noise tends to
obscure finer details. Note that while our system is not
designed to handle bubbles, the reconstruction actually
captured indentations corresponding to the bubbles as well
as the ripples forming when they burst (e.g., see the middle
of the normal map in the second time instant).

Waves sequence (Fig. 13). This sequence shows waves
propagating from the left to the right on a water surface at a
height of approximately 24 mm. There are several interleav-
ing wavefronts of various scales. This sequence provides the
greatest variation in water height and overall roughness.
Reconstructions from this data set suffered from more
calibration error and thus exhibit stronger noise. This is
most noticeable in the moiré patterns appearing in both the
depth and normal maps. Despite this, we did obtain
interesting reconstructions of the rough water surface. We
recover both the large and small scale wave fronts, which can
be visually tracked across the sequence in the normal maps.

6.5 Refractive Index Determination

In addition to reconstructing both surface and normal
data, our system was able to obtain an estimate of the
refractive index of the transparent medium. We ran our
algorithm on all three sequences of Figs. 11, 12, and 13,
over a range of seven frames for each. Fig. 9 shows the
total reconstruction error corresponding to specific values
of the refractive index, for the each data set. The curves
exhibit a minimum near the correct refractive index for
water, 1.33, confirming the predictions of Theorem 1. This
is because Step 4 of our algorithm enforces a very strong
global constraint: The light path of every pixel at every
time instant and at every viewpoint must be consistent
with the same refractive index value.

7 DISCUSSION

7.1 Ambiguous Surfaces

Although our experimental results suggest that it is possible
to estimate refractive indices from stereo sequences, a
general question is whether this problem can be ambiguous,
i.e., whether two surfaces with different refractive indices
can produce the same observed stereo image pair. Our
initial analysis, described below, indicates that such pairs of
surfaces do exist but they do not have a “simple” shape:
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3. See the supplemental videos, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2011.24.

Fig. 9. Total reconstruction error as a function of refractive index. (Left) Combined error of several frames from the RIPPLE sequence. (Middle)

Combined error of several frames from the POUR sequence. (Right) Combined error of several frames from the WAVES sequence.



Indeed, the points on a pair of ambiguous surfaces must
satisfy a joint system of very complex trigonometric
equations for such an ambiguity to exist.

We use a numerical approach to construct point samples
on such surface pairs as follows: Given the refractive index r
of the true surface S and the refractive index ra of an
ambiguous surface R, we construct points and normals that
lie on both S and R. First, we begin with a seed point p1 on
S which is imaged at q1 in c (Fig. 10). Then, we find a
second point a1 that lies along the ray from q1 to p1 and on
the ambiguous surface R. The depth of a1 and its normal m1

must be chosen so that the pixel ray refracts to point Cðq1Þ
on the tank bottom. Next, we project a1 into view c0 and
intersect this ray with S to obtain another point p2. The
normal of p2 must cause the ray through pixel q02 to be
refracted toward Cðq02Þ. From our initial seed point, this
process gives us two new points: a1 on R and p2 on S. We
can repeat this process either by adding new seed points or
by repeating the above steps with p2 as the seed. Fig. 10a
shows this construction repeated twice. Since we have only
one degree of freedom in the depth/normal of the points pi
and ai, any ambiguous surface pairs must be highly
constrained. For instance, if we force the points pi and ai
to lie on parallel planes, the normals associated with these
points cannot both satisfy these constraints and agree with
the global planar normal. Fig. 10b shows two surface pairs
constructed from a sparse set of seeds as described.
Intermediate surface points were interpolated according to
the sparse points and their normals.

While the above construction suggests the existence of
ambiguous surfaces, these surfaces are not as important in
practice because the scene is dynamic: In our algorithm, a
single refractive index value must account for the refractions
produced by the entire sequence of 3D surfaces of the liquid,
not just the 3D surface in a single instant. In fact, refractive
index estimation exploits the dynamic/statistical nature of

liquids in three ways: 1) The surface is highly variable and
hence we observe many different, complex surfaces with
the same refractive index during image acquisition, 2) their
deforming surface is unlikely to globally match one of the
“special” ambiguous shapes, and 3) even if it does, it is
unlikely that such a “special” shape will occur for many
time instants. In practice, this allows us to side-step the
issue of ambiguities by enforcing refractive index consis-
tency with all available data (multiple time instants, even
multiple acquisition experiments) using our search-based
refractive index estimation algorithm. Experimentally, the
lack of shape-index ambiguities over an acquired data set is
confirmed by error curves that have only one (global)
minimum, as in Fig. 9.

7.2 Pixel-to-Pattern Function

In our description of the algorithm and its implementation,
we assumed that CðÞwas invertible. We note, however, that
CðÞ can be many-to-one and not generally invertible. The
conditions that cause CðÞ to be invertible were noted by
Murase [40], deemed reasonable, and used in his work on
liquid reconstruction. From a technical standpoint, how-
ever, our analysis does not require CðÞ to be globally
invertible: All we need is that it is locally invertible, i.e., for
almost all pixels q (in a measure-theoretic sense), the
restriction of CðÞ to some open neighborhood of q is an
invertible function. This does permit the occurrence of
isolated singularities (i.e., pixels or image curves where CðÞ
is not invertible for any neighborhood).

For example, if we were to take a simple 2D scene such as a
surface defined by y ¼ cosðxÞwith the camera looking down
the �y axis, CðÞ is not globally invertible. The scene is,
however, locally invertible for all values of x except two: For
a given refractive index value and a camera located at
infinity, there are only two incoming rays/pixels where local
invertibility breaks down: These rays hit the cosðxÞ curve
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Fig. 10. (a) Ambiguous surface construction: Points p1, p2, and p3 lie on surface S, points a1 and a2 lie on the ambiguous surface R. Note that

correspondence functions Cðq02Þ, Cðq03Þ, Cðq1Þ, and Cðq2Þ all agree with both the true and ambiguous surface points and their normals.

(b) Ambiguous surface pairs constructed according to Section 7.1. (Left) The depths of S were chosen to fit a plane. (Right) The depths of S were

chosen to fit a sinusoidal surface.



near its inflection points, where the mapping from incoming

rays to points on the x-axis “folds” onto itself. More

generally, the singularities where local invertibility breaks

down have properties analogous to the singularities of the

Gauss map where, generically, the mapping from surface

points to their normals is singular either on parabolic curves,

corresponding to “folds” of the Gauss map, or on isolated

points, corresponding to “cusps” of the map.

We also examine in further detail how the flow
propagates from Cðt� 1Þ to CðtÞ. There are two cases:
1) The Lucas-Kanade algorithm is able to localize in frame t
a corner that was also localized in frame t� 1. In this case,
the flow vector assigned to the corner at time t� 1 is its
displacement between the two frames. This process is
completely local and is well defined wherever CðÞ is locally
(but perhaps not globally) invertible. 2) The LK algorithm
fails to localize the corner at frame t. This does not cause a
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Fig. 11. RIPPLE sequence. All maps correspond to a top view of the tank and show raw, per-pixel data. The mesh images show a surface fit to the

data scaled by 5 in the vertical axis.



breakdown of flow estimation for subsequent frames. In
this case, the algorithm interpolates the flow vectors
computed at four neighboring corners in frame t� 1 in
order to assign a flow vector to the corner that was lost in
frame t. Bilinear interpolation is used, with weights
determined by the corners’ distance from each other. We
then use the position in frame t� 1 of the lost corner and
the interpolated flow vector to assign it a “virtual” position
in frame t. This position is used to initialize the LK

algorithm in frame tþ 1 in an attempt to relocalize the lost

corner. In case of failure at tþ 1, propagation is repeated

until the corner is reacquired. Since these distortions are

local and persist for just few frames, we have found that the

strategy works well in practice and has enabled propaga-

tion of pixel-to-pattern correspondences for 100s of frames.

Our current implementation does not check for the

possibility that after a tracking failure (i.e., singularity of
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Fig. 12. POUR sequence. All maps correspond to a top view of the tank and show raw, per-pixel data. The mesh images show a surface fit to the

data scaled by 5 in the vertical axis.



CðÞ), a corner at frame t� 1 appears in more than one

location in frame t (or vice versa). While it is certainly

possible to do so, the sequences we have acquired suggest

that such events are very transient and cause significant

distortions in the local neighborhood of a corner, making it

very hard to localize it, let alone identify multiple images of

it. In such cases, flow propagation allows the corner to be

reacquired when distortions are reduced.

7.3 Optimization

Our focus in this paper has been on the design of

optimization functionals for performing pixel-wise refrac-

tion stereo calculations ((8) and (5)), not on the optimization

process itself. In particular, our exhaustive search over

discretized refraction indices could potentially be replaced

by a golden-section search [17] or by a nonlinear optimiza-

tion procedure that optimizes all points, normals, and
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Fig. 13. WAVES sequence. All maps correspond to a top view of the tank and show raw, per-pixel data. The mesh images show a surface fit to the

data scaled by 5 in the vertical axis.



refractive index simultaneously. Similarly, the surface

reconstruction procedure in Section 5.2 is largely heuristic

—a more rigorous approach would be to formulate it as a

global procedure that solves for the entire surface, in the

spirit of recent approaches to multiview stereo [34]. In that

case, the functional REðp;nÞ in (8) would replace the

traditional measures of photo consistency in multiview

stereo.

8 CONCLUDING REMARKS

Liquids can generate extremely complex surface phenom-
ena, including breaking waves, bubbles, and extreme
surface distortions. While our refraction stereo results are
promising, they are just an initial attempt to model liquid
flow in relatively simple cases. Our ongoing work includes
1) reconstructing surfaces that produce multiple refractions
[35], 2) reconstructing liquids by exploiting their refractive
and reflective properties (e.g., by also treating them as
mirrors), and 3) “reusing” captured 3D data to create new,
realistic fluid simulations.
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