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Abstract

We introduce a novel method for computing the earth mover’s dis-
tance (EMD) between probability distributions on a discrete sur-
face. Rather than using a large linear program with a quadratic
number of variables, we apply the theory of optimal transportation
and pass to a dual differential formulation with linear scaling. Af-
ter discretization using finite elements (FEM) and development of
an accompanying optimization method, we apply our new EMD
to problems in graphics and geometry processing. In particular,
we uncover a class of smooth distances on a surface transitioning
from a purely spectral distance to the geodesic distance between
points; these distances also can be extended to the volume inside
and outside the surface. A number of additional applications of our
machinery to geometry problems in graphics are presented.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; G.1.6 [Numerical Analysis]: Optimization—Convex
programming

Keywords: Optimal transportation, Wasserstein metric, earth
mover’s distance, finite elements, geometric median
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1 Introduction

A common task in geometry processing is the computation of vari-
ous classes of distances between points on or inside a discrete sur-
face. For example, many shape matching algorithms need clues
about the relative positioning and orientations of features to be
matched, which can be obtained from pairwise feature distances.
It is desirable for such distances to be true metrics, intrinsic, glob-
ally shape-aware, smooth, and insensitive to noise and topology
changes, without inducing considerable distortion on the under-
lying metric. In particular, the level sets of the distance function
should be evenly spaced, in a visual sense, along the surface.

Existing approaches to defining and computing intrinsic distances
do not satisfy all of these requirements. Despite their central place
in classical differential geometry, geodesic distances have many
shortcomings for computational applications, such as being sen-
sitive to noise and topology and not being globally shape-aware,
that is, not conforming to geometric features of the surface as dis-
tances increase [Lipman et al. 2010]. Spectral distances [Coifman
et al. 2005; Fouss et al. 2007; Lipman et al. 2010] overcome these
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Figure 1: (left) Biharmonic (db) and geodesic distances (dg) from
the foot of a camel model; (right) distances computed using our
approach with 0 (d0W ) and 100 (d100W ) spectral terms. Unlike db,
even our most aggressive spectral approximation d0W has smooth,
isotropic, and evenly-spaced level sets, while adding spectral terms
makes our distance converge to dg . We visualize distances from
a single source vertex to all others by color, with blue indicating
small distance and red indicating large distance. We also include
isocontours at equally-spaced intervals, shown in black.

shortcomings but can be unintuitive with unevenly-spaced isocon-
tours. The drawbacks of geodesic and spectral distances indicate
that a hybrid approach is needed. The approximation of geodesic
distance formulated in [Crane et al. 2013] is an important step in
this direction. While these approximations are smoothed versions
of the geodesic distance that are robust and globally shape-aware,
they may not be symmetric or satisfy the triangle inequality.

In this paper, we introduce a novel hybrid approach for computing
a variety of surface distances that have all of the desired proper-
ties. The key idea is to consider the more general problem of com-
puting distances between probability distributions supported on the
mesh. In fact, our goal is to compute the gold standard of distri-
butional distances, the well-known earth mover’s distance (EMD).
Once we have a means to compute the EMD between general dis-
tributions, we then consider various specializations that lead to the
surface distances of this paper, including a new approach to com-
puting geodesic distance.

The computation of the EMD on a surface could be performed us-
ing a brute force linear programming approach. This approach,
however, not only is computationally infeasible on reasonably-sized
meshes but also leads to a “chicken-and-egg problem,” since such a
formulation requires precomputing all pairwise geodesic distances
between mesh vertices. Therefore, one of our contributions is to
make use of an alternative differential formulation of EMD that can
be discretized using finite elements (FEM). Furthermore, a spec-
tral expansion of the optimization variables reveals successive ap-
proximations to EMD that are fast to compute and are themselves
distance metrics.

Our approach has several practical benefits. First, our family of
distances is general and provides a principled and efficient way to
compute distances between probability distributions supported on
various types of features. Second, if we consider delta distribu-
tions centered on surface points, we obtain a family of distances
that ranges from the geodesic distance (since the EMD between two
delta distributions reduces to geodesic distance) to a novel spectral
distance. This latter distance is perceptually convincing (Figure 1)
despite having a simple formulation in terms of the Green’s func-
tion of the Laplace-Beltrami operator. Third, inspired by [Rusta-
mov et al. 2009], we develop a means of extending our distances
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from the surface to the surrounding volume, obtaining a pointwise
distance metric on R

3 that reduces to geodesic distance when the
selected points are on the surface. Finally, our machinery enables
a number of additional applications to problems in path planning,
surface analysis, and other fields.

Overview After discussing existing approaches for distance com-
putation (§2), we formulate a differential method for computing
earth mover’s distances on continuous surfaces (§3.1) and propose
theoretical properties suggesting its suitability for geometry pro-
cessing (§3.2). After simplification, we propose a discretization for
triangle meshes (§4); the discretization itself satisfies the triangle
inequality for discrete distributions (§4.4) and can be optimized us-
ing a simple iterative algorithm (§4.5). We then return to the com-
putation of pointwise distances on surfaces, showing how our new
distributional distance can be applied to this problem (§5); we also
extend our distance to a distance metric on all of R

3, solving an
open problem proposed in [Rustamov et al. 2009] (§6). Finally, we
propose applications of our distances to other geometry problems
in graphics (§7) and suggest directions for future work (§8).

2 Related Work

Distances Existing approaches to defining and computing intrin-
sic distances broadly can be categorized as “primal” or “dual.” A
primal approach operates on the surface mesh directly to obtain ex-
act or approximate distances. For example, [Mitchell et al. 1987;
Surazhsky et al. 2005] apply such an approach for finding exact
geodesic distances (i.e. lengths of shortest paths constrained to lie
on the mesh), while [Kimmel and Sethian 1998; Campen et al.
2013] approximate geodesic distances to achieve faster run times.
As discussed in [Lipman et al. 2010], however, despite their con-
nection to classical differential geometry, geodesics have a number
of shortcomings for computational applications, such as being sen-
sitive to noise and topology and not being globally shape-aware.

These shortcomings inspired the development of dual methods for
distance computation. Dual distances lift the problem to an alter-
native space, such as the set of real-valued functions on the mesh,
where relationships between function values are used as proxies for
inferring distances on the underlying domain. The most popular
dual distances are spectral distances, such as the diffusion [Coif-
man et al. 2005], commute time [Fouss et al. 2007], and bihar-
monic [Lipman et al. 2010] distances. These distances can be un-
intuitive, however, with isocontours that are unevenly-spaced along
the surface. This artifact is a fundamental problem, because dual
approaches achieve global shape-awareness and robustness by aver-
aging over many paths whose structure can depend on the curvature
and local diameter of the surface.

The drawbacks of completely primal or dual methods indicate that
a hybrid approach integrating properties of both approaches may be
called for. In [Crane et al. 2013] an approximation of geodesic dis-
tance was formulated by integrating the normalized gradient field of
the heat kernel. This approximation gives smoothed versions of the
geodesic distance parameterized by the time parameter of the heat
kernel. While robust and globally shape-aware, these are not guar-
anteed to be true distance metrics. Another hybrid distance was pro-
posed in [Panozzo et al. 2013], where geodesics between sampled
vertices are embedded in Euclidean space using multi-dimensional
scaling (MDS). The embedding is interpolated to the entire mesh by
solving a biharmonic equation, and Euclidean distances in the em-
bedding space provide a distance measure on the entire mesh. Since
it is generally impossible to embed geodesic distances exactly into
Euclidean space, this approach is likely to give inconsistent results
when run repeatedly.

Optimal Transportation Our work draws principally from the
theory of optimal transportation; relevant aspects of this theory are
summarized in §3. The usual discretization of EMD solves a lin-
ear program with one variable for each pair of points on the do-
main. The complexity of this program thus scales quadratically
with the number of points in the domain, and requires a matrix of
pairwise distances. Assorted approximations of EMD truncate large
distances [Pele and Werman 2009] or are specialized to discrete do-
mains like graphs [Takano and Yamamoto 2010].

Whereas EMD is the one-Wasserstein distance, more attention has
been paid to computation and theoretical understanding of two-
Wasserstein distances, which employ squared geodesic distances.
These have stronger regularity properties and also admit a differen-
tial formulation, but discretizing this formulation requires an addi-
tional time variable that multiplies the number of variables to opti-
mize and leads to challenging variational problems, e.g. [Benamou
and Brenier 2000]. Discrete instances of the two-Wasserstein dis-
tance in R

n can yield specialized computation techniques [Mérigot
2011; Gu et al. 2013], although extension to distributions on sur-
faces and other domains is challenging.

In graphics and vision, EMD and its optimal transportation counter-
parts have been applied to a variety of problems. EMD was first in-
troduced to the vision community in [Rubner et al. 2000] and since
has been used to compare histograms and other descriptors. More
recently, [Bonneel et al. 2011] applies approximations of optimal
transportation to interpolate between BRDFs, intensity histograms,
and other simple distributions; similar problems are considered
in [Bonneel et al. 2013] after defining the barycenter of a set of
distributions with respect to approximated transportation distances.
[de Goes et al. 2011; de Goes et al. 2012] compute transportation
distances from two-dimensional point sets for application in shape
processing and blue noise generation, while [Mullen et al. 2011]
employs a similar formulation to triangulation problems. These
distances also have been applied to geometry analysis [Lipman
and Daubechies 2011; Lipman et al. 2013], spherical parameteri-
zation [Dominitz and Tannenbaum 2010], and matching [Mémoli
2011; Solomon et al. 2012]. None of these approaches, however, is
able to compute EMDs or related distributional distances intrinsic
to meshed geometry without aggressive approximation or restric-
tion to a simpler domain.

Perhaps the closest construction to ours in the computer graphics
literature is in [Solomon et al. 2013]. This paper uses the two-
Wasserstein distance–whereas we consider the one-Wasserstein
distance–to analyze maps from points on one surface to distribu-
tions on another. This paper is able to discretize only a linearization
of transportation distances between similar distributions, which is
sufficient for their map continuity energy; optimizing this distance
is intractable in their formulation and hence their paper is applied
to map analysis rather than computation. The idea of endowing ge-
ometric objects with probability measures and replacing Euclidean
distances with Wasserstein distances also appears in the distance-
to-measure work of [Chazal et al. 2010; Chazal et al. 2011]. In that
work, however, the main goal is to define distance functions from
points to point clouds that are robust to outliers, so that appropriate
stability results can be proven for topological inference.

3 Distance Computation

3.1 Optimal Transportation

Suppose M is a manifold with or without boundary. We can de-
scribe a mass distribution on M using a measure. Omitting some
technical detail, this is simply a positive, real-valued function µ
acting on subsets of M , where we interpret the value µ(U) as the



amount of mass contained in U ⊆ M . Examples of measures
are: (1) if ρ : M → R+ is an integrable function where ρ(x)
gives the mass density at x ∈ M , then we obtain the measure
µ(U) ≡

∫

U
ρ(x) dx; and (2) the Dirac mass at p ∈ M , defined

by its action on subsets as δp(U) ≡ 1 if p ∈ U and δp(U) ≡ 0
otherwise. A useful feature of measures is that one can integrate
real-valued functions: if φ : M → R describes some property of
the mass distribution as a function of position in M , then we in-
terpret the integral

∫

M
φ(x) dµ(x) (also denoted

∫

M
φ(x)ρ(x) dx

when µ has density ρ) as proportional to the average value of φ
over the mass distribution. Finally, if the total mass of µ equals
one, then we say that µ is a probability distribution. We denote the
set of probability measures on M as Prob (M). We refer the reader
to [Folland 1999] for further information about measure theory.

We would like to compute a distance between any two probability
distributions. That is, we seek a positive definite, real-valued func-
tion Prob (M) × Prob (M) → R+ satisfying the triangle inequal-
ity. The distance we will consider in this paper arises in the theory
of optimal transportation and is called the 1-Wasserstein distance,
also known as the earth mover’s distance (EMD). It is calculated as
follows. Given two probability distributions µ0, µ1 ∈ Prob (M),
a “transportation plan” for transporting the mass distribution de-
scribed by µ0 to that described by µ1 is a probability distribution
π on the product space M ×M , where we interpret π(U × V ) as
the amount of mass to be displaced from U to V . To ensure that all
mass in µ0 is transported to µ1, we impose the constraints

π(U ×M) = µ0(U) and π(M × V ) = µ1(V ) ∀ U, V ⊆M .

Now let Π(µ0, µ1) denote the set of transportation plans satisfying
these constraints, and let d(·, ·) be the geodesic distance function in
M . Then we define the 1-Wasserstein distance as the optimal value

W(µ0, µ1) ≡ inf
π∈Π(µ0,µ1)

∫∫

M×M

d(x, y) dπ(x, y) . (1)

Therefore W(µ0, µ1) can be interpreted as the cost of the optimal
plan transporting the mass of µ0 to that of µ1, when moving mass
from x to y costs d(x, y). We refer the reader to [Villani 2003] for
further information concerning the theory of optimal transportation.

Discrete approximations of earth mover’s distance that are suit-
able for computer vision and graphics are difficult to obtain due
to computational complexity. For instance, a discretization of
π ∈ Π(µ0, µ1) in (1) requires a quadratic number of variables,
since π(x, y) is a function of two positions x, y ∈ M . Addition-
ally, if we are to use general optimization machinery to compute
W(µ0, µ1) we must be able to precompute or approximate d(x, y)
for any pair x, y ∈M . This scaling, which appears in many known
discretizations of W , is prohibitively expensive for large meshes.

A remarkable observation from the theory of optimal transportation
provides a differential strategy for evaluating W under suitable reg-
ularity. Suppose M is a compact surface and µ0, µ1 ∈ Prob (M)
admit densities ρ0, ρ1 : M → R

+. Then, the optimal value of the
following convex optimization yields the EMD between µ0 and µ1:

W(µ0, µ1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

inf
J

∫

M

∥J(x)∥ dx

s.t. ∇ · J(x) = ρ1(x)− ρ0(x)

J(x) · n(x) = 0 ∀x ∈ ∂M

(2)

This optimization computes a vector field J on M whose bound-
ary ∂M has normal n(x) using a convex energy with linear con-
straints. In the language of fluid dynamics, it can be thought of
as an Eulerian alternative to the Lagrangian formulation (1), i.e.
points x ∈ M watch probabilistic mass move past along flow lines

(a) (b) (c)

Figure 2: Vector fields J transporting mass to a distribution con-
centrated on the nose of a horse from a distribution on (a) one of its
hooves, (b) all four of its hooves, and (c) its tail.

of J(x). Indeed, (2) first arose as the “Beckmann problem” in net-
work flow [Beckmann 1952]. See [Santambrogio 2013] for further
analysis of this problem and its connection to optimal transporta-
tion, and see [Villani 2003, §1.2.3], [Feldman and McCann 2002],
and [Santambrogio 2009] for a broader discussion.

In this paper, we use (2) as a starting point for the computation of a
discrete approximation of the 1-Wasserstein distance between two
probability distributions on M . With only one unknown J(x) per
point x ∈ M , this optimization scales linearly with the size of the
mesh rather than the quadratic scaling of (1).

3.2 Properties of the 1-Wasserstein Distance

Given its definition via geodesic distances in (1), it comes as no
surprise that the 1-Wasserstein distance W is intricately linked with
the metric structure of M even if it is computed using differential
techniques. Here we state some properties relevant to our target
applications in geometry processing and graphics; proofs can be
found in the Appendix.

The Beckmann problem recasts the transportation problem (1) in
Eulerian language as finding the direction of steady-state flow of
mass from ρ0 to ρ1. The vector field J can be thought of the veloc-
ity of this flow; examples of J computed using the discrete method
in §4 are shown in Figure 2. Since an optimal flow moves mass as
efficiently as possible, the following proposition is intuitively clear
and follows from the first-order optimality conditions for (2):

Proposition 1. Let J solve the optimization (2) with given densities
ρ0, ρ1. Then, flow lines of J are geodesics on M .

A feature of the 1-Wasserstein distance distinguishing it from p-
Wasserstein distances with p > 1 is that its optimal transporta-
tion plans are not unique [Villani 2003, §2.4.6]. That is, it is
known that mass is transported along geodesics, but not how far
a particle of mass travels along any given geodesic. One optimal
plan obtained from J(x) is the Dacorogna-Moser construction [Vil-
lani 2003, Chapter 5]. In this construction, we let J solve (2)
and define ρt ≡ (1 − t)ρ0 + tρ1. Now we consider the flow
z : [0, 1]×M →M of the ordinary differential equation (ODE):

ż = −
J(z)
ρt(z)

. (3)

So, z produces a curve t *→ z(t, x0) ∈M satisfying the ODE with
initial conditions z(0, x0) = x0. Moreover, since the velocity of
this curve is proportional to J , it is also a geodesic. The Dacorogna-
Moser plan takes the mass at each x0 ∈M and moves it to z(1, x0).

Next, by definition the Eulerian velocity of the Dacorogna-Moser
flow is Vt(x) = −J(x)/ρt(x). Consequently, the transport equa-

tion ∂ρt
∂t

+ ∇ · (ρtVt) = 0 satisfied by (ρt, Vt) shows ∇ · J =
ρ1 − ρ0. This tells us that if ρ0 is advected under the flow z, the
resulting time-dependent family of densities is ρt.



Finally, the following result shows that one can recover pointwise
geodesic distances from the 1-Wasserstein distance in the special
case of infinitely sharply peaked δ-distributions.

Proposition 2. Let δp be a delta distribution centered at p ∈ M ,
and let χQ be the uniform distribution supported on a subset Q ⊆
M . Let J be the solution of the optimization problem (2). Then,

1. The flow lines of J are geodesics from p to all points of Q.

2. As Q → {q} and χQ → δq appropriately, then W(δp,χQ)
converges to the geodesic distance between p and q.

4 Simplification and Discretization

The formulation of EMD in (2) is amenable to discretization on
triangle meshes, commonly encountered in graphics and geometry
processing. In this section we propose a discretization using finite
elements (FEM) that admits straightforward optimization.

4.1 Vector Field Decomposition

The Helmholtz-Hodge decomposition shows that any vector field J
on M can be written as [Schwarz 1995; Polthier and Preuß 2003]:

J(x) = ∇f(x) +R ·∇g(x) + h(x)

where R is the linear operator that rotates a vector 90◦ clockwise
in the tangent plane. The “gradient part” of J is the vector field
∇f , the “curl part” of J is the vector field R · ∇g, and the “har-
monic part” of J is the vector field h satisfying ∇ · h(x) = 0 and
∇ × h(x) = 0. In case ∂M ̸= ∅, we must additionally impose
Neumann boundary conditions on J . This boundary condition re-
flects the fact that shortest-path curves cannot leave the surface, so
when they reach they boundary they must become tangential.

Substituting this decomposition into (2) and using the fact that ∇ ·
(R ·∇g) = ∇ · h = 0 yields the equivalent optimization:

W(µ0, µ1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

inf
f,g,h

∫

M

∥∇f(x) +R ·∇g(x) + h(x)∥ dx

s.t. ∆f(x) = ρ1(x)− ρ0(x)

g(x) = 0 and ∂f(x)/∂n = 0 ∀x ∈ ∂M

∇ · h(x) = 0 and∇× h(x) = 0 .
(4)

This form shows that f is determined independently of the opti-
mization by solving ∆f = ρ1 − ρ0 with Neumann boundary con-
ditions; this equation has a solution since ρ0 and ρ1 integrate to 1.
We therefore compute W in two steps, one for finding f and one
for finding g and h; moreover, eliminating f from the optimization
leaves an essentially unconstrained optimization for g and h.

4.2 Spectral Reduction

We further simplify (4) using the spectral decomposition of the
Laplacian ∆. First, we obtain a basis for functions on M by solv-
ing the eigenvalue problem ∆φi = λiφi with Dirichlet boundary
conditions φi|∂M = 0. The gradients and rotated gradients of these
functions comprise a basis for gradient and curl fields of M . Addi-
tionally, the set of harmonic vector fields on M admits a basis with
dimension equal to two times the genus of M [Tong et al. 2006].

Denoting a combined basis for curl fields and for harmonic fields as
ψ1,ψ2,ψ3, . . ., we therefore can write the unknown vector field as
R ·∇g + h =

∑

i ciψi where ci are unknown coefficients. After

solving ∆f = ρ1 − ρ0 to precompute the vector field v = ∇f , (4)
can be recast as the unconstrained optimization:

W(µ0, µ1) = inf
{ci}

∫

M

∥

∥

∥

∥

v(x) +
∑

i

ciψi(x)

∥

∥

∥

∥

dx . (5)

This objective is convex in the unknowns ci. Boundary conditions
are not needed because they have been incorporated into the ψi’s.

4.3 Discretization via Finite Elements (FEM)

Using triangle mesh geometry to discretize M , we express scalar
functions f : M → R with one value per vertex interpolated to
faces using piecewise linear “hat” functions. Vector fields are piece-
wise constant per face, allowing for a gradient operator ∇ taking
functions on the vertices to vector fields on the faces.

We solve the Poisson equation ∆f = ρ1 − ρ0 with Neumann
boundary conditions for f using a first-order finite elements ap-
proach as in [Sayas 2008]. This sparse linear solve can be carried
out at interactive rates without the need for spectral approximation.
Then, we compute the curl and harmonic components of J . For the
curl vector fields, we examine two options for choosing a basis as
above, trading off between speed and quality. The most accurate so-
lutions are obtained simply by writing g with one value per vertex.
Alternatively, we can improve timings with some cost in accuracy
by writing g in a truncated basis of low-frequency eigenvectors of
the Laplacian matrix ∆. We use a method like [Tong et al. 2006] to
compute a basis for harmonic vector fields.

In our discretization, (5) becomes the following optimization:

inf
{ci}

∑

t∈T

at

∥

∥

∥

∥

vt +
∑

i

ciψit

∥

∥

∥

∥

, (6)

where T is the set of triangles in M , each triangle t ∈ T has area
at, ψit is the value of the basis element ψi on triangle t, and vt is
the gradient of the piecewise-linear f defined above.

If we use a truncated eigenbasis for g, we are only approximat-
ing the distance W . Effectively this constrains certain coefficients
ci of the expansion in (5) to zero, and thus these approximations
overestimate W . Figure 3 illustrates convergence as the number of
eigenfunctions is increased; even a small spectral basis provides a
strong approximation of W .

4.4 Properties of the Discretization

Since we discretized (5) we can expect its properties to hold ap-
proximately for the discretization. We can, however, prove that one
important property of the discretization holds exactly, even with
spectral approximation:

Proposition 3. Minima of (6) satisfy the triangle inequality for
discrete probability distributions represented using one value per
vertex on M , even if the bases for curl and harmonic vector fields
are truncated.

Thus, our approximations of W are in fact distances in themselves.

4.5 Optimization

We derive an algebraic form for (6) by assembling the coefficients
ci into a vector c and the vectors ψit for a given triangle t into the
columns of a matrix At ∈ R

3×k. After defining wt ≡ atvt and
Bt ≡ atAt, (6) becomes the minimization problem

inf
{c}

∑

t

∥Btc+ wt∥ .



(a) (b)

(c) (d)

Figure 3: (a) Two distributions ρ0, ρ1 on a sphere colored yellow
and blue; (b) the Hodge decomposition of the vector field J taking
ρ0 to ρ1; (c) approximations of J with more and more curl basis
functions (basis size on upper right of each sphere); (d) EMD be-
tween ρ0 and ρ1 as a function of basis size.

function WEISZFELD-WASSERSTEIN(ρ0, ρ1)
◃ ρ0, ρ1 have one value per vertex
◃ Concatenate Bt’s vertically to obtain B

f ←∆+(ρ1 − ρ0) ◃ Solve for gradient part
v←∇f ◃ Compute gradient vector field

ct← 0 ∀t ∈ T ◃ Initialize vector field to zero
for i← 1, 2, 3, . . . ◃ Iterate until convergence
rt← Btc+ wt ∀t ∈ T ◃ Compute residuals
R← [r1; r2; · · · ; r|T |] ◃ Concatenate residuals

D← diag3(∥r1∥
− 1

2 . . . ∥r|T |∥
− 1

2 ) ◃ Diagonal matrix of
inverse residual roots
repeated 3× each

c← c− (DB)+DR ◃ Least-squares for next iterate

return Jt = vt +Btc ∀t ∈ T

Figure 4: Weiszfeld algorithm for optimizing W, using the steps
outlined in [Li 1998]; in challenging test cases the least-squares
solve can be regularized slightly for numerical stability. A+R de-
notes the least-squares solution X to the system AX ≈ R.

In this form, our optimization problem attempts to minimize a
sum of Euclidean norms. This classical problem, known as the
“geometric median” or “continuous location” problem, appears
in the optimization literature and can be solved using a vari-
ety of techniques. The most well-known classical approach is
Weiszfeld’s algorithm, originally proposed in [Weiszfeld 1937],
an iteratively-reweighted least-squares technique with convergence
guarantees [Plastria 2011]. Figure 4 states the algorithm adapted to
our problem. In Figure 5, we also provide a lightweight optimiza-
tion method based on the alternating direction method of multipli-
ers (ADMM) [Boyd et al. 2011]; this new approach (derived in the
supplemental document) suffers from fewer conditioning problems
and solves an identical linear system in each iteration, allowing it
to be pre-factored for all EMD computations on a surface.

function ADMM-WASSERSTEIN(ρ0, ρ1)
◃ ρ0, ρ1 have one value per vertex
◃ Concatenate Bt’s vertically to obtain B

f ←∆+(ρ1 − ρ0) ◃ Solve for gradient part
v←∇f ◃ Compute gradient vector field

for i← 1, 2, 3, . . . ◃ Iterate until convergence
zt← Btc+ wt −

yt
β

◃ Update vector field J

αt←

{

1− 1
β∥zt∥

β∥zt∥ > 1
0 otherwise

Jt← atzt

◃ Update coefficients; can pre-factor

c←
(
∑

t B
⊤
t Bt

)−1
[

∑

t B
⊤
t

(

yt
β

+ Jt − wt

)]

yt← yt + β(Jt −Btc− wt) ◃ Update dual

return Jt ∀t ∈ T

Figure 5: ADMM algorithm for optimizing W, derived in the sup-
plemental document, with parameter β > 0.

5 Pointwise Distances

In this section we consider the problem of computing intrinsic dis-
tances between points on surface meshes. Using our machinery, we
first introduce a family of pointwise distance metrics dkW(·, ·), with
k = 0, . . . , nvert, and state their theoretical properties. Next, we in-
vestigate the practical properties of these distances, including their
behavior on realistic meshes, qualitative comparison to commonly
used distances, and empirical sensitivity to mesh perturbations.

To define the distance between two mesh points p, q ∈ M , we
consider two distributions δp, δq ∈ Prob (M) that have mass only
at p and q, resp.; discretely, these distributions are nonzero only
at individual vertices. Then, we define a distance metric on M as
dW(p, q) ≡ W(δp, δq). We can compute this distance using spec-
tral approximation as in Section 4 with basis size k and denote this
approximate distance by dkW(·, ·). Note that k = 0 corresponds to
the case when the curl and harmonic terms are removed altogether.

Properties of our family of pointwise distances follow directly from
our discussion in previous sections. Both in the discrete and the
continuous cases, dkW(·, ·) is a true distance metric for all values of
k. Also, given any two points p, q ∈M , we have

d0W(p, q) ≥ d1W(p, q) ≥ · · · ≥ dnvert

W (p, q) = dg(p, q),

where dg(·, ·) is a discretization of geodesic distance. This final dis-
tance may not coincide exactly with the discrete geodesic distance
along triangle faces but still satisfies symmetry, the triangle equal-
ity, and a discretization of the eikonal equation simultaneously.

The initial member of our family, d0W(·, ·), has a particularly simple
form suitable for efficient implementation. This distance can be
computed as

∫

M
∥∇f(x)∥ dx, where f satisfies ∆f = δp − δq . It

follows that f(x) = G(x, p)−G(x, q), where G(·, ·) is the Green’s
function of Laplace-Beltrami operator, establishing that:

d0W(p, q) =

∫

M

∥∇xG(x, p)−∇xG(x, q))∥ dx.

We can compare d0W to a state-of-art spectral distance, the bihar-
monic distance of [Lipman et al. 2010], which can be written (see
the Appendix):

db(p, q) =

(
∫

M

(G(x, p)−G(x, q)))2 dx

) 1

2

.



db d0W d5W d10W d25W d50W

Figure 6: Convergence of dkW for increasing k and compari-
son with biharmonic distances db [Lipman et al. 2010]. Some
anisotropic behavior is specific to these “primitive” shapes, which
have spectra with repeated eigenvalues that cannot be grouped in
multiples of five; this phenomenon is unlikely on general shapes.

Despite the resemblance, there are fundamental differences: In ad-
dition to taking gradients, our distance is based on an ℓ1 rather
than ℓ2 norm. It is a classical result that ℓ2-norms have smaller
embedding capacity than ℓ1 in that a point set that can be embed-
ded isometrically into ℓ2 can also be embedded into ℓ1, but not
vice versa [Deza and Laurent 2009]. In the context of geodesic
distances on manifolds, the main obstruction is that non-unique
geodesics cannot be supported by Euclidean distance. Indeed, ev-
ery point x on a shortest geodesic connecting points p and q satis-
fies dg(p, x)+dg(x, q) = dg(p, q), and under isometric embedding
into Euclidean space this means that the image of x lies on the seg-
ment connecting the images of p and q under the embedding. For
example, geodesic distances on the sphere can be embedded iso-
metrically in ℓ1 (c.f. [Deza and Laurent 2009]) but not ℓ2, since
considering all the geodesics connecting the two poles it follows
that the entire sphere must be mapped to a straight segment. This
helps explain why existing spectral distances, largely based on ℓ2
norms, have nonintuitive disparately spaced isocontours. Contrast-
ingly, we will see that d0W has isocontours that are relatively evenly
spaced; we attribute this property to the larger embedding capacity
of ℓ1-norm and to the fact that it has much in common with the
larger optimization for dW .

Experiments Figure 6 shows examples of dkW for increasing k
on a square, a sphere, a half sphere, and a torus. Even the purely
spectral distance d0W has isotropic and evenly-distributed isolines,
especially close to the center point. For example, our distances on
the square have convex level sets, unlike the biharmonic distance
db, which is biased toward the boundary. Similarly, our distances
do not stretch at the top of the torus like db. As k increases, dkW
converges to geodesic distance even in the presence of holes and a
nonempty boundary; [Crane et al. 2013, §3.4] determines boundary
conditions experimentally since boundary conditions for the Varad-
han theorem only hold when t→ 0.

Figure 7 shows examples of d0W , d100W , geodesic distances, and bi-
harmonic distances [Lipman et al. 2010] on a variety of meshes. As
can be seen from these images, d0W and d100W both enjoy the best of
both the “primal” and “dual” worlds. Like the biharmonic distance,
our distances are smooth and follow the natural cross-sections of
the shape even in more distant areas. Similarly to geodesic dis-
tance, we find that even d0W has isotropic and evenly-spaced level

Mesh nvert dg dh db d
0

W
d
20

W
d
100

W

Bearing 3182 0.050 0.002 3.52 3.86 30.8 41.4

David 5197 0.096 0.003 10.09 6.18 86.5 121.2

Dog 3716 0.056 0.002 4.66 3.27 38.7 59.8

Teapot 3900 0.063 0.002 6.25 3.87 45.2 57.9

Man 10050 0.18 0.006 42.2 23.2 312.0 511.9

Table 1: Timing in seconds for selected experiments in Figure 7;
the time represents time taken to compute distances from a single
source to all targets. In addition to geodesic distances dg from
fast marching, we include timings reported by the optimized C++
implementation of [Crane et al. 2013] as dh.

Mesh size M for dg M for dh M for db M for d
0

W

nvert ntri 2 100 2 100 2 100 2 100

2k 4k 0.06 2.60 0.03 0.23 0.03 0.58 0.03 1.22

4k 9k 0.13 6.25 0.05 0.45 0.06 1.42 0.06 2.84

8k 16k 0.24 11.76 0.10 0.97 0.14 4.97 0.14 7.33

16k 32k 0.70 34.93 0.20 1.97 0.33 13.07 0.34 18.45

53k 105k 2.74 121.94 0.71 10.36 1.03 51.99 0.97 68.53

111k 222k 8.06 432.28 2.04 15.14 10.91 289.02 11.00 322.11

Table 2: Timing in seconds for all-pairs shortest paths between a
sampling of M points.

sets even though it is the lowest-order approximation of dg; this is
in contrast to biharmonic distance that may have unevenly-spaced
isocontours at different parts of a mesh.

A few examples in Figure 7 typify the advantages of our new dis-
tances. On the boy model, we can see that biharmonic distances
are strongly anisotropic in the horizontal direction and unevenly
spaced away from the center point; on the other hand, geodesic dis-
tances on the back of the same model have numerous artifacts due
to a lack of differentiability. The bearing model also shows similar
anisotropy for db, while as k increases our distances are able to cap-
ture level sets on the cap of the mesh. Our distances also are stable
in the hair of the bust model, maintaining a reasonable distribution
and smoothness despite high-frequency changes in geometry.

Figure 8 demonstrates the stability of d0W and d100W to common ge-
ometric perturbations. Figure 8(a) shows the insensitivity of these
distances to per-vertex noise. Here the addition of Gaussian noise
to the mesh leads to little change in the distance as evidenced by
the coloring and the isolines. Figure 8(b) confirms the theoretical
isometry invariance property of our distance — the isolines and col-
oring are in near correspondence between the armadillo model and
its nearly isometric deformation. Finally, Figure 8(c) shows insen-
sitivity to tessellation; the distance remains almost unchanged as
the mesh is refined considerably.

Figure 9 compares our technique to [Crane et al. 2013]. Metric
properties hold for our distances at all levels of spectral trunca-
tion even after discretization, while their smoothed geodesics at
larger and larger diffusion times no longer benefit from an infinites-
imal relationship with geodesic distances. This deviation can cause
the triangle inequality to fail, as shown in red. Their smoothed
distances also are not symmetric, that is, they may not satisfy
d(a, b) = d(b, a). While averaging forward and backward dis-
tances repairs this issue, it comes at the cost of considerably slower
computation for tasks like finding the distance from a single source
to all targets, replacing a single linear solve with one for each target.

Computation time Table 1 reports time to compute single-source
distances, including geodesic and biharmonic, for a variety of
meshes on a 2.40GHz Intel Xeon processor with 23.5GB RAM.
The implementation is done in MATLAB, using the ADMM opti-
mization in Figure 5. Our new spectral distance d0W is efficient to
compute by factorizing the Laplacian and performs similarly to the
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Figure 7: Level sets of distance functions on a variety of shapes.

biharmonic distance; in fact, in this test d0W outperforms db con-
siderably on larger meshes because it requires Green’s functions
of the Laplace-Beltrami operator rather than the denser bilaplacian
operator. Computing smoothed geodesic functions dkW introduces
computational cost scaling with the number of eigenfunctions.

Table 2 compares timing of computing all-pairs distances between
a subsample of points on assorted meshes using dg , db, and d0W . As
in Table 1, the linear solve step for computing d0W takes less time
than that for db; integrating the derivative of the Laplace-Beltrami
Green’s function, however, requires an additional iteration over the
faces of the mesh, adding computation time for d0W in this test.
Here, db and d0W compute one Green’s function per source point
and then only find pairwise distances between the prescribed points;
no such optimization is available for dg , which must compute dis-
tances to all vertices from each source point.

6 Volumetric Distances

The problem of computing volumetric distances respecting a given
boundary mesh arises in a number of applications, e.g. path plan-
ning. Since the straightforward approach of computing shortest
paths within a 3D polyhedron is NP-hard [Canny and Reif 1987],
previous work introduced an approach based on interpolating a pre-
scribed distance on the boundary mesh to the surrounding space
inside and outside the shape [Rustamov et al. 2009]. While this
approach is efficient, it requires an MDS-like embedding of pre-
scribed pairwise distances and hence cannot exactly interpolate the
geodesic distance.

Here, we show how our machinery can be used to obtain a volumet-
ric distance reproducing geodesic distance when restricted to the
boundary mesh. Like [Rustamov et al. 2009], we use barycentric
coordinates but in a fundamentally different way—by considering
them as distributions and computing EMDs between them.

For a given point x in the interior of M , its barycentric coordi-
nates with respect to a mesh M with vertices vi, i = 1, . . . , nvert,
are weights wi(x), i = 1, . . . , nvert. We recall three properties
of these weights: the Lagrange property wi(vj) = δij (the Kro-
necker delta); the partition of unity property

∑

i wi(x) = 1 with

wi(x) ≥ 0; and the linear precision property
∑

i wi(x)vi = x.

To compute our volumetric distance between p and q, we con-
sider their barycentric coordinates {wi(p)}

nvert

i=1 and {wi(q)}
nvert

i=1
as distributions µp, µq ∈ Prob (M); this is possible due to the parti-
tion of unity property. Then, our distance is defined as dW(p, q) ≡
W(µp, µq); as before, this is a true distance metric. If dW(p, q) =
0, then µp = µq , and so p = q, because by linear precision prop-
erty, barycentric coordinates determine the point uniquely.

Our volumetric distance satisfies all of the relevant properties listed
in [Rustamov et al. 2009]. If W is computed without approxima-
tion, dW(p, q) reduces to geodesic distance when p, q ∈ M ; in-
deed, due to the Lagrange property, in this case µp = δp, µq = δq ,
and we are back in the setting of previous section. Furthermore, the
following maximum principle holds: if p and q have non-negative
barycentric coordinates then the volumetric distance between p and
q is no more than the geodesic diameter of the boundary mesh,
i.e. dW(p, q) ≤ maxx,y∈M dg(x, y); this bound follows directly
from (1) by upper-bounding d(x, y). Also, we can show that dW is
bounded below by Euclidean distance, that is dW(p, q) ≥ ∥p− q∥;
the proof of this property is provided in the Appendix.

Our differential definition (2) of dW continues to be a distance met-
ric when we allow µp and/or µq to have negative values in its den-
sity function, despite the weaker connection to the theory of op-
timal transportation. In fact, even our proof of the upper bound
dW(p, q) ≥ ∥p − q∥ remains valid. This relaxation allows us to
consider any choice of p, q ∈ R

3 rather than restricting to the inte-
rior or convex hull of M , even if coordinates become negative.

Experiments In our experiments, we use mean value coordi-
nates [Ju et al. 2005]; these coordinates can become negative both
in the interior and exterior of M , but as noted above this departure
from Prob (M) does not raise any issues.

Figure 10 shows examples of this distance function in the space
around a surface mesh. As before, we select a single source point
and then compute the distance to other points in the volume near
the object. We visualize these distances on two orthogonal planes
using the same color coding as in the previous section.



d0W

d100W

No noise σ = 0.46ℓ σ = 0.80ℓ
(a)

(b)

(c)

d0W d100W

Figure 8: Sensitivity of d0W and d100W to geometric noise; vertices
are perturbed using a Gaussian distribution (standard deviation
written in terms of the average edge length ℓ of the original mesh).
(b) Stability to isometric deformation; (c) stability to remeshing (ex-
amples have 146, 598, and 9337 vertices, resp.).

Given p, q ∈ R
3, we generate a path from p to q via gradient de-

scent on dW(·, q) starting at p. Since our distance is fast to com-
pute, its gradient can be computed numerically in relatively little
time. Figure 11 shows examples of paths from such a process,
stepped using simple forward Euler integration. Remarkably, the
paths are tuned to the geometry of the boundary mesh and connect
points in the interior without crossing M .

7 Additional Applications

Here we suggest some less obvious applications of W to assorted
geometry problems. These applications demonstrate the stability of
our approach and suggest additional classes of problems for which
it can be a valuable tool.

Path planning We can incorporate the convex energy for W into
larger optimizations to formulate applications of our distances to
more complex problems. Although the methods in Figures 4 and 5
no longer apply directly to the problems below, they are all convex
and can be optimized using interior point methods.

As an initial example, the distributions ρ0 or ρ1 can be promoted to
optimization variables to solve path planning problems. For exam-
ple, suppose M is a mesh of a floor plan and that ρ0 approximates
a distribution of occupants in different parts of M . To find the most
efficient way to move all the occupants to a restricted subset of
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Figure 9: For fixed p, q ∈ M , distances using [Crane et al. 2013]
fail to satisfy the triangle inequality d(p, x) + d(x, q) ≥ d(p, q)
at the red points x ∈ M , shown for various smoothing parameters
m; level sets of f(x) ≡ min(d(p, x), d(q, x)) are shown in black.

Contrastingly, dkW is guaranteed to satisfy the triangle inequality
even after discretization; numerical experiments in the bottom row
confirm this relationship.

points S ⊆M , we can solve the optimization:

inf
ρ1

W(ρ0, ρ1)

s.t. ρ1(x) = 0 ∀x ̸∈ S ρ1(x) ≥ 0 ∀x ∈M
∫

M

ρ1(x) dx = 1

(7)

Adding a small multiple of
∫

M
ρ1(x)

2 dx has a regularizing effect
on ρ1 when smoothness is desired.

Figure 12 shows this optimization applied to solving a maze. In this
example, ρ0 is concentrated at two different points on the maze M ,
which has two possible exits. The optimization (7) matches the two
points to their closest exits; this can be seen in the vector field J ,
which traces a path from the starting points to their targets. We also
show the decomposition J = ∇f +R·∇g. Here, the gradient part
∇f encodes large-scale motions in the maze while the rotational
part R · ∇g helps mass round corners in the maze efficiently; the
quality of f alone reflects a connection to path planning algorithms
using harmonic functions, e.g. [Connolly et al. 1990].

Fuzzy geodesics Recall our intuition that the vector field J(x)
is large at points x that see mass move past as ρ0 advects toward ρ1
according to the optimal matching. Suppose ρ0 and ρ1 are concen-
trated near two points p0, p1 ∈ M , resp. Then, J(x) is large near
geodesic curves between p0 and p1.

Inspired by [Sun et al. 2010], the norm ∥J(·)∥ : M → R pro-
vides a “fuzzy geodesic” function related to the likelihood that a
geodesic connecting points in the support of ρ0 to points in the sup-
port of ρ1 should pass through x ∈ M . In particular, we can put
small Gaussians around p0 and p1 and record ∥J∥ resulting from
optimizing (2); an example is shown in Figure 13.

Distance to features There are many ways to use our framework
to formulate distances that are aware of features rather than points.
Most directly, to compute the distance from p ∈ M to S ⊆ M ,



Figure 10: Examples of volumetric distances. The left image in each pair shows a surface (Beethoven bust, spiral, octopus resp.) cut by two
planes; the right image shows the volumetric distance function on the two planes.

Figure 11: Paths constructed by gradient descent on the volumetric
distance in the interiors of surfaces.

we can solve (7) with ρ0 concentrated at p and ρ1 restricted to have
support on S. A more efficient alternative, however, is suggested
in the proof of Proposition 1. When computing W , the Lagrange
multiplier λ : M → R for the∇ · J = ρ1 − ρ0 constraint satisfies
the eikonal equation and hence is a geodesic distance. Thus, we
can compute a geodesic function λ that is aware of S by computing
W between the uniform distribution on M and a distribution con-
centrated on the feature of interest and using the dual multipliers.
Figure 14 shows this dual variable distance for computing distances
to multiple points on a surface and distances to a curve.

Anisotropic distances As suggested in [Santambrogio 2013],
the integral

∫

M
∥J(x)∥ dx from (2) can be replaced with a more

general integral
∫

M
∥A(x) · J(x)∥ dx to yield anisotropic trans-

portation distances by modifying the metric of M . Figure 15 shows
two examples in which the function A is a nonnegative scalar guid-
ing shortest paths to favorable areas or avoiding obstacles. In partic-
ular, inspired by [Lia et al. 2010] we are able to compute distances
along a brain model that favor motion along ridges by weighting
J using mean curvature. More generally, matrix-valued A can be
used favor diffusion in a single direction; we leave consideration of
the design of A to future work.

Barycenters [Agueh and Carlier 2011] suggests minimizing a
sum of transportation distances to find the barycenter of a set of
distributions on a surface. Rather than resorting to approximations,
e.g. in [Bonneel et al. 2011; Bonneel et al. 2013], our formulation
of W allows us to solve this problem directly on a surface mesh.

Suppose we are given a set {ρ1, ρ2, . . . , ρk} ⊂ Prob (M). We can

(a) (b)

(c) (d)

(e) (f)

Figure 12: (a) A distribution ρ0 on a maze; (b) a set S ⊆ M of
points marked in black; (c) ρ1 from optimizing (7); (d) the corre-
sponding field J; (e)/(f) the functions f, g : M → R such that
J = ∇f +R ·∇g.

(a) (b)

Figure 13: (a) Fuzzy geodesic function between the two red points
computed using [Sun et al. 2010]; (b) vector field norms ∥J∥.

find a barycenter of these distributions by solving the optimization

inf
ρ

k
∑

i=1

[W(ρi, ρ)]
2

s.t. ρ(x) ≥ 0 ∀x ∈M

∫

M

ρ(x) dx = 1

(8)

The distances W(ρi, ρ) are squared to imitate the units of the clas-
sical barycenter problem between points on M .

Figure 16 shows two applications of this optimization. In the first
example, the barycenter of six distributions concentrated on the fin-
gers and side of a hand model is centered at the upper palm; this
output accurately represents points equally close to those favored by
the six distributions. In the second example, a pointwise barycen-



(a) (b)

Figure 14: Distances computed from distributions (a) on the ears
and tail of a pig model and (b) from the collar of a human model.

(a)

(b)

Figure 15: (a) The example from Figure 3 recomputed using
weights on J shown on the left; the resulting J avoids the high-
weight area. (b; left) dW on a brain model; (b; right) anisotropic
distances weighted to favor mean curvatures similar to that of the
source point; the anisotropic distances on the brain model favor the
gyri because the source point is on top of a ridge.

ter problem is encoded probabilistically using delta distributions at
four points on the surface. The optimized ρ has sharp support, mak-
ing it possible to isolate a single point as the barycenter.

We find empirically that the barycenter of a set of delta distributions
is strongly peaked about a single point but defer a discussion of
theoretical sharpness properties future work. In this case, however,
the optimal optimization objective is exactly the sum of squared
geodesic distances from the barycenter to each of the input points.
In this way, this strategy reveals an alternative to [Panozzo et al.
2013] for averaging sets of points on a surface.

8 Discussion and Conclusion

It is possible to envision many applications and extensions of the
approaches to distance computation in this paper. As we have seen
in many instances above, incorporating EMD and its spectral ap-
proximations into various geometric optimizations yields meaning-
ful intrinsic information about the surface that easily and efficiently
can be incorporated into machinery for larger problems.

While the experiments in Figures 7, 9, and others show that our
technique has desirable properties compared to fast approxima-
tions, its runtime is limited thanks to the iterative optimization. Ad-
justments to methods for computing dkW could yield gains in effi-
ciency. Approximating the least-squares solves for the Weiszfeld
algorithm in Figure 4 may improve timing but more care is needed
to guarantee convergence. The ADMM parameter β in Figure 5
could be adjusted automatically, e.g. via [He et al. 2000], and alter-
native methods for geometric median problems may require fewer
iterations [Li 1998; Qi et al. 2002; Zhou et al. 2003; Pan and Jiang
2008]. More generally, the optimization (2) is a second-order cone
program, which can be minimized using commercial solvers.

(a) (b) (c)

Figure 16: (a) Six probability distributions on a surface; (b) the
barycenter of these distributions from (8); (c) the barycenter of the
four blue points in red, computed using the same technique.

Our distances also could be extended in various ways. The EMD is
the p = 1 member of the class of p-Wasserstein distances between
distributions. While in this paper we take advantage of the simple
structure of the p = 1 case, Wasserstein distances with p > 1 have
stronger regularity properties and can be evaluated using somewhat
more involved flow techniques [Villani 2003]. While some special-
ized numerical methods exist for this case, our FEM discretization
and spectral approximations may provide some insight into these
problems and their applications in graphics.

We have focused on solving the differential EMD optimization
problem (2) on triangle meshes, since they are the most common
structures approached in geometry processing, but our formulation
largely is general and could be applied to other structures admit-
ting differential operators. For example, [Lai et al. 2013; Liang and
Zhao 2013] and others present divergence, gradient, and Laplacian
operators acting directly on point clouds and hence easily can be
substituted into our formulation. More abstractly, [Jiang et al. 2011]
and others adapt Helmholtz-Hodge structure to functions on graphs,
revealing potential machine learning applications of our work.

Even without these extensions, our distances stand alone as practi-
cal tools for geometry processing. Even the lowest-order approx-
imations of our distances are stable, smooth, and geometrically
meaningful, and more accurate versions are easily evaluated using
the proposed iterative method. Given the innumerable existing uses
of EMD, spectral and geodesic distances, and volumetric distance,
we are confident that differential earth mover’s distances will be a
useful and straightforward alternative for characterizing the intrin-
sic geometry and relationships between features of surfaces.
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Geometric inference for probability measures. Found. Comp.
Math. 11, 6, 733–751.

COIFMAN, R. R., LAFON, S., LEE, A. B., MAGGIONI, M.,
NADLER, B., WARNER, F., AND ZUCKER, S. W. 2005. Ge-
ometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps. PNAS 102, 21, 7426–7431.

CONNOLLY, C., BURNS, J. B., AND WEISS, R. 1990. Path plan-
ning using Laplace’s equation. In Proc. Conf. on Robotics and
Automation, vol. 3, 2102–2106.

CRANE, K., WEISCHEDEL, C., AND WARDETZKY, M. 2013.
Geodesics in heat: A new approach to computing distance based
on heat flow. TOG 32, 5 (Oct.), 152:1–152:11.

DE GOES, F., COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN,
M. 2011. An optimal transport approach to robust reconstruction
and simplification of 2d shapes. CGF 30, 5, 1593–1602.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. TOG 31,
6 (Nov.), 171:1–171:11.

DEZA, M. M., AND LAURENT, M. 2009. Geometry of Cuts and
Metrics. Springer.

DOMINITZ, A., AND TANNENBAUM, A. 2010. Texture mapping
via optimal mass transport. TVCG 16, 3, 419–433.

FELDMAN, M., AND MCCANN, R. 2002. Monge’s transport prob-
lem on a Riemannian manifold. Trans. AMS 354, 4, 1667–1697.

FOLLAND, G. B. 1999. Real analysis: modern techniques and
their applications, vol. 361. Wiley New York.

FOUSS, F., PIROTTE, A., RENDERS, J.-M., AND SAERENS, M.
2007. Random-walk computation of similarities between nodes
of a graph with application to collaborative recommendation.
Trans. Knowledge and Data Eng. 19, 3, 355–369.

GU, X., LUO, F., SUN, J., AND YAU, S.-T., 2013. Variational
principles for Minkowski type problems, discrete optimal trans-
port, and discrete Monge-Ampère equations.

HE, B., YANG, H., AND WANG, S. 2000. Alternating direction
method with self-adaptive penalty parameters for monotone vari-
ational inequalities. J. Optim. Theory and App. 106, 2, 337–356.

JIANG, X., LIM, L.-H., YAO, Y., AND YE, Y. 2011. Statisti-
cal ranking and combinatorial Hodge theory. Mathematical Pro-
gramming 127, 1, 203–244.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coor-
dinates for closed triangular meshes. TOG 24, 3 (July), 561–566.

KIMMEL, R., AND SETHIAN, J. A. 1998. Computing geodesic
paths on manifolds. In PNAS, 8431–8435.

LAI, R., LIANG, J., AND ZHAO, H.-K. 2013. A local mesh
method for solving PDEs on point clouds. Inverse Prob. and
Imaging 7, 3, 737–755.

LI, Y. 1998. A Newton acceleration of the Weiszfeld algorithm for
minimizing the sum of Euclidean distances. Comp. Optim. and
App. 10, 3, 219–242.

LIA, G., GUOA, L., NIEA, J., AND LIU, T. 2010. An automated
pipeline for cortical sulcal fundi extraction. Medical Image Anal-
ysis 14, 3, 343–359.

LIANG, J., AND ZHAO, H. 2013. Solving partial differential equa-
tions on point clouds. J. Sci. Comp. 35, 3, A1461–A1486.

LIPMAN, Y., AND DAUBECHIES, I. 2011. Conformal Wasserstein
distances: Comparing surfaces in polynomial time. Advances in
Mathematics 227, 3, 1047–1077.

LIPMAN, Y., RUSTAMOV, R., AND FUNKHOUSER, T. 2010. Bi-
harmonic distance. TOG 29, 3 (June).

LIPMAN, Y., PUENTE, J., AND DAUBECHIES, I. 2013. Conformal
Wasserstein distance: II. Computational aspects and extensions.
Math. Comp. 82, 331–381.
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Appendix

Proof of Proposition 1 If we let λ : M → R be a Lagrange mul-
tiplier function for the divergence constraint, then the Lagrangian
of (2) is given by:

L(J,λ) =

∫

M

[

∥J(x)∥+ λ(x)(∇ · J(x) + ρ0(x)− ρ1(x))
]

dx

Let J be a critical point of the variational problem (2) and introduce
a variation vector field δJ . Assume δJ

∣

∣

∂M
≡ 0 so that the Neu-

mann boundary condition is maintained. Also assume δJ(x) = 0
whenever J(x) = 0. Taking the variation of the Lagrangian in the
δJ direction yields:

0 =
d
dε

L(J + ε δJ,λ)

∣

∣

∣

∣

ε=0

=

∫

M

δJ(x)

[

J(x)
∥J(x)∥

− ∇λ(x)

]

dx.

Since this holds for all δJ , we have shown ∇λ(x) = J(x)/∥J(x)∥

whenever J(x) ̸= 0. This shows that ∥∇λ(x)∥ = 1, and thus
by the eikonal equation λ is a geodesic distance function [Arnold
2003]; hence flows of J(x) are either constant or geodesics.

Proof of Proposition 2 The first part is a consequence of Propo-
sition 1 while the second part follows from the weak convergence
properties of Wasserstein distances and the fact that Wasserstein
distances between delta-distributions always reduce to geodesic
distances since there is only one transport plan in Π(δp, δq), namely
the plan that assigns all the mass at p to q.

Proof of Proposition 3 One can show directly that the quantity
in the right hand side of (2) satisfies the properties of a distance
without appealing to the equivalence of (2) with the 1-Wasserstein
distance. That is, the right hand side of (2) is symmetric and non-
negative, vanishing only if J = 0 or ρ0 = ρ1. Moreover, the
triangle inequality holds by the linearity of the divergence operator
(so if Jij satisfies ∇ · Jij = ρi − ρj then ∇ · (J12 + J23) =
ρ1 − ρ2 + ρ2 − ρ3 = ρ1 − ρ3) and the fact that ∥ · ∥ itself satisfies
the triangle inequality. The same considerations now guarantee that
the discrete approximations of (2) are also distance functions.

Alternative form for biharmonic distance Take G(·, ·) to be the
Green’s function of the Laplace-Beltrami operator ∆, with eigen-
functions φi and eigenvalues λi for i = 1, 2, . . .. As it is defined
in [Lipman et al. 2010], the biharmonic distance between p, q ∈M
is given by db(p, q) ≡

∑

i(
φi(p)−φi(q)

λi
)2. By ℓ2 orthogonality of

the φi’s, we know
∫

M
φi(x)φj(x) dx = δij , and hence

db(p, q) =
∑

ij

φi(p)− φi(q)
λi

φj(p)− φj(q)
λj

∫

M

φi(x)φj(x) dx

=

∫

M

(

∑

i

φi(p)− φi(q)
λi

φi(x)

)2

dx

Distributing the difference in the integrand and using the relation-

ship G(x, p) =
∑

i
φi(x)φi(p)

λi
shows db(p, q) =

∫

M
(G(x, p) −

G(x, q))2 dx, as desired.

Proof that volumetric distance is bounded below by Euclidean
distance The barycentric coordinates of a point p ∈ R

3 is a
probability distribution that we will denote in this proof by wp ∈
Prob (M). It satisfies

∫

M
wp(x) dx = 1 (partition of unity prop-

erty) and
∫

M
xwp(x) dx = p (linear precision property). Suppose

now that p, q ∈ R
3 have barycentric coordinates wp, wq . Let J

be the optimal vector field for the optimization problem (2) and let
r(x) ≡ ∥x∥ · sgn(wp(x) − wq(x)) be a “signed” distance to the
origin in R

3, satisfying ∥∇r(x)∥ = 1 almost everywhere. Then

dW(p, q) =

∫

M

∥J∥ dx =

∫

M

∥J∥ ∥∇r∥ dx

≥

∣

∣

∣

∣

∫

J ·∇r dx

∣

∣

∣

∣

by the triangle inequality. We now apply Stokes’ Theorem on M
and invoke the divergence constraint satisfied by J . This yields

dW(p, q) ≥

∣

∣

∣

∣

∫

M

r∇ · J dx

∣

∣

∣

∣

=

∫

M

∥x∥
∣

∣wp(x)− wq(x)
∣

∣ dx

≥

∥

∥

∥

∥

∫

M

x
(

wp(x)− wq(x)
)

dx

∥

∥

∥

∥

= ∥p− q∥ ,

by the triangle inequality and the use of barycentric coordinates.


