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Abstract A contact-stationary Legendrian submanifold of S
2n+1 is a Legendrian sub-

manifold whose volume is stationary under contact deformations. The simplest contact-
stationary Legendrian submanifold (actually minimal Legendrian) is the real, equatorial
n-sphere S0. This paper develops a method for constructing contact-stationary (but not min-
imal) Legendrian submanifolds of S

2n+1 by gluing together configurations of sufficiently
many U (n + 1)-rotated copies of S0. Two examples of the construction, corresponding to
finite cyclic subgroups of U (n+1) are given. The resulting submanifolds are very symmetric;
are geometrically akin to a ‘necklace’ of copies of S0 attached to each other by narrow necks
and winding a large number of times around S

2n+1 before closing up on themselves; and are
topologically equivalent to S

1 × S
n−1.
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1 Introduction and statement of results

1.1 Background

Lagrangian variational problems It has been known for some time that minimal and
Lagrangian submanifolds of a M possess a rich mathematical structure. In addition, it is
possible to pose two very natural restricted variational problems in the class of Lagrangian
submanifolds of M whose critical points are also mathematically quite interesting. First, one
can demand that the volume of a Lagrangian submanifold L is stationary with respect to all
variations of L which preserve the Lagrangian condition. A natural sub-class of variations
preserving the Lagrangian condition is the set of Hamiltonian transformations generated
by functions of M . Therefore one can also demand that the volume of L is stationary with
respect to these variations. In the former case, L is said to be Lagrangian stationary; in the
latter case, L is said to be Hamiltonian stationary.

The stationarity of Lagrangian submanifolds of a Kähler–Einstein manifold M under
Lagrangian and Hamiltonian deformations has been studied by several authors, notably Oh
[21,22], Hélein and Romon [11–13], Schoen and Wolfson [25,26]. Oh initially posed the
Lagrangian and Hamiltonian stationary variational problems and derived first and second
variation formulæ. Hélein and Romon showed that when M is a two-complex-dimensional
Hermitian symmetric space, this stationarity condition can be reformulated as an infinite-
dimensional integrable system whose solutions possess a Weierstraß-type representation
similar to the Dorfmeister–Pedit–Wu representation for harmonic surfaces in a real symmetric
space [5]. Moreover, they found all Hamiltonian stationary, doubly periodic immersions of
R

2 into CP
2 using this representation. They did not address the question of when these

doubly periodic immersions close up to form compact immersions or embeddings, though the
existence of such configurations is certainly expected. Finally, Schoen and Wolfson initiated
the study of the Lagrangian variational problem from the geometric analysis point of view,
treating it as a method for constructing minimal and Lagrangian submanifolds, perhaps with
singularities, as limits of volume-minimizing sequences of Lagrangian submanifolds. The
rationale behind this approach is their observation that a Lagrangian stationary submanifold
of M that is smooth must necessarily be minimal (because the mean curvature vector field
of L is itself the infinitesimal generator of a Lagrangian variation).
Singularities and Legendrian variational problems From the work of Schoen and
Wolfson it has emerged that questions concerning the regularity of limits of volume-
minimizing sequences of Lagrangian submanifolds are very delicate and that the structure
of the singularities of Lagrangian stationary submanifolds can be very complicated. Indeed,
general structure theorems for these singularities (such as classifications) are currently well
out of reach and the most fruitful approach at the moment is the constructions of classes
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Equivariant gluing constructions 59

of examples of Lagrangian stationary, Hamiltonian stationary, and minimal Lagrangian sub-
manifolds possessing singularities of various types.

A class of singularities that is particularly amenable to study is when the stationary
Lagrangian submanifold possesses an isolated conical singularity having multiplicity one.
Such a singularity occurs when the stationary Lagrangian submanifold L is singular at an iso-
lated point where the tangent cone (in the sense of geometric measure theory) is modeled on
an actual cone, i.e. the tangent cone C is a complete, homothetically invariant, submanifold of
Euclidean space. In this case, C is determined by the submanifold� formed by intersecting
C with the unit sphere in Euclidean space, called the link of the cone. The Lagrangian station-
ary, Hamiltonian stationary, and minimal Lagrangian conditions then translate into conditions
satisfied by�. The fundamental observations are: if a Lagrangian cone C is minimal then�
is a Legendrian submanifold with respect to the contact structure of the sphere that is itself
minimal; and if C is Lagrangian or Hamiltonian stationary, then � is stationary under all
variations of � through Legendrian submanifolds. It turns out that this is equivalent to �
being stationary under all contact structure-preserving variations (a.k.a contactomorphisms)
and � is said to be contact-stationary.

Minimal and contact-stationary Legendrian submanifolds of S
2n+1 The study of min-

imal Legendrian and contact-stationary Legendrian submanifolds of the sphere S
2n+1 is

relatively recent endeavour, but a certain number of results exist. The simplest case is in
dimension n = 1. It is clear that the minimal Legendrian submanifolds are contact curves
that are also great circles. The contact-stationary submanifolds are non-trivial, however. They
are the so-called (p, q)-curves discovered by Schoen and Wolfson in [26], where p and q
are relatively prime integers.

In higher dimensions, the situation changes entirely. In dimension n = 2, Yau showed
in [28,29] that genus zero minimal Legendrian submanifolds of S

5 are trivial; i.e. they are
equatorial two spheres. Moreover, there are no contact-stationary Legendrian submanifolds
of genus zero that are not minimal; as will be further explained later, this is because 2-spheres
possess no non-trivial harmonic one-forms. In higher genus, however, the situation is quite
different. In genus one, a huge abundance of minimal Legendrian tori in S

5 has recently been
discovered that can be studied using techniques of integrable systems theory [4,8,20] and
work has been done to understand the so-called ‘geometric complexity’ of these torus cones,
in the sense of Haskins [8]. This latter task is important since Joyce has conjectured that the
singular minimal Lagrangian submanifolds of C

3 with isolated conical singularities whose
cone links have the least geometric complexity are those which occur ‘most often’ in the
boundary of the moduli space of all minimal Lagrangian submanifolds [14]. There are plenty
of contact-stationary, doubly periodic Legendrian immersions of R

2 into S
5: all are lifts from

CP2 of Hélein and Romon’s Hamiltonian stationary examples. But the question of which of
these close up to form tori is not known explicitly, except for the homogeneous tori classified
by Hélein and Romon. In higher genus, Wang [27] has constructed minimal Legendrian
submanifolds of various genera in S

5 using a reflection technique, but these are not everywhere
smooth. The question of whether smooth and embedded higher-genus minimal Legendrian
submanifolds exist in S

5 has only been settled very recently by Haskins and Kapouleas
[10]. These authors have constructed odd-genus minimal Legendrian submanifolds by fusing
together many copies of Haskins’ U (1)-invariant minimal Legendrian tori [9] in a manner
analogous to Kapouleas’ fusion of Wente tori [15]. The question of the existence of higher-
genus contact-stationary Legendrian submanifolds of S

5 is open, though in light of Haskins’
and Kapouleas’ result, the answer is most certainly that these do exist. Furthermore, it is
expected that the Haskins’ and Kapouleas result can be generalized to higher dimensions.
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60 A. Butscher

The purpose of this paper is to develop a method of constructing contact-stationary
Legendrian submanifolds of S

2n+1 using a gluing technique starting from the simplest build-
ing blocks. That is, an approximately contact-stationary Legendrian submanifold will be
constructed by forming connected sums of simple, minimal Legendrian building blocks; and
then this construction will be perturbed (by solving the non-linear PDE satisfied by contact-
stationary Legendrian submanifolds) to yield an exactly contact-stationary Legendrian sub-
manifold. The method is such that for cohomological reasons, the contact-stationary
Legendrian submanifold that results from the perturbation process cannot be minimal.

1.2 The Main Theorem

Preliminaries In order to state the Main Theorem to be proved in this paper, it is necessary
to introduce some important terminology. The first concept that must be put into words is a
special way in which two Legendrian submanifolds of the sphere can intersect each other.

Definition 1 Let �,�′ be two Legendrian submanifolds of S
2n+1. Then � and �′ are

contact-transverse over a Hopf fiber F if the following two conditions are satisfied.

1. There exists a point p ∈ � ∩ F and a complex number eic so that eic p ∈ �′ ∩ F .
2. Tp�⊕ Tp(e−ic�′) = �p.

The submanifolds � and �′ are said to have contact-transverse intersection at p if c = 0 in
the definition above, so that p ∈ � ∩�′.

Definition 2 If � and �′ are contact-transverse over a Hopf fiber F , then the number c is
called the Hopf separation between � and �′ over F .

A construction needed in this paper is the Legendrian connected sum of two Legendrian
submanifolds � and �′ with contact-transverse intersection at a point p. The details of this
construction will be given in Sect. 3.4. In the mean time, it suffices to state the condition on
the tangent spaces Tp� and Tp�

′ under which there will exist a Legendrian neck that can
be used to connect � to eiα�′ in a neighbourhood of p.

The condition can be phrased in terms of an angle criterion satisfied by the characteristic
angles of the direct sum of these two tangent spaces. First, realize that �p is isomorphic to
the symplectic vector space C

n , and Tp� and Tp�
′ are isomorphic to Lagrangian n-planes

in C
n . It can be shown that for any pair of transversely intersecting Lagrangian n-planes �1

and�2 in C
n , there exists a Hermitian orthonormal basis E1, . . . , En of C

n and a unique set
of angles θk ∈ (0, π/2] for k = 1, . . . , n − 1 and θn ∈ [π/2, π) such that

�1 = span R {E1, . . . , En} and �2 = span R

{
eiθ1 E1, . . . , eiθn En

}
.

The existence of this basis follows from standard complex linear algebra and can be found
in [6].

Definition 3 The angle criterion for the pair of n-planes�1 and�2 is that their character-
istic angles θ1, . . . , θn satisfy θ1 + · · · + θn = π .

Note that the angle criterion need not hold for a general pair of intersecting special Lagrangian
planes, though it is always satisfied in dimensions n = 2, 3 for numerical reasons.
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Equivariant gluing constructions 61

The concept behind the construction The idea behind the construction of this paper is
to use U (n + 1)-rotated copies of the real equatorial n-sphere S0 = S

2n+1 ∩ (Rn+1 × {0})
as building blocks that can be connected together at points of contact-transverse intersection
by means of small Legendrian necks to form a long, closed chain of n-spheres having the
topology of the closed cylinder S

1 × S
n−1 and winding around S

2n+1 a number of times.
The construction of the necks will also be carried out herein and is based on the Lawlor neck
[16,17] which has already been used in connected sum constructions involving intersecting
minimal Lagrangian submanifolds [3,18,19].

Since each n-sphere is minimal Legendrian, the first hope is that the long chain will be
almost minimal Legendrian and can be perturbed using a small contactomorphism into an
exactly minimal Legendrian submanifold. However, there is a good reason why this should
not be possible. To see this, first recall that C

n+1 carries a parallel, non-vanishing holomor-
phic volume form � = dz1 ∧ · · · ∧ dzn+1. If L is a Lagrangian submanifold then it can
be shown that �(E1, . . . En+1) is a complex number of unit length for every orthonormal
basis E1, . . . , En+1 for Tp L and p ∈ L . Furthermore, the value of this complex number
is independent of the choice of basis so that the prescription p �→ exp(i�L (p)) defines a
possibly multi-valued function �L on L which is called the Lagrangian angle function [7].
It can also be shown that this function satisfies HL ω

∣
∣
L = d�L where HL is the mean

curvature vector of L . Hence if L is minimal and Lagrangian then�L = constant and if L is
a Hamiltonian stationary submanifold, then 
�L = 0 locally and d�L defines a harmonic
one-form globally. Finally, if L = C(�) then the Lagrangian angle function is also deter-
mined by its values on �, so that one can define a Legendrian angle function ��, which
is constant when � is minimal Legendrian and defines a harmonic one-form when � is
contact-stationary.

It turns out that the Legendrian necks have a non-negligible height in the Hopf fiber
direction. Thus to use such a neck for connecting two spheres with the least error, it is first
necessary to create just the right amount of Hopf separation between them. The problem is
that the Legendrian angle function of a translate of S0 by eiα along the Hopf fibers is α. Thus
if a large number of n-spheres is attached together and the angle function increases by α
from one sphere to the next, then the angle function can not remain small. Moreover, if the
long chain of n-spheres winds completely around S

2n+1 and closes up, then the Legendrian
angle function must acquire a period and cease to be single-valued. One would therefore not
expect to be able to deform such a configuration into a Legendrian submanifold with angle
zero.

The solution is to give up attempting to construct a minimal Legendrian chain of n-spheres
and instead attempt to construct a contact-stationary Legendrian chain of n-spheres. The
angle function of such an object must satisfy ∇ ·d�� = 0 so a slowly varying angle function
acquiring a period around the chain can be incorporated into the construction. And since
there are cohomologically non-trivial harmonic one-forms on a closed cylinder, one might
expect to find solutions.

The Main Theorem The Main Theorem of this paper is that the concept posed in the
previous paragraphs can be realized provided the building block n-spheres and Legendrian
necks can be assembled in a sufficiently symmetric manner. The first step is to construct an
approximate solution of the problem by gluing together the union of spheres

⋃
s(ζU )s(S0)

where U ∈ SU (n + 1) is a suitably chosen generator of a cyclic subgroup of SU (n + 1)
of integer order N and ζ := e2π ia/k N for some integer a and large integer k satisfying
g.c.d.(a, k N ) = 1 whose purpose is to create small Hopf separation between the copies of
S0 at special points. The resulting submanifold will be denoted by �̃U,ζ and will be smooth,
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62 A. Butscher

Legendrian, and if U and ζ are chosen properly, also embedded. Each (ζU )s(S0) is connected
to exactly two of its neighbours in such a way that what is produced is a chain of k N rotated
copies of S0 winding a times around S

2n+1 that eventually closes up. The Legendrian angle
function on the part of (ζU )s(S0) away from the necks is almost constant equal to 2πsa/k N .
Hence that angle function increases only in the neck regions from one n-sphere to the next;
and increases by 2πa for every loop around the chain.

The means for deforming �̃U,ζ into a contact-stationary Legendrian submanifold will
be to generate small contact deformations from functions defined on �̃U,ζ . Without going
into the details, let φ f : S

2n+1 → S
2n+1 denote the contactomorphism generated by the

function f : �̃U,ζ → R. The function f will then be selected to satisfy the Euler–Lagrange
equation satisfied by contact-stationary Legendrian submanifolds, which will turn out to be

∇ ·
(

Hφ f (�̃U,ζ )
dα

)
= 0, a fourth order, nonlinear, elliptic partial differential equation

on �̃U,ζ . This equation will be solved perturbatively near zero; and doing so hinges on
being able to find a right inverse, bounded above by a constant independent of k, for the
linearization of this equation at zero, hereinafter denoted LU,ζ . However, it is a manifestation
of a general phenomenon in geometric singular perturbation problems that LU,ζ can have
small eigenvalues tending to zero as k → ∞. The associated eigenfunctions are called Jacobi
fields and the associated co-kernel constitutes an obstruction to solvability.

One way to avoid the obstruction described above is to exploit symmetry. That is, if �̃U,ζ

possesses a group of isometries, then one can deform it equivariantly; i.e. by contactomor-
phisms that are invariant under the isometries. It will turn out that, if U is chosen correctly,
the group of isometries is so large that there are no Jacobi fields invariant under all isometries
of �̃U,ζ at once, so that equivariant deformation has the effect of eliminating these Jacobi
fields. The theorem that will be proved in this way is as follows.

Main Theorem Let �̃U,ζ be the approximately contact-stationary Legendrian submanifold
of S

2n+1 constructed above. If U is chosen appropriately, then there exists k0 so that if k > k0,
then there is a small contact deformation of �̃U,ζ into a contact-stationary Legendrian
submanifold �U,ζ possessing the same symmetries as �̃U,ζ . Finally, �U,ζ is embedded
whenever �̃U,ζ is.

Two examples of SU (n +1)-rotations to which the theorem applies will be given in Sect. 4.1.

2 Geometric preliminaries

2.1 Riemannian contact manifolds

Contact structures A contact structure on an odd-dimensional manifold M2n+1 is a hyper-
plane field � on M , which is fully non-integrable in the sense of the Frobenius theorem. A
1-form α on M whose kernel at p ∈ M is the contact hyperplane�p ⊆ Tp M is called a con-
tact form and full non-integrability can be expressed via the requirement that α∧(dα)∧n �= 0.
In turn, this relationship ensures that dα is a non-degenerate, skew-symmetric two-form on
each contact hyperplane—in short, a symplectic form. The local structure theorem in contact
geometry is Gray’s Theorem: it asserts that every contact manifold is locally diffeomorphic
to R

2n × R with coordinates (x, y, t) and a ‘standard’ contact form such as

α := dt + 1

2

n∑

k=1

(
xkdyk − ykdxk

)
or α′ := dt −

n∑

k=1

ykdxk .
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Equivariant gluing constructions 63

Note that α
(
∂
∂t

) = α′ ( ∂
∂t

) = 1 and dα = dα′ = ∑n
k=1 dxk ∧ dyk is the standard symplectic

form of R
2n . These are the defining features of a ‘standard’ contact structure. Gray’s Theorem

is the analogue of the Darboux Theorem of symplectic geometry.
A contact manifold M possesses a canonical non-vanishing vector field called the Reeb

vector field defined by the requirement that R dα = 0 and α(R) = 1. For example, the
standard contact structures of R

2n+1 have Reeb vector field R := ∂
∂t . Denote by [p] the

integral curve of the Reeb vector field passing through p. The set of all integral curves of
the Reeb field is called the characteristic foliation. When [p] is a smooth, one-dimensional
embedded submanifold for every p ∈ M , then the space of fibers is a smooth manifold
M̂ = {[p] : p ∈ M}. The canonical projection π : M → M̂ is a submersion such that
Ker

(
(π∗)p

) = span(Rp) and π∗(�p) = T[p]M̂ at any p ∈ M . Furthermore, one has a

canonical lifting process λp : T[p]M̂ → Tp M for any p ∈ π−1([p]) by defining λp(X̂[p])
to be the unique vector in �p satisfying π∗(λp

(
X̂[p])

)
= X̂[p]. As a result, whenever a

structure on M is given that is equivariant with respect to the Reeb fibration, one obtains a
similar structure on M̂ . For instance, M̂ is a symplectic manifold because one can show that

dα is equivariant and the prescription ω̂(X̂ , Ŷ ) := dα
(
λp(X̂), λp(Ŷ )

)
for any pair of vector

X̂ , Ŷ ∈ T[p]M̂ yields a well-defined symplectic form satisfying π∗ω̂ = dα.
The diffeomorphisms of M that preserve the contact structure are called contactomor-

phisms. A contactomorphism φ must preserve the kernel of α, so that φ∗α = eFα for
some function F : M → R. Thus if a one-parameter group of contactomorphisms of
M is generated by a vector field X , then Lie differentiation shows that X must satisfy
d(X α) + X dα = Ḟα. One deduces that there is a function u : M → R so that
X := Xu satisfies

α(Xu) = u and Xu dα
∣
∣
∣
�

= −du. (1)

The vector field Xu is the contact Hamiltonian vector field generated by u. Note that if u is
Reeb-equivariant, then u descends to a function û : M̂ → R and π∗(Xu) is the Hamiltonian
vector field of M̂ generated by the function û. Conversely, Hamiltonian vector fields of M̂
can be lifted to equivariant contact-Hamiltonian vector fields of M . Moreover, if φt is the
one-parameter group of contactomorphisms generated by u and φ̂t is the one-parameter
group of symplectomorphisms generated by û, then it is straightforward to check that φt is
Reeb-equivariant and π ◦φt (p) = φ̂t ([p]) for all p ∈ [p]. When the circumstance described
here holds, one says that φt covers φ̂t .

Suppose that � ⊆ M is an integral submanifold of � (i.e. Tp� is a subspace of �p for
every p ∈ �), then the full non-integrability condition implies that dα

∣
∣
�

= 0. But since dα is
a symplectic form on each contact hyperplane, the tangent spaces of� are isotropic subspaces
of the contact hyperplanes and hence their dimension can be no larger that n. An integral
submanifold of�with this maximal dimension is called a Legendrian submanifold. It is easy
to see that any Legendrian submanifold of M projects under π to a Lagrangian submanifold
of M̂ . Conversely, if L is any Lagrangian submanifold of M̂ , then each of its tangent spaces
can be lifted to a family of subspaces of �. If X̂ and Ŷ are two tangent vectors of L , then

the calculation α
(
[λ(X̂), λ(Ŷ )]

)
= −dα

(
λ(X̂), λ(Ŷ )

)
= ω̂(X̂ , Ŷ ) = 0 shows that the

sub-distribution of � formed in this way is integrable in the sense of the Frobenius theorem.
The integral submanifolds of this sub-distribution are a family of Legendrian submanifolds
of M projecting onto L under π .
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64 A. Butscher

There is a great abundance of Legendrian submanifolds in R
2n+1 with the contact structure

α which are graphs of functions. The following proposition describes these fully.

Proposition 4 Let � = R
n × {0} × {0} ⊆ R

2n × R with Lagrangian projection
[�] = R

n × {0} ⊆ R
2n.

1. Suppose L is a Lagrangian submanifold of R
2n that is graphical over [�]. Then there

exists a function f : R
n → R so that L = L f where L f := {(x,∇ f (x)) : x ∈ R

n}.
2. Furthermore, L can be lifted to the family of graphical Legendrian submanifolds � f,c

in R
2n × R where � f,c := {(x,∇ f (x), 2 f (x)+ ∑n

k=1 xk ∂ f
∂xk + c) : x ∈ R

n}.
3. If � is a Legendrian submanifold in R

2n × R that is graphical over � then there exists
c ∈ R and f : R

n → R so that � = � f,c.

A consequence of this result is that Gray’s Theorem now implies that Legendrian submani-
folds of an arbitrary contact manifold M also come in great abundance, at least locally.

A final result about Legendrian submanifolds is called the Legendrian Neighbourhood
Theorem and it asserts that there is a contactomorphism between a tubular neighbourhood
of any Legendrian submanifold � ⊆ M and a tubular neighbourhood of the zero section in
T ∗�×R endowed with its canonical contact form dt −σ , where σ is the canonical one-form
of T ∗�. Thus any nearby Legendrian submanifold �′ that is graphical over �, when pulled
back under this contactomorphism, is the one-jet of a function on�. One can conclude from
this the important fact that Legendrian deformations of � (i.e. deformations of � through
Legendrian submanifolds via a one-parameter family of contactomorphisms) are generated
by functions on �.

Sasakian geometry An odd-dimensional manifold M equipped with both a contact struc-
ture and a Riemannian metric, compatible with each other in the nicest way, is known as a
Sasakian structure on M . A manifold with a Sasakian structure is the most general possible
arena in which to envisage the equations studied in this paper. There are several ways of
defining a Sasakian structure, the most germane of which is essentially taken from [2], with
a few modifications and additions to suit the needs of this paper.

Definition 5 Suppose M is an odd-dimensional manifold that carries a Riemannian metric
g and a Killing field R of constant length 2. Define the endomorphism J ∈ End(T M) by
J (X) = 1

2∇X R (so that J (R) = 0). Then (g, R, J ) is a Sasakian structure for M if the
following condition is met:

(∇X J )(Y ) = 1

2
[g(R, Y )X − g(X, Y )R]

for all vector fields X, Y on M. If the metric of M is Einstein and satisfies Ricg = 2ng then
M is said to be Sasaki–Einstein.

Immediate consequences of the definition are the following.

Theorem 6 Suppose M carries the Sasakian structure (g, R, J ) and let α = g(R, ·) be the
metric dual one-form of R.

1. The one-form α is a contact form whose contact structure � := Ker(α) is orthogonal to
R and has Reeb vector field equal to R.

2. The characteristic foliation of M consists of geodesics and the metric g is Reeb-equivariant.
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3. The endomorphism J is skew-symmetric, Reeb-equivariant, preserves �, and satisfies

dα(X, Y ) = g(J X, Y )

for all vector fields X, Y on M. Furthermore, J 2 = −I + R ⊗ α where I is the identity.
4. The Riemann curvature of g satisfies Riemg(X, R)Y = g(X, Y )R − g(R, Y )X for all

vector fields X, Y on M.

From now on, suppose that the characteristic foliation of M consists of smooth, one-
dimensional, embedded submanifolds; in this case the Sasakian structure of M is said to
be regular and the fiber space M̂ is once again a smooth manifold of dimension 2n. The
canonical lifting process described earlier induces two additional structures on M̂ that come
from equivariant structures of M , namely a metric ĝ defined by ĝ(X̂ , Ŷ ) := g(λ(X̂), λ(Ŷ ))
as well as an endomorphism Ĵ of the tangent spaces of M̂ defined by Ĵ (X̂) = π∗ ◦ J ◦λ(X̂).
Theorem 7 Suppose (M, g, R, J ) is a Sasakian manifold and let M̂ be the fiber space of
its characteristic foliation. Let (ĝ, ω̂, Ĵ ) be the structures on M̂ defined above. Then the
following hold.

1. (M̂, ĝ, ω̂, Ĵ ) is a Kähler manifold of real dimension 2n.
2. If M is Sasaki–Einstein, then M̂ is Kähler–Einstein with Ricci curvature Ricĝ =(2n+2)ĝ.

If a contact manifold M possesses a Sasakian structure, then one can ask how the intrinsic
and extrinsic geometry of its Legendrian submanifolds compares with that of their Lagrangian
images under projection to the fiber space M̂ . The next theorem uses classical facts about
Riemannian submersions [23] to answer this question. Denote by BV,W the second funda-
mental form of a submanifold V in an ambient manifold W .

Theorem 8 Suppose M is a Sasakian manifold and M̂ is its fiber space. If� is a Legendrian
submanifold of M that projects onto a Lagrangian submanifold [�] ⊆ M̂ under π , then the
following are true.

1. The projection π
∣
∣
�

: � → [�] is a local isometry when � and [�] are given their

induced metrics in M and M̂, respectively.
2. The second fundamental forms of � and [�] satisfy

B�,M (X, Y ) = λ
(

B[�],M̂ (π∗(X), π∗(Y ))
)

and

π∗
(

B�,M (λ(X̂), λ(Ŷ ))
)

= B[�],M̂ (X̂ , Ŷ )

for all X, Y tangent to � and X̂ , Ŷ tangent to [�].
An important conclusion to be drawn from this theorem is that any minimal and Legendrian
submanifold of M projects isometrically to a Lagrangian submanifold of M̂ that is mini-
mal; and any minimal and Lagrangian submanifold of M̂ lifts isometrically to a family of
Legendrian submanifolds of M that are all minimal.

Contact stationary Legendrian submanifolds In a Sasakian manifold, one can consider
the variation of the volume of a Legendrian submanifold � with respect to a restricted class
of variations, namely the contact deformations of �. The Euler–Lagrange equation of this
variational problem is given in the following theorem, in essence proved by Schoen and
Wolfson [25].

123



66 A. Butscher

Theorem 9 Let � be a Legendrian submanifold of a Sasakian manifold M. If the volume
of � is stationary with respect to all contact deformations of �, then ∇ · (H� dα

∣
∣
�

) = 0,
where H� is the mean curvature of �.

Proof By Theorem 8 and the fact that contact deformations of a Legendrian submanifold�
of M cover symplectic deformations of [�] in M̂ , it is sufficient to perform the calculation
in the fiber space M̂ . Without loss of generality, let φ̂u be a symplectomorphism generated
by a function u : [�] → R with Hamiltonian vector field Xu = Ĵ ∇̂û where û is a normal
extension of u to a neighbourhood of [�], and let [�t ] = φtu([�]). Then stationarity implies

0= d

dt
Vol ([�t ]))

∣
∣
∣
∣
t=0

=−
∫

[�]
ĝ(H[�], Ĵ ∇̂û) dVolĝ =−

∫

[�]
u ∇̂ ·

(
H[�] ω̂

∣
∣[�]

)
dVolĝ (2)

by Stokes’ Theorem. Lifting to M , this is now just equivalent to
∫
�

u ∇·(H� dα
∣
∣
�

)
dVolg =0

for all u, from which the result follows. ��
Definition 10 Let � be a Legendrian submanifold of a Sasakian manifold M. Then � is
called contact-stationary if ∇ · (H� dα

∣
∣
�

) = 0.

In a Sasakian manifold, one has the notion of a normal deformation of a Legendrian
submanifold�; that is, the infinitesimal vector field of the deformation is everywhere normal
to �. It will be shown that given a sufficiently small function (in a C1 norm) u : � → R,
there is a one-parameter family of normal contactomorphisms with infinitesimal deformation
field J∇u on �. Denote the time-one contactomorphism simply by φu . Since it depends on
the first derivatives of u and finding the divergence of the mean curvature of φu(�) takes
another three derivatives, the operator

u �→ ∇ ·
(

Hφu (�) dα
∣
∣
∣
φu (�)

)
(3)

is a non-linear, fourth-order, partial differential operator. The following terminology for this
operator will be used from now on.

Definition 11 The contact-stationary Legendrian deformation operator of the Legendrian
submanifold � is defined to be the operator �� : C4,β(�) → C0,β(�) given in Eq. (3).

Definition 12 The linearization of�� at f is the linear operator defined by the prescription
u �→ d

dt��( f + tu)
∣
∣
t=0. It will be denoted D��( f )(u) or L� if f is clear from the context.

This linear operator will now be calculated at f = 0 in the general context of Sasakian geom-
etry. Einstein summation convention is used where necessary below: i.e. repeated indices are
summed, a comma denotes partial differentiation, a semi-colon denotes covariant differenti-
ation with respect to the induced metric of�, indices are lowered and raised with this metric
and its inverse, respectively, and so on. The calculation proceeds in two steps.

Proposition 13 Let � be a Legendrian submanifold of a Sasaki–Einstein manifold M and
suppose φu : M → R is a normal contact deformation generated by a function u : � → R.
The infinitesimal variation of the mean curvature tensor of � is given by

d

dt

∣
∣
∣
∣
t=0

(
H�t dα

∣
∣
∣
�t

)
= d (
�u + (2n + 2)u) (4)

where �t = φtu(�) and 
� is the Laplace operator of �.
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Proof According to Theorem 8, it is sufficient to calculate the infinitesimal variation of the
mean curvature of the projected Lagrangian submanifold [�] in the fiber space M̂ . Moreover,
it is easy to see that there is a one-parameter family of symplectomorphisms φ̂t : M̂ → M̂
such that φtu covers φ̂t in a tubular neighbourhood of [�], and that the Hamiltonian vector
field X̂ is normal to [�] with X̂ = Ĵ∇u along [�], where ∇ is the induced connection of [�].

One begins by identifying a good local frame with which to perform the calculations.
Let E1, . . . , En be a Riemannian normal coordinate frame for [�] centered at a point
[p] ∈ [�]. Extend these vectors by parallelism to a neighbourhood so that the vectors
E1, . . . , En, Ĵ E1, . . . , Ĵ En span the tangent spaces of M̂ there. In this frame, the compo-
nents of the second fundamental form B[�] and mean curvature H[�] are

Bi jk = ĝ(∇̂Ei E j , J Ek) and Hk = hi j ĝ(∇̂Ei E j , J Ek)

where ∇̂ is the ambient connection of M̂ and hkl are the components of the inverse of the
induced metric h of [�], whose components are hkl = ĝ(Ek, El) = ĝ( Ĵ Ek, Ĵ El) because
Ĵ is an isometry. Note that Bi jk is symmetric in all its indices.

The time derivative of the components Hk will be computed at the point [p] itself, where the
Christoffel symbols of h vanish, partial differentiation and covariant differentiation coincide,
and therefore ∇̂Ei E j = Bk

i j Ĵ Ek . Recall that it is possible to assume ∇̂X Ei = ∇̂Ei X , so that

d

dt
Hk

∣
∣
∣
∣
t=0

= X (hi j )ĝ(∇̂Ei E j , Ĵ Ek)+ hi j X ĝ(∇Ei E j , Ĵ Ek)

= 2Bi jk Bi jlu;l + hi j
(

ĝ(∇̂X ∇̂Ei E j , J Ek)+ ĝ(∇̂Ei E j , J ∇̂X Ek)
)

= hi j
(

ĝ(∇̂Ei ∇̂E j X, J Ek)+ u;l Riemĝ(Ei , J El , E j , J Ek)
)

−Hl Bm
lk u,m + 2Bi jk Bi jlu;l (5)

since ∇̂Ek X = Ĵ ∇̂Ek ∇u = ul
;k J El − u;l Bm

kl Em . Here Riemĝ is the Riemannian curvature

tensor of M̂ . Calculate the remaining term containing X as follows:

ĝ(∇̂Ei ∇̂E j X, J Ek) = ĝ(∇̂Ei ∇̂E j ∇u, Ek)

= Ei ĝ(∇E j ∇u+B[�](E j ,∇u), Ek)− ĝ(∇u+B[�](E j ,∇u),∇E j Ek)

= h(∇Ei ∇E j ∇u, Ek)− ĝ(B[�](E j ,∇u), B[�](Ei , Ek))

= u;ki j − Blm
j Biklu;m (6)

Finally, perform the following manipulation on the Riemĝ term. Start by adding and sub-

tracting exactly the quantity required to yield the full Ricci curvature of M̂ . That is,

hi j Riemĝ(Ei , Ĵ El , E j , Ĵ Ek) = hi j Riemĝ(Ei , Ĵ El , E j , Ĵ Ek)

+ hi j Riemĝ( Ĵ Ei , Ĵ El , Ĵ E j , Ĵ Ek)

− hi j Riemĝ( Ĵ Ei , Ĵ El , Ĵ E j , Ĵ Ek)

= (2n + 2)hkl − hi j Riemĝ(Ei , El , E j , Ek). (7)

Complete the calculation by applying the Gauß equation, which reads

hi j Riemĝ(Ei , El , E j , Ek) = Rkl − Hm Bmkl + Bmn
k Blmn, (8)
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68 A. Butscher

where Rkl are the components of the Ricci tensor of �. Substituting (6), (7) and (8) into (5)
gives

d

dt
Hk

∣
∣
∣
∣
t=0

= 
�(u;k)− u;l Rl
k − (2n + 2)u;k = (
�u);k − (2n + 2)u;k .

This is the desired formula. ��
Corollary 14 Let � be a Legendrian submanifold of a Sasaki-Einstein manifold M and
suppose φu : M → R is a normal contact deformation generated by a function u : � → R.
The infinitesimal variation of the divergence of the mean curvature tensor of � is given by

d

dt

∣
∣
∣
∣
t=0

∇ ·
(

H�t dα
∣
∣
∣
�t

)
= 
� (
�u + (2n + 2)u)+ Q�(u) (9)

where�t =φtu(�) and Q� is the operator given by Q�(u)=2 (∇·B�)(H�,∇u)−(H�·∇)2u.

Proof Compute the time derivative of hi j Hi; j = hi j (Hi, j −Hs�
s
i j ) in terms of the derivatives

of hi j and �s
i j in the same way as above. ��

A standard fact about the linearization of the contact-stationary Legendrian operator is
that one-parameter families of isometries that are also contactomorphisms (which will be
called contact isometries) produce elements in the kernel of its linearization.

Corollary 15 Suppose φt
f : M → M is a one-parameter family of contact isometries of

M generated by a function f : M → R. If � is a Legendrian submanifold of M then
D��(0)( f

∣
∣
�
) = 0.

Proof This follows from the fact that d
dt

∣
∣
t=0 ∇ ·

(
Hφt

f (�)
dα

∣
∣
φt

f (�)

)
= 0. ��

2.2 The geometry of the unit sphere

Geometric structures The Calabi–Yau structure of C
n+1 consists of the standard Euclidean

metric δ, the standard symplectic form ω0 and the standard complex structure J0 satisfying
ω0(X, Y ) = δ(J0 X, Y ), as well as the canonical holomorphic volume form
� := dz1 ∧ · · · ∧ dzn+1. The Calabi–Yau structure of C

n+1 induces a Sasaki–Einstein
structure on S

2n+1. First, denote the position vector field by

P :=
n+1∑

k=1

(
xk ∂

∂xk
+ yk ∂

∂yk

)
=

n+1∑

k=1

(
zk ∂

∂zk
+ z̄k ∂

∂ z̄k

)
,

given both in real and complex coordinates. Then the relevant objects are the following.

• The metric is the standard metric of the sphere, induced from the ambient Euclidean
metric.

• The contact form is

α := 1

2
P ω0

∣
∣
S2n+1 = 1

2

n+1∑

k=1

(
xkdyk − ykdxk

) ∣
∣
∣
S2n+1

= 1

4i

n+1∑

k=1

(
z̄kdzk − zkdz̄k

) ∣
∣
∣
S2n+1

so that dα = ω0
∣
∣
S2n+1 .
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• The Reeb vector field is R := 2J0 P so that the contact structure is�p := (
span(J0 Pp)

)⊥

for every p ∈ S
2n+1.

• The endomorphism J is defined to equal J0 on � and to vanish in the Reeb direction.

The characteristic foliation of S
2n+1 as a Sasakian manifold coincides with the Hopf

fibration and the fiber space of S
2n+1 coincides with the Kähler manifold CP

n . Furthermore,
the Reeb projection coincides with the Hopf projection πH : S

2n+1 → CP
n which is the

Riemannian submersion of the sphere onto CP
n with the Fubini-Study metric. To see all this,

recall that CP
n is the space of complex lines in C

n+1. Thus CP
n is the orbit space of the

action of multiplication by non-zero complex numbers restricted to the sphere, i.e. the S
1

action θ · p := eiθ p for p ∈ S
2n+1. But the differential of this action is d

dθ (θ · p)
∣
∣
θ=0 = ip

which is exactly the value of the vector field J P at p (in complex coordinates). Hence the
orbits of the action coincide with the characteristic foliation.

Contact isometries of the sphere. The isometries of S
2n+1 that preserve the Sasakian struc-

ture derive from the complex structure-preserving isometries of Euclidean space, namely
the U (n + 1)-rotations. The one-parameter subgroups of U (n + 1) will play a crucial role
in the sequel. If U t is such a subgroup with U 0 = Id, then there is a Hermitian matrix
H so that U t = exp(iHt). Also, U t is a one-parameter family of symplectomorphisms
of C

n+1 whose Hamiltonian vector field is given by X H (z) := iH z for any z ∈ C
n+1.

The Hamiltonian function associated to X H is the Hermitian, harmonic, homogeneous poly-
nomial of degree 2 given by qH (z) := z∗ H z. Moreover, U t restricts to a contactomor-
phism of S

2n+1 with contact vector field X H and contact Hamiltonian equal to the restric-
tion qH

∣
∣
S2n+1 . Finally, since U (n + 1)-rotations are contact isometries of S

2n+1, Corol-
lary 15 implies that L�

(
qH

∣
∣
�

) = 0 where L� is the linearization of the contact-stationary
Legendrian deformation operator. Hence the kernel of this linearized operator is always
non-trivial.

The following explicit specification of the generators of U (n + 1) and their associated
Hermitian, harmonic, homogeneous polynomials of degree 2 on C

n+1 will be needed in the
sequel. A basis for the set of complex (n + 1)× (n + 1) Hermitian matrices is given by:

I :=
(

1
. . .

1

)

H1 :=
⎛

⎜
⎝

n −1
. . .

−1

⎞

⎟
⎠ H2 :=

⎛

⎜
⎜
⎝

0
1

0
. . .

−1

⎞

⎟
⎟
⎠ · · · Hn :=

⎛

⎜
⎜
⎝

0
0
. . .

1 −1

⎞

⎟
⎟
⎠ ,

which are the real, diagonal matrices; along with

Hjk :=
⎛

⎜
⎝

1

1

⎞

⎟
⎠ H ′

jk :=
⎛

⎜
⎝

i

−i

⎞

⎟
⎠ ,

which are the symmetric matrices having 1 in the j th row and kth column, and the anti-
symmetric matrices having i = √−1 in the j th row and kth column. Their associated
polynomials are:

123



70 A. Butscher

q0(z) := z∗ I z =
n∑

s=0

|zs |2

q1(z) := z∗ H1z = n|z1|2 −
n+1∑

s=2

|zs |2

q j (z) := z∗ Hj z = |z j |2 − |zn+1|2 for j = 2, . . . , n

qre, jk(z) := z∗ Hjk z = 2 Re(z j z̄k) for 1 ≤ j < k ≤ n + 1

qim, jk(z) := z∗ H ′
jk z = 2 Im(z j z̄k) for 1 ≤ j < k ≤ n + 1.

(10)

3 The Legendrian connected sum procedure

The present section of the paper describes the Legendrian connected sum procedure that will
be used to connect a chain of minimal Legendrian U (n + 1)-rotated n-spheres together. For
the moment, consider a single n-sphere S0 and two neighbouring n-spheres S1 := U1(S0)

and S2 := U2(S0) with the following properties. There is a small c ∈ (0, 2π) so that S0 and
S j have Hopf separation c at the point p j ; and the tangent spaces Tp j S0 and Tp j e

(−1) j ic S j are
transverse and satisfy the angle criterion. The points p1 and p2 are the gluing points on S0.
Note that the Hopf separation between S0 and S1 is equal but opposite to the Hopf separation
between S0 and S2. Without loss of generality S0 := R

n+1 × {0} ∩ S
2n+1.

3.1 Preliminary perturbation of the n-spheres

In order to connect S0 to S1 and S2 at the gluing points with the best possible estimate of
the mean curvature of the connected sum, it is first necessary to deform these n-sphere in a
canonical manner. The point is to ‘prepare’ them for the connected sum operations by giving
them a catenoidal shape near the points of connection. To this end, let ε be a small, positive
number (which will depend on c in a manner to be determined below) and choose the unique
distributional solution G0 : S0\{p1, p2} → R of the equation 
S(G0) = δ1 − δ2 satisfying∫

S0
G0 = 0, where δ j is the Dirac δ-mass at p j and
S is the Laplacian of the induced metric

of S0. Choose similar functions for each S j , but using the gluing points where S j is to be
connected to its two neighbours (one of which is S0). Henceforth consider only S0 and the
function G0 since the analysis on the neighbouring n-spheres is the same. Note that

G0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(−1) j+1

[dist(x, p j )]n−2 + O(1) n ≥ 3

(−1) j log[dist(x, p j )] + O(1) n = 2

(11)

in a neighbourhood of each p j .
The idea is now to replace each S0 by a Legendrian perturbation of S0 generated by εnG0.

The way to do this is fairly simple and depends on the fact that the intersection of a Lagrangian
cone in C

n+1 with S
2n+1 is a Legendrian submanifold. Let Ḡ0 : R

n+1 × {0} → R denote
the degree-two homogeneous extension of G0 to the (n + 1)-plane containing S0, namely
the function defined by Ḡ0(x) := ‖x‖2G0(x/‖x‖) for x ∈ R

n+1 × {0}. Therefore the
submanifold

nPertε(S0) :=
{
(x, εn∇̊Ḡ0(x)) : x ∈ R

n+1
}
,
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where ∇̊ denotes the Euclidean gradient, is Lagrangian and a cone; and thus intersecting with
S

2n+1 yields a Legendrian submanifold.

Definition 16 The preliminary perturbation of S0 with parameter ε is the Legendrian sub-
manifold Pertε(S0) := Pertε(S0) ∩ S

2n+1.

The induced metric and second fundamental form of S0 are trivial (i.e. the standard metric
and zero, respectively) and this changes when S0 is replaced by Pertε(S0). But if ε is suf-
ficiently small, then the geometry of Pertε(S0) changes only slightly, and this is true even
relatively near to the gluing points. This will be quantified in the following proposition.
The key is to exploit the relationship between a geometric object on Pertε(S0) and the corre-
sponding geometric object on Pertε(S0). Also ‖·‖∗

Ck (O) denotes the so-called scale-invariant

norm on a neighbourhood O in which the j th derivative is weighted by the factor r j where
r := diam(O).

Proposition 17 Let r0 denote a radius so that (11) is valid inside Br (p j ) for all 0 < r < r0

and set S′ := Pertε(S0)\
[
Br0(p1) ∪ Br0(p2)

]
. Then the following estimates for geometric

objects on Pertε(S0) hold.

• The second fundamental form satisfies the estimate

‖B‖∗
C2(Br (p j ))

≤ Cεn

rn+1 ∀ r ∈ (0, r0) and ‖B‖C2(S′) ≤ Cεn .

• The mean curvature satisfies the estimate

|∇ · H |∗C1(Br (p j ))
≤ Cε3n

r3n+2 ∀ r ∈ (0, r0) and |∇ · H |C1(S′) ≤ Cε3n

‖H‖∗
C2(Br (p j ))

≤ C
εn

rn−1 and ‖H‖C2(S′) ≤ Cεn .

• The Laplacian satisfies

|
(u)−
S(u)|∗C1(Br (p j ))
≤ Cε2n

r2n+2 |u|∗C2(Br (p j ))
∀ r ∈ (0, r0)

and

|
(u)−
S(u)|C1(S′) ≤ Cε2n |u|C2(S′)

where 
S is the Laplacian of the standard n-sphere.

Proof Let h̄, ∇̄, 
̄, B̄ and H̄ denote the induced metric, covariant derivative, Laplacian,
second fundamental form and mean curvature of Pertε(S0)while h,∇,
, B and H denote the
same things for Pertε(S0). For typographical convenience, set Ḡ := εnḠ0 and G := εnG0.

Simple computations show that on Pertε(S0) the induced metric is h̄i j := δi j +∑
s Ḡ,si Ḡ,s j , the Christoffel symbols are �̄i jk := ∑

s Ḡ,i js Ḡ,sk and the components of
the second fundamental form are B̄i jk := Ḡ,i jk . Thus the inverse of h̄i j equals the identity
plus O(‖∇̄2Ḡ‖2) terms so that

‖∇̄k B̄‖ = O(‖∇̄3+k Ḡ‖),
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all other terms being smaller. Also,

∇̄ · H̄ = h̄kl h̄i j (B̄,i jk);l

=
[
δkl + O(‖∇̄2Ḡ‖2)

] [
δi j + O(‖∇̄2Ḡ‖2)

] [
Ḡ,i jkl − 2Ḡ,s jk �̄

s
il − Ḡ,i js �̄

s
kl

]

= O(‖∇̄2Ḡ‖2‖∇̄4Ḡ‖)+ O(‖∇̄3Ḡ‖2‖∇̄2Ḡ‖).

This is because δklδi j Ḡ,i jkl = 
̊(
̊Ḡ) where 
̊ is the Euclidean Laplacian, and the choice
of G implies 
̊(
̊Ḡ) = 1

‖x‖2
(
 + 2(n + 1))(G) = 0. An estimate of ‖H‖ follows in a
similar way to the previous two estimates, and yields

‖H‖ = O(‖∇̄Ḡ‖).

This is not quite as good as before because the leading term in the expansion of ‖H‖ is the
derivative of the Laplacian of the function Ḡ, which is the derivative of Ḡ. Finally,


̄(u)− 
̊(u) = h̄i j
[
u,i j − u,s �̄

s
i j

]

= O(‖∇̄2Ḡ‖2) · ∇̄2u + O(‖∇̄3Ḡ‖ · ‖∇̄2Ḡ‖) · ∇̄u

where O(∗) · denotes a linear operation on tensors with coefficients bounded by O(∗).
Now using the homogeneity of Ḡ and the fact that Pertε(S0) is a cone over Pertε(S0), one

can replace ‖∇̄k Ḡ‖ by
∑k

s=0 ‖∇s G‖ to obtain expressions valid on Pertε(S0). Substituting
G = εnG0 and using (11) then yields the desired result. Higher derivative estimates follow
in the same way. ��
3.2 Normal coordinates for S

2n+1

The next step is to introduce canonical coordinates for S
2n+1 near the gluing points in which

all the relevant structures have an extremely simple form. These coordinates will be called
Legendrian normal coordinates and are defined by first constructing a ‘standard’ coordinate
map and then transplanting it to a neighbourhood of a desired point p by means of an
SU (n + 1)-rotation.

Endow C
n+1 with coordinates z := (z0, z′) where z′ := (z1, . . . , zn) and define the

half-space H = {z ∈ C
n+1 : Re(z0) ≤ 0}. Next, endow C

n with coordinates (w1, . . . , wn)

and let B1(0) ⊆ C
n be the unit ball. Define the map K : B1(0) × (−π, π) → S

2n+1\H by
K (w, t) := eit ( f (w),w), where f : C

n → R is given by f (w) := (1 − ‖w‖2)1/2. Then K

is invertible and the inverse is given by K −1(z) =
(

e−i arg(z0)z′, arg(z0)
)

. Now let p ∈ S
2n+1

be any point and suppose� is any Legendrian n-plane in TpS
2n+1. Let e0, e1, . . . , en be the

standard basis of C
n+1 and choose Vp,� ∈ SU (n + 1) taking e0 to p and the real linear span

of e1, . . . , en to �. Note that Vp,� is unique up to orthogonal transformations and has the
property that the contact hyperplane at e0 (which is the complex linear span of e1, . . . , en)
is mapped to the contact hyperplane at p and the Reeb direction at e0 (which is the real line
spanned by ie0) is mapped to the Reeb direction at p (which is the real real line spanned by
ip). The transformation Vp,� allows the map K to be transplanted to the point p in a manner
adapted to �. Composing these maps leads to the desired coordinates.
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Definition 18 The Legendrian normal coordinate chart at p ∈ S
2n+1 adapted to the

Legendrian n-plane � ⊆ TpS
2n+1 is the map

ψp,� : S
2n+1\Vp,�(H) → B1(0)× (−π, π)

defined by ψp,� := K −1 ◦ V −1
p,�.

The properties of Legendrian normal coordinates that will be used in the remainder of
this paper are gathered in the following propositions. Denote the set S

2n+1\Vp,�(H) by
Hp,�. Endow C

n with the standard symplectic structure ω0 = 1
2i

∑
dw̄k ∧ dwk and endow

C
n × R with the contact structure defined by the contact form α0 = 1

2 dt + σ0 where
σ0 = 1

4i

∑(
w̄kdwk − wkdw̄k

)
. Note that ω0 = dσ0. Finally, define the projection π0 :

C
n × R → C

n by π0(w, t) = w, and for each c ∈ R define the injection ic : C
n → C

n × R

by ic(w) = (w, c). The proof of the next proposition is just straightforward calculation and
diagram chasing.

Proposition 19 Suppose p ∈ S
2n+1 is and � ⊆ TpS

2n+1 is Legendrian n-plane. The
Legendrian normal coordinate chartψp,� : Hp,� → B1(0)×(−π, π) at p has the following
properties.

1. The map ψp,� : (S2n+1, α) → (Cn × R, α0) is a contactomorphism.
2. If� is a Legendrian submanifold tangent to eic� at eic p then ψp,�(�) is a Legendrian

submanifold of C
n × R tangent to the plane R

n × {c} at (0, c). Moreover, ψp,� takes
U (n + 1)-rotated Legendrian n-spheres passing through eic p to Legendrian n-planes
passing through (0, c).

3. The map ψ̂[p],[�] : (CP
n, ω̂) → (Cn, ω0) defined by ψ̂[p,�] :=

(
πH ◦ ψ−1

p,� ◦ i0

)−1
is

a symplectomorphism and the following diagram commutes.

Hp,� ⊆ (S2n+1, dα)
ψp,�−−−−→ (Cn × R, dα0)

⏐
⏐
"πH π0

⏐
⏐
"

#
⏐
⏐i0

[Hp,�] ⊆ (CP
n, ω̂)

ψ̂[p,�]−−−−→ (Cn, ω0)

(12)

The indicated differential forms correspond under pull-back by the appropriate map-
pings.

4. Let g be the induced metric of S
2n+1 and ĝ be the Fubini-Study metric of CP

n; and let

g0 :=
(
ψ−1

p,�

)∗
g and ĝ0 :=

(
ψ̂−1

[p],[�]
)∗

ĝ be the corresponding pull-back metrics. Then

π0 : (Cn × R, g0
) → (

C
n, ĝ0

)

is a Riemannian submersion. Moreover, these metrics are given by

g0 = dt2 + δ + d f ⊗ d f + 2 (dt ⊗ σ0 + σ0 ⊗ dt)

ĝ0 = δ + d f ⊗ d f − 4σ0 ⊗ σ0

where δ is the Euclidean metric of C
n.

It will be necessary to estimate quite precisely the intrinsic and extrinsic geometry of a
Legendrian submanifold� in C

n × R with respect to the induced metric g0. A consequence of
Lemma 8 is that the necessary estimates can be gotten by estimating [�] ⊆ C

n with respect to
the metric ĝ0, which amounts to a significant simplification since ĝ0 is much simpler than g0.
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74 A. Butscher

A further simplification becomes available if the Lagrangian projection of the submanifold to
be estimated is contained in a very small neighbourhood of the origin. This is because ĝ0 is in
Riemannian normal form at the origin (namely (ĝ0)i j = δi j and (ĝ0)i j,k = 0 at the origin, for
all i, j, k) by virtue of the fact that g = δ + Q where the coefficients of the tensor Q satisfy
|Qi j (z)| + ‖z‖ |Qi j,k(z)| + ‖z‖2 |Qi j,kl(z)| = O(‖z‖2). Thus one would expect that the
geometry of [�] with respect to the metric ĝ0 is uniformly close to the geometry of [�] with
respect to δ. The following proposition makes this idea rigorous. The following notation will
be used: H g , Bg , ∇g , 
g , 〈·, ·〉g and ‖ · ‖g denote the mean curvature, second fundamental
form, covariant derivative, Laplacian, inner product and norm induced by a metric g.

Proposition 20 There exists r0 > 0 so that the following holds for all 0 < r < r0. Let
λ̂ : O → C

n be a Lagrangian embedding of a neighbourhood O ⊆ R
n such that λ̂(O) ⊆

Br (0) and put h = λ̂∗ĝ0.

• The mean curvature and second fundamental form of O satisfy the following estimates.

‖Bĝ0‖∗
C2(O,h) = ‖Bδ‖∗

C2(O,λ̂∗δ) + O(r)

‖H ĝ0‖∗
C2(O,h) = ‖H δ‖∗

C2(O,λ̂∗δ) + O(r)+ O(r2)‖Bδ‖∗
C2(O,λ̂∗δ).

• The Laplacian of O satisfies


hu = 
δu + O(r) · ∇δu + O(r2) · ∇δ∇δu.

where O(∗) · denotes a linear operation on tensors with coefficients bounded by O(∗).

Proof The proof of this result is a rather diabolical exercise in Riemannian geometry that
will be abbreviated here for the sake of the reader. First, pick any point p ∈ λ(O) and
choose a δ-orthonormal frame Ei for Tpλ(O). Extend this to a δ-orthonormal frame for
TpC

n by adjoining the vectors J Ei . One can assume that 〈∇δ
Ei

E j , Ek〉δ = 0 and that

Bδi jk = 〈∇δ
Ei

E j , J Ek〉δ .
The second fundamental form of λ(O) with respect to the metric h can be found by

computing Bh
i jk = 〈∇h

Ei
E j , N h

k 〉h where N h
k is a h-orthonormal frame for the h-orthogonal

complement of Tpλ(O). To complete this calculation, one uses the form of the metric to
compute 〈∇h

X Y, Z〉h = 〈∇δ
X Y, Z〉δ + O(r)‖X‖δ‖Y‖δ‖Z‖δ for any vectors X, Y, Z whereas

the N h
k can be written as linear combinations of J Ek +ci

k Ei where ci
k = O(r2). Substituting

these quantities into the expression for Bh
i jk and its covariant derivatives yields

Bh
i jk = Bδi jk + O(r)

∇h
s Bh

i jk = ∇δ
s Bδi jk + O(1)

∇h
s ∇h

t Bh
i jk = ∇δ

s ∇δ
t Bδi jk + O(r−1)

where O(r∗) can now represents a tensor of the required type having coefficients bounded by
r∗. Next, the form of the metric h implies that the inverse matrix has coefficients
hi j = δi j + O(r2). One thus obtains the desired estimates by taking the h- and δ-norms
of these expressions and making the necessary comparisons. The expressions for the mean
curvature follow by first taking the h- and δ-traces and then taking norms. The calculations
for the Laplacian are similar. ��
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3.3 The Legendrian Lawlor neck

A Lagrangian Lawlor neck is an embedded special Lagrangian submanifold of C
n with the

topology of a cylinder R × S
n−1 that is asymptotic to a pair of transverse special Lagrangian

planes. It was discovered by Lawlor [16,17], and it was shown that any given pair of transverse
special Lagrangian planes�1 and�2 can be realized as the asymptotic planes of a Lagrangian
Lawlor neck if and only if the characteristic angles of�1 and�2 satisfy the angle criterion
as described in the introduction. A truncated and re-scaled Lawlor neck can be lifted from
C

n into C
n × R by the standard Legendrian lifting procedure to produce an embedded,

cylindrical Legendrian submanifold asymptotic to a pair of Legendrian planes. This object
can then be embedded into the sphere as a Legendrian submanifold using the Legendrian
normal coordinates. The resulting object is the Legendrian Lawlor neck. The purpose of this
section is to define this object precisely and to compute good estimates of its mean curvature
and other geometric quantities.

The Lagrangian Lawlor neck The discussion begins with the definition of the Lagrangian
Lawlor neck, which proceeds as follows. First, let A := (a1, . . . , an) be a vector of positive
real numbers and let P : R

n × R → R be the function given by

P(A, λ) :=
(
1 + a1λ

2
) · · · (1 + anλ

2
) − 1

λ2 . (13)

Next, set

θk(A, λ) :=
λ∫

−∞

ds

( 1
ak

+ s2)
√

P(A, s)
. (14)

It is easy to see that the integrals (14) are well-defined and converge as λ → ∞. Moreover,
P(A, λ) = O(λ2n−2) and so θk(A, λ) = θk(A) + O(λ−n) for large λ, where
θk(A) := limλ→∞ θk(A, λ). The embedding giving the Lagrangian Lawlor neck in C

n is
now defined as follows.

Definition 21 For every A = (a1, . . . , an) ∈ R
n, with ak > 0 for all k, the Lagrangian

Lawlor embedding with parameter A is the map F̂A : R × S
n−1 → C

n given by

F̂A(λ, µ) := (
z1(λ, µ), . . . , zn(λ, µ)

)

where

zk(λ, µ) = µk
√

1
ak

+ λ2 exp (iθk(A, λ))

and µ = (µ1, . . . , µn) ∈ R
n satisfies

∑
(µk)2 = 1 so that µ ∈ S

n−1. The Lagrangian
Lawlor neck with parameter A is the submanifold N̂A := F̂A(R × S

n−1). The truncated and
re-scaled Lagrangian Lawlor neck with parameters ε, R, A is the submanifold N̂ε,R,A :=
ε F̂A

([−R, R] × S
n−1

)
.

Observe that the two ends of N̂A are asymptotic to the real plane R
n × {0} (when λ →

−∞) and to the plane DA(R
n × {0}), where DA is the diagonal n × n matrix having the

entries eiθ1(A), . . . , eiθn(A) on the diagonal (when λ → ∞). Moreover, it can be shown that∑n
k=1 θk(A) = 0 mod 2π so that DA ∈ SU (n + 1).
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Lifting to a Legendrian submanifold In order to lift the Lagrangian submanifold N̂A of
C

n to a Legendrian submanifold of C
n × R, it is necessary to find a function SA(λ, µ) so

that FA(λ, µ) :=
(

F̂A(λ, µ), SA(λ, µ)
)

defines a Legendrian embedding. If α0 = 1
2 dt + σ0

is the contact form, then the condition F∗
Aα0 = 0 implies that the required function must

satisfy dSA(λ, µ) = −2F̂∗
Aσ0. One then easily calculates that the required function must be

SA(λ) := −n

λ∫

0

ds√
P(A, s)

(15)

up to the addition of a constant factor. It is important to note that SA(λ) = SA + O(log(λ))
for large λ in dimension n = 2, and SA(λ) = SA + O(λ−n+2) for large λ in dimension n ≥ 3,
where SA is a constant depending only on A and the dimension.

Definition 22 For every A = (a1, . . . , an) ∈ R
n with ak > 0 for all k, the Legendrian

Lawlor embedding with parameter A is the map FA : R × S
n−1 → C

n × R given by

FA(λ, µ) :=
(

F̂A(λ, µ), SA(λ)
)
.

The Legendrian Lawlor neck with parameter A is the submanifold NA := FA(R × S
n−1).

Although the Lagrangian Lawlor embedding into C
n can be scaled in a straightfor-

ward way, scaling the Legendrian Lawlor embedding into C
n × R requires handling the

R-coordinate and the C
n-coordinates differently. Indeed, to preserve the contact form it is nec-

essary to scale the Legendrian Lawlor embedding as Fε,A(λ, µ) :=
(
ε F̂A(λ, µ), ε

2SA(λ)
)

.

The truncated and re-scaled Legendrian Lawlor neck with parameters ε, R, A is the sub-
manifold Nε,R,A := Fε,A

([−R, R] × S
n−1

)
.

Properties of the Legendrian Lawlor neck The following propositions gather the relevant
properties of Nε,R,A that will be used in the sequel. The first of these propositions gives a
more detailed picture of the asymptotics of Nε,R,A. The analogous results for N̂ε,R,A have
been proved in [3, Theorem 6], and their extension to the present case follows easily from
Proposition 4. Let �0 := span R{e1, . . . , en} and �A := span R{eiθ1(A)e1, . . . , eiθn(A)en}.
Proposition 23 If ε > 0 is sufficiently small, there exist radii R � 1 and r � 1 satisfying
R = O(r/ε) so that the following hold.

1. N̂ε,R,A ⊆ Br (0) in C
n and Nε,R,A ⊆ Br (0)× (0, ε2SA) in C

n × R.
2. Nε,R,A\Br/2(0) consists of two disconnected components projecting onto

�0 ∩ Ann(r/2, r) and�A ∩ Ann(r/2, r), respectively, by nearest-point projection. Fur-
thermore, there exists a function Gε : Ann(r/2, r) → R so that

Nε,R,A ∩ Ann(r/2, r)=(
�Gε ∩ Ann(r/2, r)

)⋃(
DA,ε2 SA

(
�Gε

) ∩ Ann(r/2, r)
)

(16)

in the notation of Proposition 4, where DA,ε2 SA
is the diagonal SU (n)-rotation bringing

�0 to �A followed by upward translation by ε2SA in the Reeb direction.
3. The function Gε exhibits the scaling behaviour Gε(x) = ε2G1(x/ε), and if

x ∈ Ann(r/2, r), then it satisfies the estimates

‖∇k Gε(x)‖ = O

(
εn

‖x‖n−2+k

)
(17)
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for all n ≥ 2 and k ≥ 0, except n = 2 and k = 0 with respect to the metric induced
by the ambient Euclidean metric. In the exceptional case, the estimate is |Gε(x)| =
O(ε2| log ‖x‖ |).

The next proposition derives the intrinsic and extrinsic geometry of Nε,R,A induced by
the metric g0. Recall that this is the same as the geometry of N̂ε,R,A ⊆ C

n that is induced by
the metric ĝ0, and that this metric is close to being Euclidean sufficiently close to the origin.
The formulæ below all result from straightforward computations.

Lemma 24 The induced metric of the truncated Lagrangian Lawlor neck N̂ε,R,A with respect
to the Euclidean metric of C

n is given by

hε,A = ε2

[
n∑

k=1

(
(µk)2

1
ak

+ λ2

)(
λ2 + 1

P(A, λ)

)
dλ2 +

n∑

k=1

(
1

ak
+ λ2

)(
dµk

)2
]

. (18)

The second fundamental form of N̂ε,R,A with respect to the Euclidean metric of C
n is given

by

Bε,A = ε2
[

Sym(dλ⊗ gS)√
P(A, λ)

+ b dλ3
]

(19)

where gS is the standard metric of S
n−1 while Sym(dλ⊗gS) is the symmetrization of dλ⊗gS

and

b =
n∑

k=1

(µk)2

√
P(A, λ)

(
1
ak

+ λ2
)2

[
λ2 + 1

P(A, λ)
−

(
1

ak
+ λ2

)(
1 + λP ′(A, λ)

2P(A, λ)

)]
.

Finally, the mean curvature of N̂ε,R,A with respect to the Euclidean metric of C
n vanishes.

A consequence of Lemma 24 and the methodology of Proposition 20 is the following estimate
for the second fundamental form with respect to the ambient metric induced from the sphere.

Proposition 25 The following estimates hold at a point (λ, µ) on Nε,R,A,c. Here C is a
constant independent of ε.

• The second fundamental form of Nε,R,A,c measured with respect to the metric g0 satisfies

‖Bε,A‖ + ε(1 + λ2)1/2‖∇ Bε,A‖ + ε2(1 + λ2)‖∇2 Bε,A‖
≤ C

[
1

ε(1 + λ2)(n+1)/2
+ ε(1 + λ2)1/2

]
.

• The mean curvature of Nε,R,A,c measured with respect to the metric g0 satisfies

|Hε,A| + ε(1 + λ2)1/2‖∇ Hε,A‖ + ε2(1 + λ2)‖∇2 Hε,A‖
≤ C

[
ε

(1 + λ2)(n−1)/2
+ ε(1 + λ2)1/2

]
.

Proof The computation of these estimates proceeds in two steps. First, one finds the estimate
of the second fundamental form of N̂ε,R,A with respect to Euclidean metric of C

n . It suffices
to take A = (1, . . . , 1) because it is always the case in this paper that the components of A lie
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in a compact subset of the open positive quadrant of R
n . Thus one can derive from Eqs. (18)

and (19) that the coefficients of the metric and second fundamental form satisfy

hε,A = ε2 [O(1) dλ2 + (1 + λ2) gS
]

Bε,A = ε2
[

O
(
(1 + λ2)(1−n)/2

)
Sym(dλ⊗ gS)+ O

(
(1 + λ2)(−1−n)/2

)
dλ3

]
.

Taking the norm of Bε,A with hε,A as well as the norm of its first two covariant derivatives
with respect to hε,A yields the estimate

‖Bε,A‖ + ε(1 + λ2)1/2‖∇ Bε,A‖ + ε2(1 + λ2)‖∇2 Bε,A‖ ≤ Cε−1(1 + λ2)−(n+1)/2.

Then Proposition 20 and with the fact that the mean curvature with respect to the Euclidean
metric of C

n is zero is used to derive the needed estimates with respect to the ambient metric
coming from the sphere. Needed for this task is the fact that the ambient coordinate r is
related to the neck coordinate λ by r = ε(1 + λ2)1/2. ��
3.4 Performing the connected sum

Let S0, S1 and S2 be as in Sect. 3.1 and replace these by Pertε(S0),Pertε1(S1) and Pertε2(S2). It
will now be shown how Pertε(S0) can be connected to Pertε1(S1) and Pertε2(S2) by choosing
ε, ε1, ε2 well and inserting the appropriate Legendrian Lawlor necks.

Consider only the connected sum construction near the point p1 ∈ S0 and eic p1 ∈ S1, the
construction at p2 and e−ic p2 ∈ S2 being similar. Choose Legendrian normal coordinates
ψ : U → C

n × R in a neighbourhood U of p1 and adapted to S0 by choosing ψ :=
ψp1,Tp1 S0 . Thenψ(Pertε(S0)∩U) andψ(Pertε1(S1)∩U) are graphical near the origin. More
concretely, there is some fixed small number r > 0 along with functions f0 : Br (0) → R

and f1 : Br (0) → R so that

ψ(Pertε(S0) ∩ U) ∩ Br (0) = � f0 and ψ(Pertε1(S1) ∩ U) ∩ Br (0) = DA,c
(
� f1

)

where � f denotes the Legendrian submanifold generated by the function f and DA,c is
rotation in the C

n coordinates by the diagonal matrix having eiθk (A) on the diagonal, where
θ1(A), . . . , θn(A) are the asymptotic angles for some Legendrian Lawlor neck NA, followed
by translation by c in the R coordinate, as in the notation of Proposition 4. Moreover, by (11)
and a change of variables, one can assume that the functions f0 and f1 can be expanded as

f j (x) =

⎧
⎪⎪⎨

⎪⎪⎩

C jε
n
j

‖x‖n−2 + O(εn
j ‖x‖2) n ≥ 3

ε2
j

(
C0

j + C1
j log(‖x‖)

)
+ O(ε2

j‖x‖2) n = 2

(20)

in a small neighbourhood of the origin.
One can now attach� f0 to� f1 using a truncated and re-scaled Legendrian Lawlor neck as

follows. Choose ε, ε1, ε2 to satisfy εnC0 = εn
1 C1 = εn

2 C2 as well as the equation c := ε2SA

(or c := ε2SA − ε2
1C0

1 ) in the n = 2 case). Next, set

rε := εs for s ∈ (0, 1)

to be the radius at which the gluing takes place. The parameter s will be chosen at the end
of the proof; in the mean time, it suffices to know ε � rε when ε is sufficiently small. Let
η : [0, 1] → [0, 1] be a smooth, monotone cut-off function with support in [0, 1/2] with
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uniformly bounded derivatives. Define the following two functions

G0(x) := η(‖x‖/rε)Gε(x)+ f0(x) (1 − η(‖x‖/rε))

G1(x) := η(‖x‖/rε)
(
Gε(x)+ ε2SA

) + ( f1(x)+ c) (1 − η(‖x‖/rε))

where Gε is the graphing function of the Legendrian Lawlor neck from Proposition 23 (with
the appropriate modification for the n = 2 case). These two functions transition smoothly
between the values of f0 and f1 + ε2SA outside Brε (0) and the values of Gε inside Brε/2(0),
respectively. Now define the submanifolds

T0 := �G0 ∩ Ann(rε/2, rε) and T1 := DA
(
�G1

) ∩ Ann(rε/2, rε)

which transition smoothly between the Legendrian Lawlor neck Nε,R,A,ε2 SA
∩ Brε/2(0) and

the submanifolds� f0 and� f1 outside of Brε (0), respectively. Finally, define the submanifold

�ε := (
� f0 ∩ Ann(rε, r)

) ∪ T0 ∪ (
Nε,R,A,ε2 SA

∩ Brε/2(0)
) ∪ T1

∪ (
DA,ε2 SA

(� f1) ∩ Ann(rε, r)
)

(21)

which combines these five pieces into a smooth, Legendrian submanifold of C
n×R. Applying

the inverse of the Legendrian normal coordinates then places this submanifold back in S
2n+1.

Definition 26 Choose ε, ε1, ε2 as above. The Legendrian connected sum of S0 and S1 is

LCSε(S0, S1) := [
Pertε(S0) ∪ Pertε1(S1)\ψ−1(Br (0))

] ∪ ψ−1(�ε).

Call T := ψ−1(T0) ∪ ψ−1(T1) the transition region of LCSε(S0, S1).

The estimates of the geometry of LCSε(S0, S1) are provided by Proposition 25 in the neck
region and Proposition 17 in the exterior region. The following proposition gives the needed
estimates in the transition region.

Proposition 27 The following estimates hold in the transition region T of LCSε(S0, S1).

• The second fundamental form satisfies

‖B‖∗
C2(T ) ≤ C

(
εn

rn+1
ε

+ rε

)

for some constant C independent of ε.

• The mean curvature satisfies

|∇ · H |∗C1(T ) ≤ C

(
εn+1

rn+3
ε

+ 1

)

‖H‖∗
C2(T ) ≤ C

(
εn

rn−1
ε

+ rε

)

for some constant C independent of ε.

• The Laplacian satisfies


(u) = 
̊(u)+ O

(
ε2n

r2n
ε

+ r2
ε

)
· ∇̊2u + O

(
ε2n

r2n+1
ε

+ rε

)
· ∇̊u

where O(r∗) · denotes a linear operation on tensors with coefficients bounded by O(r∗).
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Proof The computation of these estimates will be carried out in Legendrian normal
coordinates centered on the point of gluing. One begins by performing the calculations for
the Lagrangian projection [LCSε(S0, S1)] ⊆ C

n using the ambient Euclidean metric. The
conclusion then follows from Theorem 8 and Proposition 20 as before.

Suppose now that f := η f1 +(1−η) f2 where f1 is the graphing function for the image of
[Pertε(S0)] in the Legendrian normal coordinate chart being used here, and f2 is the graphing
function for the end of the Lagrangian Lawlor neck that connects to it. Let η be the cut-off
function appearing in the construction of LCSε(S0, S1). Set

L f∗ := {(x, ∇̊ f∗(x)) : x ∈ Brε (0)\Brε/2(0)}
where ∇̊ is the Euclidean gradient and ∗ refers to 1, 2 or nothing. Since the components of
the second fundamental form of L f with respect to the Euclidean metric are Bi jk = f,i jk

then

‖B‖ ≤ ‖∇̊3 f1‖ + ‖∇̊3 f2‖ + ‖T ‖
where T is a tensor of order three whose components are linear combinations of the quantities
η,i ( f1, jk − f2, jk), η,i j ( f1,k − f2,k) and η,i jk( f1 − f2) with O(1) coefficients. To proceed,
recall the expansions (17) and (20) which yield

‖∇̊k f j (x)‖=O

(
εn

‖x‖n−2+k

)
and ‖∇̊k( f1− f2)(x)‖=O

(
εn+1

‖x‖n−1+k

)
+O(εn‖x‖2).

Hence with rε/2 ≤ ‖x‖ ≤ rε , one finds

‖B‖C0(T ) ≤ C

(
εn

rn+1
ε

+ εn+1

rn+2
ε

+ εn

rε

)
.

The estimates of the higher derivatives of B are similar, though more involved. Using Propo-
sition 20 and the fact that ε < rε , the desired estimate follows.

Next, the divergence of the mean curvature of L f with respect to the background Euclidean
metric is ∇ · H = hkl hi j ( f,i jk);l where hi j are the coefficients of the inverse of the induced
metric hi j := δi j + ∑

s f,is f, js and the covariant derivatives are taken with respect to this
metric. The Christoffel symbols are �i jk := ∑

s f,i js f,ks . Expanding in terms of f1 and f2

yields after some work

|∇ · H | ≤ |∇1 · H1| + |∇2 · H2| + ‖T ′‖ + O(‖∇̊2 f ‖2‖∇̊4 f ‖)+ O(‖∇̊3 f ‖2‖∇̊2 f ‖)
where ∇ j · Hj is the divergence of the mean curvature of L f j with respect to the induced
metric of L f j with respect to the background Euclidean metric and this time T ′ is a tensor of
order four whose components are linear combinations of the quantities η,i ( f1, jkl − f2, jkl),
η,i j ( f1,kl − f2,kl), η,i jk( f1,l − f2,l) and η,i jkl( f1 − f2) with O(1) coefficients. Taking
rε/2 ≤ ‖x‖ ≤ rε now gives

|∇ · H |C0(T ) ≤ C

(
ε3n

r3n+2
ε

+ εn+1

rn+3
ε

+ εn

r2
ε

)

using the estimate |∇1 · H1|∗C1(T ) ≤ Cε3nr−3n−2
ε from Proposition 17 and the fact that

H2 = 0. The second derivatives of H can be estimated in the same way. Combined with
the second fundamental form estimate above along with Proposition 20 and the fact that
ε < rε , the first of the desired estimates follows. The estimate of ‖H‖∗

C2(T ) follows in a
similar way to the previous two estimates, though yields a result that is not quite as good
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because the leading term is the derivative of the Laplacian of the function G which is of size
O(‖∇̊G‖) = O(εnr−n+1

ε ).

Finally, the Laplacian is 
(u) := hi j
(

u,i j − �s
i j u,s

)
so that expanding as before yields


(u) = 
̊(u)+ O(‖∇̊2 f ‖2)∇̊2u + O(‖∇̊3 f ‖ · ‖∇̊2 f ‖) · ∇̊u.

The desired estimate follows by estimating ∇̊k f as before and invoking Proposition 20. ��

4 The approximate solutions

4.1 The initial configurations

Examples of initial configurations of Legendrian n-spheres to which the Main Theorem
applies will now be given. Denote the standard real basis of C

n+1 by P1 := (1, . . . , 0) . . .
Pn+1 := (0, . . . , 1) in what follows, treating these as points in S0 or as vectors in C

n+1

depending on the context.

Example 1 The first example of an initial configuration can be described as follows. Choose
complex numbers ξs := exp(2π i/ms) for s = 2, . . . , n and ξ̄n+1 := exp(2π i

∑n
s=2 1/ms),

where ms are odd integers with |ms | ≥ 4. Define U to be

U :=
⎛

⎜
⎜
⎝

1
ξ2

. . .
ξn+1

⎞

⎟
⎟
⎠

Next, let N := l.c.m.(m2, . . .mn), choose k and a odd satisfying g.c.d.(a, k N ) = 1 and
define ζ := exp(2π ia/k N ). Then (ζU )k N = I and no power of ζU smaller than k N is the
identity.

The U s(S0) all intersect at the points ±P1 so that the (ζU )s(S0) acquire Hopf sep-
aration on the order of Arg(ζ ). In fact, if s1 := (k N + 1)/2 and s2 := (k N − 1)/2
then (ζU )s1(P1) = ζ 1/2 P1 and (ζU )s2(P1) = ζ−1/2 P1 with Hopf separation ±πa/k N .
Moreover (ζU )s(S0) is closest to (ζU )s1(S0) and (ζU )s2(S0) at these points. Note that

TP1U s1(S0) = span R

{
ξ

1/2
2 P2, . . . , ξ

1/2
n+1 Pn+1

}
and T−P1U s2(S0) = span R

{
ξ

−1/2
2 P2, . . . ,

ξ
−1/2
n+1 Pn+1

}
and it is clear that these tangent planes are always transverse. One can also

check that the angle criterion holds for these tangent spaces for sufficiently large choices
of the ms , depending on the dimension. The gluing should be performed by connecting the
points given above. One can check that the resulting submanifold is closed and embedded
(because the Hopf separation between any pair of n-spheres is never smaller πa/k N ). The
Legendrian angle function advances by πa/k N from one n-sphere to the next and acquires
a period of 2πa around the entire configuration.

Example 2 The next example is different from the first, in that gluing occurs at a pair of non-
antipodal points. Once again, choose complex numbers ξs := exp(2π i/ms) for s = 2, . . . , n
but now ξ̄n+1 := − exp

(
2π i

∑n
s=2 1/msr

)
, where ms are integers with |ms | ≥ 4. Define U

to be

U :=

⎛

⎜
⎜
⎜
⎝

0 ξ2
1 0

ξ3
. . .

ξn+1

⎞

⎟
⎟
⎟
⎠
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Next, let N := l.c.m.(m2, . . .mn), choose k and a satisfying g.c.d.(a, k N ) = 1 and define
ζ := exp(2π ia/k N ). Then (ζU )2k N = I and no power of ζU smaller than 2k N is the
identity.

In the present case, U (S0) ∩ S0 = {±P2} and U−1(S0) ∩ S0 = {±P1}. Indeed, one finds
that U 2s(P1) = ξ s

2 P1 = U 2s−1(P2) and U 2s P2 = ξ s
2 P2 = U 2s+1(P1). Multiplying by ζ

creates the desired Hopf separation. In fact ζ 2sξ s
2 P1 ∈ (ζU )2s(S0) is closest to ζ 2s−1ξ s

2 P1 ∈
(ζU )2s−1(S0) and ζ 2sξ s

2 P2 ∈ (ζU )2s(S0) is closest to ζ 2s+1ξ s
2 P2 ∈ (ζU )2s+1(S0). The

Hopf separation is ±2πa/k N , respectively. Note that TP1 S0 = span R{P2, . . . , Pn+1} and
TP2 S0 = span R{P1, P3, . . . , Pn+1} while TP2U (S0) = span R{ξ2 P1, ξ3 P3, . . . , ξn+1 Pn+1}
and TP1U−1(S0) = span R{ξ̄2 P2, . . . , ξ̄n+1 Pn+1}. It is clear that these tangent planes are
always transverse. One can also can check that the angle criterion holds for these tangent
spaces for sufficiently large choices of the ms , depending on the dimension. The gluing
should be performed by connecting the points given above. One can check that the resulting
submanifold is closed but embedded only for appropriate choices of ξk and ζ . The Legendrian
angle function acquires a period of 4πa around the entire configuration.

4.2 Assembling the approximate solutions

The approach outlined in the introduction for creating an approximately contact-stationary
Legendrian submanifold from U (n + 1)-rotated copies of S0 will now be implemented here
in the two examples just given. These examples will be constructed as follows.

1. Choose U ∈ SU (n + 1) as in Sect. 4.1.
2. Let ζ := e2π ia/k N for some integer a and large integer k satisfying g.c.d.(a, k N ) = 1.
3. Glue each (ζU )s(S0) to its nearest neighbours at one of the points (ζU )s(±p) using the

Legendrian connected sum procedure with scale parameter εk corresponding to the Hopf
separation 2πa/k N .

The approximate solution of the contact-stationary deformation equation is the submanifold
constructed by means of the three steps above and will be denoted by �̃U,ζ .

The following terminology will be used in the sequel. Each (ζU )s(S0) is attached to two
neighbours at two distinct points chosen from the set {(ζU )t (±p) : t = 0, . . . , k N − 1} ∩
(ζU )s(S0). These points are the gluing points on (ζU )s(S0) and these shall be denoted by
p1s and p2s . (In the case s = 0, denote them simply by p1 and p2.) Now choose r ∈ (0, r0]
where r0 is sufficiently small but independent of ε, and define the disjoint union of balls
centred on the gluing points

Br :=
k N−1⋃

s=0

[
Br

(
(ζU )s(p1s)

) ∪ Br
(
(ζU )s(p2s)

)] ∩ �̃U,ζ . (22)

Finally, subdivide �̃U,ζ into regions of three distinct types: the union of all the neck regions,
the union of all the transition regions and the union of all the exterior regions of �̃U,ζ and
denote these regions by N , T and �′. That is, set

N := Brε/2 and T := Brε\Brε/2 and �′ := �̃U,ζ \ (N ∪ T ) .

4.3 Symmetries satisfied by the approximate solutions

The approximate solution �̃U,ζ constructed above is invariant with respect to the transfor-
mation ζU for two reasons. First, the collection of n-spheres (ζU )s(S0) is invariant under
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this group for obvious reasons. This shows that all of �̃U,ζ except perhaps the neck and
transition regions are invariant under this group. Second, since every neck region is uniquely
determined by the tangent planes at the points of gluing and the Legendrian normal coordi-
nates are equivariant with respect to ζU (in fact, ζU can be used to transplant the coordinates
from the point p to every other gluing point), the neck regions are permuted amongst them-
selves by the action of ζU . Third, one can easily check that the Legendrian connected sum
procedure keeps the transition regions of �̃U,ζ invariant with respect to this group as well.
There are also additional symmetries satisfied by �̃U,ζ that will be important later on. These
are specific to each of the two choices of U made above.

Example 1 Consider the transformations K j : C
n+1 → C

n+1 defined by

K j (z) :=
(

z1, z2, . . . ,−z j , . . . , zn+1
)

for j = 1, . . . , n + 1. (23)

These transformations are not SU (n+1)-rotations, but rather are orthogonal transformations
of C

n+1 (viewed as R
2n+2) that still preserve the contact structure. One can easily verify that

K −1
j ◦ ζU ◦ K j = ζU for all j , so that each K j descends to an isometry of the fundamental

cell of �̃U,ζ consisting of the spherical region, a transition region and a neck region.

Example 2 The transformations K j for 3 ≤ j ≤ n + 1 defined in (23) from Example 1 are
additional symmetries of �̃U,ζ in this case as well. One additional symmetry involves the z1

and z2 coordinates. Define the transformations K12 : C
n+1 → C

n+1 by

K12(z
1, z2, z3, . . . , zn+1) := (−z̄2,−z̄1, z̄3, . . . , z̄n+1).

Then it is easy to check that K −1
12 (ζU )K12 = (ζU )−1 so that K12 descends to an isometry

of the fundamental cell of �̃U,ζ .

5 Setting up the analysis

5.1 The Banach space inverse function theorem

The tasks ahead are to parametrize small contact deformations of �̃U,ζ over a suitable Banach
space of C4,β functions of �̃U,ζ and solve the equation ��̃U,ζ

( f ) = 0, where ��̃U,ζ
is

the contact-stationary deformation operator of �̃U,ζ as defined abstractly in Definition 11.
Henceforth, denote �U,ζ := ��̃U,ζ

and denote also the linearization of this operator at zero
by LU,ζ .

The theorem that will be invoked to find f , albeit in a slightly subtle way, is the Banach
space inverse function theorem. This fundamental result will now be stated in fairly general
terms [1].

Theorem (IFT) Let � : X → Z be a smooth map of Banach spaces, set �(0) := E
and denote the linearized operator D�(0) by L. Suppose that L is bounded, surjective, and
possesses a right inverse R : Z → X satisfying the estimate

‖R(z)‖ ≤ C‖z‖ (24)

for all z ∈ Z. Choose R so that if y ∈ BR(0) ⊆ X, then

‖L(x)− D�(y)(x)‖ ≤ 1

2C
‖x‖ (25)
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for all x ∈ X. Then if z ∈ Z is such that

‖z − E‖ ≤ R

2C
, (26)

there exists a unique x ∈ BR(0) so that �(x) = z. Moreover, ‖x‖ ≤ 2C‖z − E‖.

5.2 Weighted Schauder norms

A preliminary step in applying the Banach space inverse function theorem is to have norms
for the Banach spaces X and Z which make explicit the dependence on the parameter k in
all the estimates (actually, on εk since this is more geometric). The reason this is necessary
is because when k → ∞ and εk → 0, then the approximate solution becomes singular
in each neck region and the contact-stationary Legendrian equation degenerates, making it
impossible to invoke the Banach space inverse function with more ‘conventional’ norms. In
the sequel, denote ε := εk .

The ε-dependence of the estimates will be tracked using weighted Schauder norms for the
spaces Cl,β(�̃U,ζ ). To define the weight function, first define a ‘regularized’ distance function
ρ0 on�′ by requiring ρ0(x) := dist(x, p js) in a neighbourhood of each of the gluing points
p js and allowing ρ0 to transition smoothly to one outside these neighbourhoods. Here the
terminology from Sect. 4.2 for the various regions of �̃U,ζ is being used. Now make the
following definition.

Definition 28 Define the weight function ρε : �̃U,ζ → R by

ρε(x) :=

⎧
⎪⎨

⎪⎩

ρ0(x) x ∈ �′

Interpolation x ∈ T
ε
√

1 + λ2 x = ψ−1
s (λ, µ) ∈ N

(27)

whereψs is the Legendrian normal coordinate chart for the neck region connecting (ζU )s(S0)

to (ζU )s+1(S0). Furthermore, one can assume that the function ρε is invariant under all
symmetries satisfied by �̃U,ζ .

Now set �′′ := {x ∈ �′ : ρ0(x) = 1}. Let q be any tensor on �̃U,ζ and let O ⊆ �̃U,ζ be
any open subset. Recall the notation

‖q‖0,O = sup
x∈O

‖q(x)‖ and [q]β,O = sup
x,y∈O

‖q(x)− PT(q(y))‖
dist(x, y)β

,

where the norms and the distance function that appear are taken with respect to the induced
metric of �̃U,ζ , while PT is the parallel transport operator from x to y with respect to this
metric. Now choose some large r0 so that x ∈ �′′ whenever x has a distance larger than r0

from any of the gluing points. For any 0 < r ≤ 2r0, define the annular region Ar := Br\Br/2

as well as the norm on any subset O ⊆ Ar

| f |l,β,γ,O∩Ar := ρ−γ
ε (r)| f |0,O∩Ar + · · · + ρ−γ+l

ε (r)‖∇l f ‖0,O∩Ar

+ρ−γ+l+β
ε (r)[∇l f ]β,O∩Ar .

Again, the derivatives which appear here are taken with respect to the induced metric of
�̃U,ζ . The weighted Schauder norm is now defined as follows.
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Definition 29 Let O ⊂ �̃U,ζ . The Cl,β
γ norm on O ⊆ �̃U,ζ is given by

| f |
Cl,β
γ (O) :=

l∑

i=0

‖∇ i f ‖0,O∩�′′ + [∇l f ]β,O∩�′′ + sup
r∈(0,2r0]

| f |l,β,γ,O∩Ar . (28)

The notation for this norm will be abbreviated | · |
Cl,β
γ

when there is no cause for confusion.

5.3 Legendrian deformations and the contact-stationary Legendrian equation

A second preliminary step is to have a concrete way of associating a Legendrian deformation
φ f of �̃U,ζ to every function f in X . The key is to construct the association ‘by hand’ in
such a way to have explicit control of φ f in terms of f . Broadly speaking, the deformation
associated to f is obtained as follows: one first extends f to a neighbourhood of �̃U,ζ in a
canonical way and multiplies by a suitable cut-off function; then one integrates the contact
vector field generated by this extension up to time one.

Here are the details of this construction along with the necessary estimates. Observe
first that the exponential map exp : N�̃U,ζ → S

2n+1 of the normal bundle of �̃U,ζ is
a diffeomorphism in a tubular neighbourhood V of width O(1) in T ∪ �′′ and of width
transitioning to O(ε) in the narrowest part ofN . Letη be a smooth, monotone cut-off functions
with support in V and define the extension operator Eε : C4,β(�̃U,ζ ) → C4,β(S2n+1) by

Eε( f )(x) :=

⎧
⎪⎨

⎪⎩

f (exp−1(x)) · η
(

dist(x, �̃U,ζ )

ρε(exp−1(x))

)

x ∈ V

0 x �∈ V

where ρε is the weight function defined in Definition 28. Consequently, Eε( f ) coincides
with f on �̃U,ζ . Now recall that the function Eε( f ) defines a contact vector field X f by
means of the equations

α(X f ) = Eε( f ) and X f dα = dEε( f )
∣
∣
�
,

and that integrating X f yields a one-parameter family of contactomorphisms φt
f : S

2n+1 →
S

2n+1 that is normal to �̃U,ζ . The time-one flow of this family is simply denoted φ f .

Definition 30 Functions on �̃U,ζ are associated to contactomorphisms via f �→ Eε( f ) �→
X f �→ φ f .

5.4 The strategy of the proof

The deformation procedure developed above can be fed into the abstract definition of �U,ζ

and leads to the concrete partial differential equation that must be solved to find the contact-
stationary Legendrian submanifold near �̃U,ζ . That is, a function f ∈ C4,β

γ (�̃U,ζ ) must be
found so that

�U,ζ ( f ) := ∇ ·
(

Hφ f (�̃U,ζ )
dα

∣
∣
∣
φ f (�̃U,ζ )

)
= 0

where φ f is the contactomorphism defined above.
The strategy that will henceforth be used to apply the Banach space inverse function

theorem to �U,ζ will take into account two important observations. The first observation is
that�U,ζ is equivariant with respect to the symmetries of �̃U,ζ induced by global isometries
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of S
2n+1 preserving the Legendrian condition. That is, if σ ∈ O(2n + 2) is such an isometry

then �U,ζ ( f ◦ σ) = �U,ζ ( f ) ◦ σ . The second observation is that �U,ζ does not have full
rank because the first variation formula (2) applied to the generator of a contact isometry
implies that every Legendrian submanifold � satisfies

∫

φ f (�)

��( f ) · qH
∣
∣
φ f (�)

= 0

for every function f and every Hermitian, harmonic, homogeneous polynomial qH gen-
erating the U (n + 1)-rotations of S

2n+1. Consequently, the image of �U,ζ is constrained
by (n + 1)2 conditions. The correct interpretation of these conditions is to say that the
graph {( f,�U,ζ ( f )) : f ∈ C4,β

γ (�̃U,ζ )} is contained in the Banach submanifold {( f, u) :
∫
φ f (�̃U,ζ )

u · qH
∣
∣
φ f (�̃U,ζ )

= 0 ∀ qH } of C4,β
γ (�̃U,ζ ) × C0,β

γ−2(�̃U,ζ ). Therefore it suffices

to show that the equation π ◦ �U,ζ ( f ) = 0 has a solution, where π is the L2-projection
to the orthogonal complement of the subspace spanned by the functions qH

∣
∣
�̃U,ζ

. Note
that the linearization of π ◦ �U,ζ at zero maps into this orthogonal complement, and thus
D
(
π ◦�U,ζ

)
(0) = LU,ζ holds.

These observations suggest that the Banach space inverse function theorem should be
applied to the following spaces. In what follows, the subscript sym denotes invariance with
respect to the group of symmetries of �̃U,ζ from Sect. 4.3, so that if u belongs to a sym-
subscripted space then u ◦ σ = u for all such symmetries σ . Also, the superscript ⊥ denotes

the L2-orthogonal complement of a subspace of functions. Let Q0 := spanR

{
qH

∣
∣
�̃U,ζ

}
.

Definition 31 X :=
[
C4,β
γ (�̃U,ζ )

]

sym
and Z :=

[
C0,β
γ−4(�̃U,ζ ) ∩ Q⊥

0

]

sym
.

By the two observations above, the operator π ◦ �U,ζ : X → Z is well-defined and it is
sufficient to find a solution of the equation π ◦�U,ζ ( f ) = 0 in these spaces.

6 The linear analysis

6.1 The Jacobi fields of the approximate solution

It is necessary to identify a subspace of functions that approximates the invariant Jacobi
fields of LU,ζ in Z . As mentioned earlier, good approximating functions can be constructed
as follows. One takes the exact Jacobi fields of the linearized operator of one of the spherical
constituents of �̃U,ζ and multiplies them by a cut-off function vanishing in a neighbourhood
of the gluing points connecting this constituent to its neighbours. Such functions can be
understood as generating transformations which act by U (n + 1)-rotation of the constituent
of �̃U,ζ in question while leaving the others fixed. Then one chooses all ζU -invariant linear
combinations of these functions.

More concretely, let χext,r be a smooth, monotone cut-off function that equals one in
Pertε(S0)\[Br (p1) ∪ Br (p2)] for some r and transitions to zero elsewhere. Suppose χext is
invariant under the symmetries of �̃U,ζ . The functions just described are of the form

q̃ :=
[

k N−1∑

s=0

χext · q
∣
∣
Pertε(S0)

◦ (ζU )−s

]
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where q is any linear combination of the subset of polynomials in the list (10) that do not vanish
on S0. These functions, in coordinates (x1, x2, . . . , xn+1) ∈ R

n+1 with
∑n+1

s=1 (x
s)2 = 1, are

q0(x) := 1

q1(x) := (n + 1)(x1)2 − 1

q j (x) := (x j )2 − (xn+1)2 for j = 2, . . . , n

qim, jk(x) := 2x j xk for 1 ≤ j < k ≤ n + 1.

(29)

Note that there are D := 1
2 (n + 1)(n + 2) such functions.

As mentioned earlier, one can only expect to find an appropriately bounded right inverse for
LU,ζ on any subspace of functions that is ‘sufficiently transverse’ to the space of the invariant
Jacobi fields. The following lemma establishes the necessary transversality condition for the
space of approximate Jacobi fields defined above.

Lemma 32 Suppose f : �̃U,ζ → R is L2-orthogonal to the functions q1, . . . qD and invari-
ant with respect to all the symmetries of �̃U,ζ . Then f is ‘approximately orthogonal’ to the
functions q̃ j :

∣
∣
∣
∣
∣
∣
∣
∣

∫

�̃U,ζ

f · q̃ j

∣
∣
∣
∣
∣
∣
∣
∣

≤ Crγ+n | f |C0
δ

for all j = 1, . . . , D.

Proof This estimate is derived in two steps. First, by invariance with respect to ζU , one finds
∣
∣
∣
∣
∣
∣
∣
∣

∫

�̃U,ζ

f · q̃ j

∣
∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
∣

∫

�̃U,ζ

f · 1

k N

k N−1∑

s=0

q j ◦ (ζU )s

∣
∣
∣
∣
∣
∣
∣
∣

+ Crγ+n | f |C0
δ
. (30)

Now compute
∑k N−1

s=0 q j ◦ (ζU )s for each q j . This calculation depends upon the specific
choice of U made in Example 1 or 2. In the first example one finds:

1

k N

k N−1∑

s=0

q0 ◦ (ζU )s(x) = 1

1

k N

k N−1∑

s=0

q1 ◦ (ζU )s(x) = (n + 1)(x1)2 − 1

1

k N

k N−1∑

s=0

q j ◦ (ζU )s(x) = (x j )2 − (xn+1)2

N
for j = 2, . . . , n + 1

(31)

whereas all others vanish. In the second example, it is better to use a slightly different basis for
the space of functions spanned by q1, . . . , qD . That is, take the matrices I, H3, . . . , Hn+1, Hjk

and H ′
jk from (10) and replace H1 and H2 by

H ′
1 =

⎛

⎜
⎜
⎜
⎝

n − 1
n − 1

−2
. . . −2

⎞

⎟
⎟
⎟
⎠

and H ′
2 =

⎛

⎜
⎜
⎜
⎝

1
−1

0
. . .

0

⎞

⎟
⎟
⎟
⎠
.
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88 A. Butscher

The Hermitian, harmonic, homogeneous polynomials corresponding to these matrices,
restricted to S0, yield the functions q ′

1(x) = (n + 1)
(
(x1)2 + (x2)2

) − 2 and q ′
2(x) =

(x1)2 − (x2)2. One now finds

1

k N

k N−1∑

s=0

q0 ◦ (ζU )s(x) = 1

1

k N

k N−1∑

s=0

q1
′ ◦ (ζU )s(x) = (n + 1)

(
(x1)2 + (x2)2

) − 2

1

k N

k N−1∑

s=0

q j ◦ (ζU )s(x) = (x j )2 − (xn+1)2

N
for j = 3, . . . , n + 1

1

k N

k N−1∑

s=0

qim,12 ◦ (ζU )s(x) = x1x2

N
,

(32)

whereas all others vanish. Consequently, the integral term in (30) vanishes for q j in the list
(31) for Example 1 and for q j in the list (32) for Example 2, and the estimate holds for
these q j .

In each example, the lists (31) and (32) do not form a basis for the space of functions
spanned by q1, . . . , qD . The remaining basis functions are

qim, jk = x j xk for 1 ≤ j < k ≤ n + 1

in Example 1, and

q2 = (x1)2 − (x2)2

qim,1 j = x2x j for 3 ≤ j ≤ n + 1

qim,2 j = x1x j for 3 ≤ j ≤ n + 1

in Example 2. But for each of these functions, there is an additional symmetry σ ∈ O(2n+2)
under which �̃U,ζ is invariant and q ◦ σ = −q , as can be readily verified from the definition
of the additional symmetries in Sect. 4.3. One can thus compute directly that

∫

�̃U,ζ

f · q̃ j =
∫

�̃U,ζ

( f · q̃ j ) ◦ σ = −
∫

�̃U,ζ

f · q̃ j = 0,

thereby verifying the estimate once again. ��
6.2 The linear estimate

This task at hand is to find an appropriately bounded right inverse for LU,ζ : X → Z and a
number of steps are needed to reach this goal. The necessary steps become more complicated
as the dimension n decreases because of the nature of the indicial roots of the principal part of
LU,ζ , which is the bi-Laplacian operator, in low dimensions. The material below presents the
simplest proofs available in three cases: for dimensions n ≥ 5, for dimensions n = 3, 4 and
for dimension 2. The theory underlying the results below is the theory of the Laplace operator
on asymptotically flat manifolds and on punctured manifolds, which exists in several places
in the literature. A particularly complete and focused source is [24].
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Equivariant gluing constructions 89

The analysis begins with a lemma showing that the lower order term in the linearized
operator LU,ζ (see Corollary 14) is uniformly small.

Lemma 33 The operator QU,ζ := 2 ∇ · B�̃U,ζ
(H�̃U,ζ

,∇u) − (H�̃U,ζ
· ∇)2u satisfies the

estimate

|QU,ζ (u)|C0,β
γ−4

≤ C

(
εn

rn−2
ε

+ ε2 + r4
ε

)
|u|

C4,β
γ

for all u ∈ X.

Proof The operator QU,ζ satisfies the pointwise estimate
∣
∣[ρε(x)]4−γ QU,ζ (u)(x)

∣
∣≤C[ρε(x)]2

∣
∣H�̃U,ζ

(x)
∣
∣
(∥
∥B�̃U,ζ

(x)
∥
∥+∥∥ρε(x)∇ B�̃U,ζ

(x)
∥
∥
)

|u|
C4,β
γ

for any x ∈ �̃U,ζ . If x belongs to the exterior region �′ ⊆ �̃U,ζ , Proposition 17 gives the
estimate

|QU,ζ (u)|C0,β
γ−4(�

′) ≤ Cε2nr−2n+2
ε |u|

C4,β
γ
.

If x belongs to the neck region N ⊆ �̃U,ζ where ρε(λ) = ε
√

1 + λ2 := ρ(λ) Proposition 25
gives

|QU,ζ (u)|C0,β
γ−4(N )

≤ sup
|λ|≤rε/ε

C ε2[ρ(λ)]2
(

ε

[ρ(λ)]n−1 +ερ(λ)
)(

1

ε[ρ(λ)]n+1

+ερ(λ)
)

|u|
C4,β
γ

≤ C
(
ε2 + r4

ε

)
.

Finally, if x belongs to the transition region T ⊆ �̃U,ζ , Proposition 27 gives

|QU,ζ (u)|C0,β
γ−4(T )

≤ C r2
ε

(
εn

rn−1
ε

+ rε

)(
εn

rn+1
ε

+ rε

)

≤ C

(
εn

rn−2
ε

+ r4
ε

)

using the fact that ε < rε . Consolidating these separate results yields the desired estimate for
the supremum norm. The Hölder norm estimate is similar. ��

Henceforth, set LU,ζ := 
U,ζ (
U,ζ + 2(n + 1)). The existence of an appropriately
bounded right inverse in dimensions n ≥ 5 is already a consequence of Lemma 33. It uses a
fairly straightforward contradiction argument together with the fact that LU,ζ and LU,ζ are
self-adjoint.

Proposition 34 Suppose n ≥ 5 and choose γ ∈ (4 − n, 0). If ε is sufficiently small then
there is a constant C independent of ε so that the operator LU,ζ : X ∩ Q⊥

0 → Z is bijective
and satisfies |u|

C4,β
γ

≤ C |LU,ζ (u)|C0,β
γ−4

for all u ∈ X where C is a constant independent of ε.

Proof The strategy of this proof is as follows. It will be shown below that LU,ζ is injective
on X ∩ Q⊥

0 and satisfies |u|
C4,β
γ

≤ C0|LU,ζ (u)|C0,β
γ−4

for some constant C0 independent of ε.

Since LU,ζ is self-adjoint then LU,ζ : X ∩Q⊥
0 → Z is surjective. The estimate of Lemma 33
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90 A. Butscher

then shows that the operator LU,ζ is injective on X ∩ Q⊥
0 as well when ε is sufficiently

small, and satisfies the desired bound with C := 2C0. Therefore LU,ζ is surjective, again by
self-adjointness.

The injectivity bound for LU,ζ can be found in this way. By standard elliptic theory and
scaling arguments, there is already some constant C independent of ε so that

|u|
C4,β
γ

≤ C

(
|LU,ζ (u)|C0,β

γ−4
+ |u|

C0,β
γ

)
(33)

for all u ∈ C4,β
γ (�̃U,ζ ). Hence it is enough to obtain a contradiction from the assumption

that the estimate |u|
C0,β
γ

≤ C |LU,ζ (u)|C0,β
γ−4

is false. In other words, suppose that there are

sequences of:

• scale parameters εi → 0 and corresponding complex numbers ζi → 1
• approximate solutions �i := �̃U,ζi

• linear operators Li := LU,ζi

• weight functions ρi := ρεi

• Banach spaces Xi :=
[
C4,β
γ (�i ) ∩ Q⊥

0

]

sym
and Zi :=

[
C0,β
γ−4(�i ) ∩ Q⊥

0

]

sym

• functions ui ∈ Xi satisfying |ui |C0,β
γ

= 1 and limi→∞ |Li (ui )|C0,β
γ−4

= 0.

Now let pi ∈ �i be a point where ui (pi )[ρi (pi )]−γ = 1. There are two cases to consider.

Case 1: The non-concentrating case Let SR := S0\[BR(p1) ∪ BR(p2)] and
S∗

0 := S0\{p1, p2} where p1, p2 are the gluing points of S0. Suppose without loss of
generality that pi converges to some point p ∈ SR for some non-zero radius R. By the
estimate (33) and the Arzela–Ascoli theorem, there is a subsequence of ui converging to
a non-zero function u R ∈ C4,β(SR). It is now possible to pass to a further subsequence
and obtain convergence to a non-zero function u∗ ∈ C4,β

γ (S∗
0 ). This function satisfies


S(
S + 2(n + 1))(u∗) = 0 on S∗
0 , where 
S is the Laplacian of the standard sphere.

Since γ − 2 ∈ (2 − n, 0), then (
S + 2(n + 1))(u∗) is actually smooth and thus must be
constant. Since γ ∈ (4 − n, 0) ⊆ (2 − n, 0), then u∗ is also smooth and consequently must
be a linear combination of the functions in the list (29). But the orthogonality and symmetry
conditions that u∗ must satisfy as a limit of functions ui ∈ Xi rules this out, as can be seen
by allowing εi → 0 in Lemma 32.

Case 2: The case where concentration occurs Suppose without loss of generality that pi

converges to the gluing point p1 ∈ S0. Consequently pi eventually enters a Legendrian normal
neighbourhood containing the neck region connecting S0 to its neighbour at p1. One can thus
use the Legendrian normal coordinates and the Legendrian Lawlor embedding to write pi as
a point (λi , µi ) ∈ R × S

n−1 and to consider ui ∈ C4,β
γ (R × S

n−1). The norm on this space
is a weighted norm, where the weight function is ρ(λ) := ε

√
1 + λ2. Up to subsequences,

there are now two possibilities: either (λi , µi ) → (λ, µ) or else λi → ∞. Each of these
possibilities will be ruled out in turn. In the first of these possibilities, the estimate (33) and
the Arzela–Ascoli theorem on the neck itself imply that ui has a subsequence converging
to a non-zero function u ∈ C4,β

γ ′ (R × S
n−1) for any γ ′ > γ and satisfying the equation


N (
N (u)) = 0 where 
N is the Laplacian of the Lawlor neck. Since γ ∈ (4 − n, 0),
this solution is decaying at infinity. But given the form of the Lawlor neck metric (18) on
R × S

n−1, there can be no decaying solutions of this equation. In the second possibility, one
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Equivariant gluing constructions 91

can consider ui on a ball of constant radius about λi and re-scale by a factor of ε−1
i to obtain

a sequence of functions which possesses a subsequence converging to a non-zero, decaying
solution of 
̊(
̊(u)) = 0 on R

n with respect to the Euclidean metric. Again, there are no
decaying solutions of this equation. ��

Because of the overlapping nature of the indicial roots of the bi-Laplacian, the technique
above is not available in the lower dimensions n = 4, 3, 2. In these cases, right inverses will
have to be constructed ‘by hand’ and the required estimates derived as part of the construction.
Two preliminary lemmata are needed.

Lemma 35 Suppose LU,ζ : X → Z possesses a right inverse R : Z → X satisfying the
bound |R( f )|

C4,β
γ

≤ C | f |
C0,β
γ−4

where C := C(ε) is a constant depending in some way on ε.

If

lim sup
ε→0

C(ε)‖QU,ζ ‖op <
1

2

and ε is sufficiently small, then LU,ζ also possesses a right inverse satisfying the same sort
of bound, with 2C in place of C. Here ‖ · ‖op denotes the operator norm of a map between
Banach spaces.

Proof Propose u := R( f +g) as the solution of the equation LU,ζ (u) = f so that g satisfies
g = −QU,ζ ◦ R( f + g). The mapping T f : Z → Z given by T f (g) := −QU,ζ ◦ R( f + g)
then satisfies

|T f (g1)− T f (g2)|C0,β
γ−4

≤ C‖QU,ζ ‖op|g1 − g2|C0,β
γ−4

and

|T f (g)|C0,β
γ−4

≤ C‖QU,ζ ‖op| f + g|
C0,β
γ−4

so that T f is a contraction mapping on BR(0) when | f |
C0,β
γ−4

< R and ε is sufficiently

small. Therefore there is a unique fixed point g f . The desired right inverse is the map
f �→ R( f + g f ). ��
Lemma 36 The following facts about the kernel of the Laplacian of the Lawlor neck are
true.

• The harmonic functions of sub-linear growth are spanned by the constant function 1 and
the function SA(λ) given in equation (15).

• Suppose f = a+
i µ

i |λ| + O(|λ|−1) for λ � 1 and f = a−
i µ

i |λ| + O(|λ|−1) for λ � −1
in the coordinates of the neck, where a±

i ∈ R. Then there is a linearly growing harmonic
function which equals f up to O(|λ|−1) on the ends of the neck.

Proof By separation of variables, one expects to find 2 linearly independent harmonic func-
tions depending only on λ, as well as 2n linearly independent and linearly growing harmonic
functions. The constant function 1 is clearly an example of the first kind. The Lagrangian
analogue in C

n of the procedure of Corollary 15 can be used to find the remaining functions.
(That is, a Hamiltonian function that generates a symplectic isometry and then restricted to
a minimal Lagrangian submanifold gives a harmonic function on the submanifold because
d
dt

∣
∣
t=0 H(φJ∇ f (L)) = L( f

∣
∣
L) exactly as in the corollary.) The function SA arises in this

way by considering the infinitesimal generator of dilations. The linearly growing functions
arise in this way by considering the infinitesimal generators of translations parallel to one or
the other of the asymptotic n-planes of the neck. Since these n-planes are transverse, the 2n
resulting functions are linearly independent and form a basis for linear growing functions on
each end of the neck separately. ��
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92 A. Butscher

The estimates for the lower dimensions n = 4, 3, 2 can now be derived. Before beginning
the proofs of the estimates, define the following smooth, monotone cut-off functions:

χext,r :=

⎧
⎪⎨

⎪⎩

1 x ∈ Bc
r

Interpolation x ∈ Br\Br/2

0 x ∈ Br/2

χneck,r := 1 − χext,r

where Br is the disjoint union of balls of radius r containing the neck regions as defined in
(22). One can assume that these functions are invariant with respect to the symmetries of
�̃U,ζ .

Proposition 37 Suppose n = 4 and choose γ ∈ (0, 1). Then the operator LU,ζ : X → Z
possesses a right inverse R : Z → X satisfying the bound |R( f )|

C4,β
γ

≤ C | f |
C0,β
γ−4

where C

is a constant independent of ε.

Proof Using a contradiction argument as in the proof of Proposition 34, one can show that

U,ζ : [C2,β

γ−2(�̃U,ζ ) ∩ Q0]sym → Z is bijective and satisfies the estimate |w|
C2,β
γ−2

≤
C |
U,ζ (w)|C0,β

γ−4
for all w ∈ [C2,β

γ−2(�̃U,ζ ) ∩ Q0]sym where C is a constant independent of

ε. The reason the same argument works is because the choice γ − 2 ∈ (−2,−1) implies
that the Laplacian on S0\{p1, p2} and on N is bijective. Moreover, the self-adjointness of

U,ζ implies that the orthogonality conditions satisfied by f are inherited byw := 
−1

U,ζ ( f ).

Therefore it remains only to solve the equation (
U,ζ+2(n+1))(u) = w for u ∈ C4,β
γ (�̃U,ζ )

and w ∈ [C2,β
γ−2(�̃U,ζ ) ∩ Q0]sym for γ ∈ (0, 1).

The technique that will be used to find a solution of
(

U,ζ + 2(n + 1)

)
(uext) = 0 will

be to patch together local solutions on the exterior regions with local solutions on the neck
regions of �̃U,ζ to construct a good approximate solution. This process will then be iter-
ated to yield an exact solution. To begin the patching process, choose four radii satisfying
0 < r3 � r4 < r2 < r1 in such a way that the supports of ∇χext,r j do not overlap. It will
also be necessary to choose r3 = O(ε) and r1, r2, r4 small a priori but independent of ε.

Step 1: The exterior regions Define the functions q̂i := ∑k N−1
s=0 qi

∣
∣
S0

◦ (ζU )s as well as

q̂approx
i := q̂iχext,r1 and

wext := wχext,r1 −
D∑

i, j=1

Mi j

⎛

⎜
⎝
∫

S0

wχext,r1 q̂i

⎞

⎟
⎠ q̂approx

j

where Mi j is the inverse of the matrix whose coefficients are
∫

S0
q̂i q̂

approx
j . This is the

L2-projection of wext to the orthogonal complement of the space of functions spanned by
q̂1, . . . , q̂D . Furthermore,wext

∣
∣
S0

is a smooth function of compact support on S∗
0 which is, by

the calculations of Lemma 32, orthogonal to q1, . . . , qD . The estimate of Lemma 32 implies
|wext|C2,β

γ−2
≤ C |w|

C2,β
γ−2

with C independent of ε because γ ∈ (0, 1). By ζU -invariance, it

is necessary only to find the solution uext
∣
∣
S0

and then extend it by ζU -invariance to all of

�̃U,ζ . By the theory of the Laplace operator on S0 in smooth spaces, there exists a solution
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uext ∈ C4,β(S0) of the equation (
S + 2(n + 1))(u) = wext. By considering the Taylor
expansion of uext at the points p1 and p2, one can write

uext := vext + a
(
η1

neck,r2
+ η2

neck,r2

)
(34)

where a := uext(p1) = uext(p2) (which are the same by symmetry) andvext ∈ C4,β
γ (S0\{p1, p2})

(since γ ∈ (0, 1) and vext grows linearly with distance from each pi ). Here ηi
neck,r2

is a
smooth, monotone cut-off function that equals one near pi and transitions to zero elsewhere,
and equals χneck,r2 on the region of overlap. Moreover, the estimate

|vext|C4,β
γ (S0\{p1,p2}) + |a| ≤ C |wext|C2,β (S0\{p1,p2}) ≤ Crγ−2

1 |wext|C2,β
γ−2

is valid for some constant C independent of ε.
At present, the function uext can be viewed as a function defined on �̃U,ζ \Br for some

small r . To extend uext to a function defined on all of �̃U,ζ , first subtract a J where J is the
function in the list (31) in Example 1 and or in the list (32) in Example 2 which is even with
respect to the symmetry exchanging p1 and p2 and has J (pi ) = 1. Note that on can write
J = (η1

neck,r2
+ η2

neck,r2
)+ J̃ where J̃ ∈ C4,β

γ (S0). Then set

ūext := χext,r2

(
vext − a J̃

)
.

Finally, one deduces the estimate

|ūext|C4,β
γ

≤ C |w|
C2,β
γ−2

where the constant C is independent of ε.

Step 2: The neck regions Define the function

wneck := χneck,r3

(
w − (
U,ζ + 2(n + 1))(ūext)

)

and consider wneck as a function of compact support defined on the ε-scaled Lawlor neck
Nε. One now looks for a solution of the equation
N (u) = wneck where
N is the Laplacian
of Nε . Set γ ′ := −2 − γ . Since wneck has compact support, then wneck ∈ C2,β

γ ′−2(Nε)
where the norm in this case is the weighted Hölder norm on Nε with the weight function
ρε(λ) := ε

√
1 + λ2 given in the coordinates of the Lawlor neck. By the theory of the Laplace

operator on asymptotically flat manifolds, the operator


N : C4,β
γ ′ (Nε)⊕ D → C2,β

γ ′−2(Nε)

is surjective with a two-dimensional kernel. Here D is the deficiency space given by

D := spanR

{
χext,r3

|λ|2 , χext,r3

}
.

The reason for this is because the range (γ ′, γ ) contains rates of growth of the indicial roots
of the Laplacian corresponding to constant functions and functions which decay like the
Green’s function at infinity, and the symmetry conditions require f to be even with respect to
the transformation λ �→ −λ. Thus one can find a solution in this space, which has the form

uneck := vneck + b
χext,r3

|λ|2 , (35)
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94 A. Butscher

adding a constant if necessary, where vneck ∈ C4,β
γ ′ (Nε) and satisfies the estimates

|vneck|C4,β
γ ′ (Nε)

+ ε2+γ |b| ≤ Cr2+2γ
3 |wneck|C2,β

γ−2
(36)

for some constant C independent of ε. This is because wneck is supported in the region of
radius O(r3). Finally, extend uneck to all of �̃U,ζ simply by setting

ūneck := χneck,r4 uneck

and symmetrizing with respect to the group generated by ζU . Finally, one deduces the
estimate

|ūneck|C4,β
γ

≤ |vneck|C4,β
γ (Nε)

+ sup
r3/ε≤|λ|≤r4/ε

[ρε(λ)]−γ |b| |λ|−2

≤ C

[(r3

ε

)2+2γ +
(r3

ε

)γ ] |wneck|C2,β
γ−2

≤ C |w|
C2,β
γ−2

using Eq. (36) and the estimate for |ūext|C4,β
γ

given in Step 1 along with the values of the radii

ri and the estimate for |wext|C2,β
γ−2

in terms of |w|
C2,β
γ−2

.

Step 3: Estimates and convergence Set ū := ūext + ūneck. The estimates from Steps 1 and 2
show that |ū|

C4,β
γ

≤ C |w|
C2,β
γ−2

. The function ū should be seen as the approximate solution of

the equation (
U,ζ + 2(n + 1))(u) = w satisfying the appropriate estimate. To justify this,
it must be shown that |(
U,ζ + 2(n + 1))(ū) − w|

C2,β
γ−2

≤ 1
2 |w|

C2,β
γ−2

when ε is sufficiently

small. If this holds, then the procedure of Steps 1 and 2 can be iterated to yield an exact
solution in the limit and satisfying the appropriate estimate.

A straightforward calculation shows that

(
U,ζ + 2(n + 1))(ū)− w = 2(n + 1)ūneck

+(
U,ζ −
N )(ūneck)+ χext,r3(
U,ζ −
S)(ūext)

+[
N , χneck,r4 ](uneck)+ χext,r2(w − wext). (37)

where [
,χ](u) is notation for 
(χu) − χ
(u). The various terms in (37) are all small
multiples of |w|

C2,β
γ−2

when measured with respect to the C2,β
γ−2 norm, but for different reasons.

• The term on the first line is supported in the region r < r4. Thus its C2,β
γ−2 norm acquires

the factor r2
4 so that 2(n + 1)|ūneck|C2,β

γ−2
≤ Cr2

4 |w|
C2,β
γ−2

. This is can be made small with

a small enough initial choice of r4.
• In the terms on the second line, the operators
U,ζ −
S and
U,ζ −
N are uniformly

small where their arguments are supported, as can be deduced from Propositions 17, 20
and 25.

• In the term on the third line, the function uneck has been engineered to have strong decay
in the support of ∇χneck,r4 . Indeed, the estimate (36) implies that |vneck|C2,β

γ−2(Br4 \Br4/2)
≤

C(r3/r4)
2+2γ , Since r3/r4 = O(ε), this quantity can be made as small as desired by

choosing ε and the ri small enough. A similar analysis holds for the bχext,r3 |λ|−2 term
in ūneck.

• The remaining term is handled by Lemma 32 and becomes small when r1 is small enough.
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These arguments show that |(
U,ζ + 2(n + 1))(ū)−w|
C2,β
γ−2

≤ 1
2 |w|

C2,β
γ−2

provided that ε

is chosen sufficiently small. One can thus construct the right inverse that satisfies the desired
bound. ��
Proposition 38 Suppose n = 3 and choose γ ∈ (1, 2). Then the operator LU,ζ : X → Z
possesses a right inverse R : Z → X satisfying the bound |R( f )|

C4,β
γ

≤ C | f |
C0,β
γ−4

where C

is a constant independent of ε.

Proof The strategy of this proof is similar to that of the previous proof. In fact, the proof of
the existence of the right inverse of 
U,ζ : C2,β

γ−2(�̃U,ζ ) → C0,β
γ−4(�̃U,ζ ), bounded above

by a constant independent of ε, still follows from an argument by contradiction as before
because γ −2 ∈ (−1, 0) is in the correct range. What is different is that now the construction
of the right inverse for 
U,ζ + 2(n + 1) : C4,β

γ (�̃U,ζ ) → C2,β
γ−2(�̃U,ζ ) has to be modified

to take into account the range γ ∈ (1, 2). Indeed, Eq. (34) must be modified by expanding
uext up to order two and cancelling the linear term in the expansion with the linearly growing
functions in the kernel of
S + 2(n + 1) on S0 given in the lists (31) or (32). (One can check
that under the symmetry conditions on uext there are enough such functions to accomplish
this.) Then the solution procedure on the neck must be modified by enlarging the deficiency
space to include the functions with linear growth on the neck as well. By Lemma 36 one
can add a linear combination of these functions to eliminate the linearly growing term in the
solution on the neck. This leads to Eq. (35) but with O(|λ|−1) terms. The remainder of the
construction is unchanged. ��

The final estimate in the n = 2 case is more complicated still. This is because there is no
range of weights for which the Laplacian on punctured manifolds is bijective when n = 2 so
that one can no longer use a contradiction argument to derive the existence of an appropriately
bounded right inverse for 
U,ζ : [C2,β

γ−2(�̃U,ζ )]sym → Z . The patching technique of the
previous two propositions must thus be used for 
U,ζ as well as for 
U,ζ + 2(n + 1). And
both of these tasks are complicated by the fact that the odd harmonic function depending
only on the neck coordinate λ has logarithmic growth. This fact makes it necessary to exploit
the symmetries of �̃U,ζ even further.

Proposition 39 Suppose n = 2 and choose γ ∈ (1, 2). Then the operator LU,ζ : X → Z
possesses a right inverse R : Z → X satisfying the bound |R( f )|

C4,β
γ

≤ Cεγ−2| f |
C0,β
γ−4

where C is a constant independent of ε.

Proof The proof has two parts: the construction of a right inverse for
U,ζ : [C2,β
δ (�̃U,ζ )]sym

→ [C0,β
δ−2(�̃U,ζ )]sym with δ ∈ (−1, 0) and one for 
U,ζ + 6 : [C4,β

γ (�̃U,ζ )]sym →
[C2,β
γ−2(�̃U,ζ )]sym with γ ∈ (1, 2). Begin with the first of these constructions, in which

the equation 
U,ζ (w) = f for f ∈ [C0,β
δ−2(�̃U,ζ )]sym will be solved according to the fol-

lowing four steps. The condition
∫
�̃U,ζ

f = 0 which is built into the space [C0,β
δ−2(�̃U,ζ )]sym

will be used in a critical way below.

Step 0: Re-balancing the mass of f It will first be shown that one can find a solution of the
equation
U,ζ (w) = f̄trans where f̄trans is some function that coincides with f in an annular
region around each of the gluing points. Then one will be able to complete the construction
of the right inverse by finding local solutions on the neck and on the exterior regions of the
equation 
U,ζ (w) = f − f̄trans, which has the advantage that f − f̄trans vanishes in the
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annular region. The usefulness of this will become apparent in Step 3, where it provides the
additional precision required to match the local solutions properly.

To begin, consider the gluing points p1, p2 ∈ S0. For any pair of radii 0 < r0 < r4

let χtrans,r0,r4 be a smooth, monotone cut-off function that equals one in Pertε(S0) ∩[⋃
k Br4(pk)\Br0(pk)

]
and transitions to zero in Pertε(S0) ∩

[⋃
k B2r4(pk)\Br0/2(pk)

]
. Fix

two such radii and define

ftrans := f χtrans,r0,r4 .

An approximate solution of the equation 
U,ζ (u) = ftrans can be found as follows. View
ftrans as a symmetric function defined on S∗

0 carrying a small perturbation of the standard
metric, and consider the equation 
S(u) = ftrans on S∗

0 . By the theory of the Laplacian on

punctured manifolds, δ ∈ (−1, 0) is in the range where 
S : C2,β
δ (S∗

0 ) → C0,β
δ−2(S

∗
0 ) is

surjective. Let wtrans ∈ C2,β
δ (S∗

0 ) be a solution of this equation and extend it to all of �̃U,ζ

by setting

w̄trans := χtrans,r0/4,4r4wtrans

and extending by symmetry. Now compute


U,ζ (w̄trans) = (
U,ζ −
S)(w̄trans)+ [
S, χtrans,r0/4,4r4 ](wtrans)+ ftrans. (38)

The following estimates are valid. First,

|w̄trans|C2,β
δ

≤ C | f |
C0,β
δ−2

and |[
S, χtrans,r0/4,4r4 ](wtrans)|C0,β
δ−2

≤ C | f |
C0,β
δ−2

for a constant C independent of ε; and as usual, the first term in (38) is small, satisfying

(
U,ζ −
S)(w̄trans)|C0,β
δ−2

≤ C

(
ε2n

r2n
0

+ r2
4

)

|wtrans|C2,β
δ

≤ 1

2
| f |

C0,β
δ−2

provided ε and r4 are small enough and r0 ≥ κε for κ sufficiently large. This follows from
Proposition 17. As a result, the procedure above can be iterated to yield a solution of the
equation


U,ζ (w̄trans) = f̄trans

where f̄trans := ftrans + Etrans and Etrans has support outside of Pertε(S0) ∩ [⋃
k Br4(pk)\

Br0(pk)
]
. One has the estimates |w̄trans|C2,β

δ

+ |Etrans|C0,β
δ−2

≤ C | f |
C0,β
δ−2

for a constant C

independent of ε. Note that it is necessarily the case that
∫
�̃U,ζ

f̄trans = 0.

Step 1: The neck regions The outcome of Step 0 is that it is now only necessary to solve the
equation
U,ζ (u) = f̂ where f̂ := f − f̄trans vanishes in Pertε(S0)∩

[⋃
k Br4(pk)\Br0(pk)

]

and satisfies | f̂ |
C0,β
δ−2

≤ C | f |
C0,β
δ−2

. Note that it is necessarily the case that
∫
�̃U,ζ

f̂ = 0.

Choose r1 < r2 < r3 ∈ (r0, r4) and set fneck := χneck,r1 f̂ . An approximate solution of the
equation
U,ζ (w) = fneck will now be found. To this end, view fneck as a function of compact
support on the ε-scaled neck Nε and look for a solution of the equation 
N (w) = fneck in
C2,β
δ′ (Nε) where δ′ ∈ (−1, δ). The purpose is to use the compactness of the support of fneck

to squeeze some extra decay at the ends of the neck out of the solution. The decomposition
results used in Proposition 37 are valid and by using the symmetry of fneck, there is a solution
of the form

wneck := vneck + aχext,r1 L
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where vneck ∈ C2,β
δ′ (Nε) satisfies the estimate |vneck|C2,β

δ′ (Nε)
≤ Cr δ−δ

′
1 | f |

C0,β
δ−2

and

L(λ) := log(|λ|)+ L̃(λ) belongs to the kernel of
N , with L̃(λ) = O(|λ|−1). The coefficient
a can be found explicitly:

a = 1

4π

∫
fneckd VolN

where dVolN is the volume form of the metric on Nε . Finally, extend this solution to all
of �̃U,ζ by defining w̄neck := χneck,r2wneck and symmetrizing. One has |w̄neck|C2,β

δ

≤
C
(

r δ−δ
′

1 + εδ
)

| fneck|C2,β
δ−2

where εδ comes from the estimate |a| ≤ Cεδ| f |
C0,β
δ−2

.

Step 2: The exterior regions Set fext := χext,r3 f̂ . An approximate solution of the equation

U,ζ (w) = fext will now be found. To this end, view fext as a function of compact support

on S∗
0 and look for a solution of the equation
S(w) = fneck in C2,β

−δ (S∗
0 ). The decomposition

results used in Proposition 37 are valid and by using the symmetry of fneck, there is a solution
of the form

wext := vext + a′χneck,r3 L ′

where vneck ∈ C2,β
−δ (S∗

0 ) satisfies the estimate |vneck|C2,β
−δ (S0)

≤ Cr2δ
3 | f |

C0,β
δ−2

and L ′ has loga-

rithmic growth near p1 and p2. Without loss of generality, one can assume that
L ′(λ) := log(|λ|) + L̃ ′(λ) with L̃ ′(λ) = O(|λ|−1) in the common λ-coordinate on the
region of overlap between the neck and Pertε(S0). The coefficient a′ can again be found
explicitly:

a′ = − 1

4π

∫
fextd VolS

where VolS is the volume form of the standard metric on S0. Finally, extend this solution
to all of �̃U,ζ by defining w̄ext := χext,r2wext and symmetrizing. One has |w̄ext|C2,β

δ

≤
C
(
r2δ

3 + εδ
) | fext|C2,β

δ−2
.

Step 3: Estimates and convergence Set w̄ := w̄neck+w̄ext and consider w̄ as the approximate
solution of the equation 
U,ζ (w̄) = f̂ . Before justifying this, it is straightforward to show
that

a =
∫

�̃U,ζ

fneckd Vol +
∫

�̃U,ζ

fneck(dVolN − dVol) = A + O(r2+δ
0 )

a′ = −
∫

�̃U,ζ

fextdVol −
∫

�̃U,ζ

fext(dVolS − dVol) = A + O(ε2)

where A := ∫
�̃U,ζ

fneck and
∫
�̃U,ζ

fext = −A. Now perform the computation


U,ζ (w̄)− f̂ = (

U,ζ −
N

)
(w̄neck)+ (


U,ζ −
S
)
(w̄ext)

+[χneck,r2 ,
N ](wneck)+ [χext,r2 ,
S](wext)

+χneck,r2 fneck + χext,r2 fext − f̂
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= (

U,ζ −
N

)
(w̄neck)+ (


U,ζ −
S
)
(w̄ext)

+[χneck,r2 ,
N ](vneck)− [χneck,r2 ,
S](vext)

+[χneck,r2 ,
N ](aL̃)− [χneck,r2 ,
S](a′ L̃ ′)
+[χneck,r2 ,
N −
S](a log(|λ|))− [χneck,r2 ,
S]((a′ − a) log(|λ|))

(39)

using the formulæ for a and a′ as well as the fact that f̂ vanishes between radii r1 and r3.
The usual analysis can now be invoked to show that each term in (39) is small a small enough
multiple of | f |

C0,β
δ−2

in the C0,β
δ−2 norm by suitable a priori choice of ri and small enough ε.

The conclusion to be drawn from the work above is that iteration produces a solution
of the equation 
U,ζ (w̄) = f̂ satisfying the estimate |w̄|

C2,β
δ

≤ Cεδ| f |
C0,β
δ−2

where C is a

constant independent of ε. Coupled with the result of Step 0, one now has a right inverse R1 :
[C0,β
δ−2(�̃U,ζ )]sym → [C2,β

δ (�̃U,ζ )]sym satisfying the bound |R1( f )|
C2,β
δ

≤ Cεδ| f |
C0,β
δ−2

.

It remains to construct the right inverse for
U,ζ+6 : [C4,β
γ (�̃U,ζ )]sym →[C2,β

γ−2(�̃U,ζ )]sym

with γ ∈ (1, 2). This task is simpler given the range for γ . In fact, the procedure of Propo-
sition 38 can be used almost verbatim, except replacing w∗ with w⊥∗ where ∗ refers to either
neck or ext and ⊥ refers to the L2-projection perpendicular to the constant functions. Thus
logarithmic terms will not appear in the solutions u∗. The discrepancy |w∗ − w⊥∗ |

C2,β
γ−2

is

sufficiently small not to spoil the convergence of the iteration. The result of this analy-
sis is a right inverse R2 : [C2,β

γ−2(�̃U,ζ )]sym → [C4,β
γ (�̃U,ζ )]sym satisfying the bound

|R2(w)|C4,β
γ

≤ C |w|
C2,β
γ−2

. ��

7 The non-linear analysis

7.1 The Non-linear estimates

The remainder of the proof of the Main Theorem is devoted to establishing the final two
fundamental estimates (25) and (26) needed to invoke the inverse function theorem. Choose
γ ∈ (4 − n, 0) for n ≥ 5 as well as γ ∈ (4 − n, 5 − n) for n = 4, 3 and γ ∈ (1, 2) for n = 2.

Proposition 40 The approximate solution �̃U,ζ satisfies the following estimate. There exists
some constant C independent of ε so that

‖�U,ζ (0)‖C0,β
γ−4(�̃U,ζ )

≤ Cr4−γ
ε . (40)

Proof By Proposition 17 the divergence of the mean curvature in the exterior region �′
satisfies

[ρε(x)]4−γ |∇ · H(x)| ≤

⎧
⎪⎨

⎪⎩

Cε3n x ∈ �′′

Cε3n

r3n−2+γ dist(x, pi ) = r and r ≥ rε.

By Proposition 25 the divergence of the mean curvature in the neck region N satisfies

ε4−γ (1 + λ2)(4−γ )/2|∇ · H(λ, µ)|
≤ Cε4−γ

[
1

(1 + λ2)(n−4+γ )/2 + (1 + λ2)2
]

for |λ| ≤ rε/ε.
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By Proposition 27 the divergence of the mean curvature in the transition region T satisfies

r4−γ
ε |∇ · H | ≤ C

[
εn+1

rn−3+γ
ε

+ r4−γ
ε

]

The desired supremum estimate is obtained by taking the supremum above and using the
ranges for γ and the fact that ε < rε. The estimate of the Hölder coefficient follows similarly.

��
Proposition 41 The linearization of the contact-stationary Legendrian operator near �̃U,ζ

satisfies the following estimate. If ε is sufficiently small, then there is a constant C independent
of ε so that

∥
∥D�U,ζ ( f )(u)− LU,ζ (u)

∥
∥

C0,β
γ−4

≤ Cε−2+γ ‖ f ‖
C4,β
γ

‖u‖
C4,β
γ

(41)

for all u, f ∈ C4,β
γ (�̃U,ζ ).

Proof The desired estimate will be proved using scaling arguments as in [3,19]. By com-
pactness, the estimate is certainly true in the region�′ of �̃U,ζ . So consider a small annular
region �σ := Aσ ∩ (N ∪ T ) in �̃U,ζ . It is sufficient to perform the calculations for the
Lagrangian projection [�σ ] in CP

n . Consider the operator

�σ ( f ) := ∇ ·
(

H
φ̂Eσ ( f )[�σ ] ω0

)
(42)

where Eσ ( f ) is the extension of a function f : �σ → R to a tubular neighbourhood of [�σ ]
and φ̂Eσ ( f ) is the associated time-one Hamiltonian flow.

The next step is to determine how all the objects in (42) scale with σ . First, [�σ ] = σ [�1]
where �1 = A1 ∩ σ−1(N ∪ T ). Moreover, [�1] is some Lagrangian submanifold whose
geometry is bounded by a universal constant since the norm of the second fundamental form
of [�σ ] in the annulus Aσ is O(σ−1). Suppose that [�1] carries the metric g1 so that [�σ ]
carries the metric gσ = σ 2g1. Since Eσ ( f ) = f ◦ exp−1

�σ
near �σ , then one can check that

φ̂Eσ ( f )([�σ ]) = σ φ̂E1( f/σ 2)([�1]). Consequently,

�σ ( f ) = ∇ ·
(

H
(
σ φ̂E1( f/σ 2)([�1])

)
ω0

)
= 1

σ 2�1

(
f

σ 2

)
(43)

using the scaling property of the mean curvature and the covariant derivative under conformal
transformation. All quantities on the right hand side of (43) refer to the metric g1.

One can now derive the desired estimate. Equation (43) implies that D�σ in Aσ must
satisfy

∣
∣D�σ ( f )(u)− D�σ (0)(u)

∣
∣ = 1

σ 2

∣
∣
∣
∣D�1

(
f

σ 2

)( u

σ 2

)
− D�1(0)

( u

σ 2

)∣∣
∣
∣

≤ C

σ 6 ‖ f ‖C4(�1)
‖u‖C4(�1)

(44)

where C is some universal constant pertaining to �1 on �1. Multiplying by σ 4−γ and
reversing the scaling in Eq. (44) gives

∥
∥D�σ ( f )(u)− D�σ (0)(u)

∥
∥

C4
γ−4(�σ )

≤ Cσ−2+γ ‖ f ‖C4
γ (�σ )

‖u‖C4
γ (�σ )

, (45)

where all quantities in (45) refer to the metric gσ . One can now piece the above estimates
together for different Aσ , using the fact that the smallest σ can be is O(ε) in the center

123



100 A. Butscher

of the neck region, and obtain the desired supremum estimate. The estimate of the Hölder
coefficient follows similarly. ��
7.2 The proof of the Main Theorem

The Main Theorem to be proved in this paper, re-formulated in the more technical language
of the preceding sections, is as follows.

Theorem 42 Let U ∈ SU (n + 1) be as in Example 1 or 2 and let ζ = e2π ia/k N be such that
it is possible to construct an approximate solution �̃U,ζ as in Sect. 4. Let X, Z be the Banach
subspace of functions on �̃U,ζ defined in Definition 31. Choose γ ∈ (4 − n, 0) for n ≥ 5 as
well as γ ∈ (4 − n, 5 − n) for n = 4, 3 and γ ∈ (1, 2) for n = 2. Set rε := εs . Then there
is s ∈ (0, 1) so that a solution of the contact-stationary Legendrian equation �U,ζ ( f ) = 0

can be found with f ∈ X satisfying the bound | f |
C4,β
γ

≤ Cr4−γ
ε .

Proof The proof is a re-organization and summary of all the main results from the pre-
vious sections. It is necessary to establish the following facts. First, one must show that
lim supε C(ε)‖QU,ζ ‖op < 1/2 where ‖QU,ζ ‖op is the operator norm of QU,ζ calculated in
Lemma 33 and C(ε) is the upper bound for the right inverse of LU,ζ found in Sect. 6.2.

Since |�U,ζ (0)|C0,β
γ−4

= O(r4−γ
ε ) found in Proposition 40 and R(ε) = O(ε2−γ ) found in

Proposition 41, one must then show that r4−γ
ε εγ−2C(ε) can be made as small as desired,

where C(ε) is the upper bound for the right inverse of LU,ζ found in Sect. 6.2.

• When n ≥ 3 then C(ε) = O(1) and

lim
ε→0

‖QU,ζ ‖ ≤ C · lim
ε→0

(
εn−s(n−2) + ε2 + ε4s

)
= 0

provided s< n/(n−2). Also, r4−γ
ε εγ−2 = ε(4−γ )s+γ−2 → 0 when s>(2−γ )/(4−γ ).

By choice of γ and n, the range of such s ∈ (0, 1) is non-empty and thus the theorem is
true.

• When n = 2 then C(ε) = O(εγ−2) and

lim
ε→0

C(ε)‖QU,ζ ‖ ≤ C · lim
ε→0

(
ε2 + ε4s) εγ−2 = 0

provided s > (2−γ )/4. Also, r4−γ
ε ε2γ−4 = ε(4−γ )s+2γ−4 → 0 when s>(4−2γ )/(4−γ ).

By choice of γ the range of such s ∈ (0, 1) is non-empty and thus the theorem is true.

This completes the proof of the theorem. ��
7.3 Embeddedness of the solutions

Denote the solution of the contact-stationary Legendrian problem constructed from
U ∈ SU (n + 1) with ζ = e2π i/k in the previous sections by fk . Let φ fk be the contact
deformation constructed from fk using the method developed in Sect. 5.3. A simple chain
of reasoning shows that the deformed submanifold φ fk (�̃U,ζ ) is embedded whenever �̃U,ζ

itself is, so long as k is sufficiently large.
Suppose that �̃U,ζ is embedded in S

2n+1. Then �̃U,ζ is contained in some non-
self-intersecting tubular neighbourhood of itself. The width of this tubular neighbourhood
is clearly larger in the parts of �̃U,ζ that are subsets of some U s(S0) and smaller in the
neck regions of �̃U,ζ . In fact, one can argue based on scaling that the width of the tubular
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neighbourhood at a point p ∈ �̃U,ζ is O(ρε(p)) where ρε is the weight function from Def-

inition 28 that is used to define the Cl,β
γ norm. The question of embeddedness can now be

re-phrased in terms of this tubular neighbourhood: φ fk (�̃U,ζ ) fails to be embedded if either
φ fk (�̃U,ζ ) has local self-intersection somewhere within the tubular neighbourhood, or else
φ fk (�̃U,ζ ) intersects itself by leaving the tubular neighbourhood somewhere and re-entering
it somewhere else.

In order to decide if φ fk (�̃U,ζ ) intersects itself in one of these two ways, one must
understand how ‘far’ the contact deformation φ fk can move the points of �̃U,ζ . Recall that
φ fk is the time-one flow of the contact vector field corresponding to the function E( fk) that
is an extension of fk orthogonal to �̃U,ζ . Thus the distance of φ fk (p) from p is governed by
the size of this vector field, which in turn is governed by the size of fk (in the Hopf direction)
and the first derivative of fk (in contact directions) so long as these quantities are sufficiently
small. Moreover, φ fk (�̃U,ζ ) remains graphical over �̃U,ζ so long as the derivative of φ fk

remains sufficiently small, which in turn requires that fk is small up to its second derivative.
In fact, it is necessary to have | fk(x)| + |∇ fk(x)| = O(ρε(x)) and |∇2 fk(x)| ≤ O(1) for
all x ∈ �̃U,ζ . It is now a simple matter to verify that the estimates of the size of fk and its
derivatives from Theorem 42 imply that the requirements for embeddedness are met, provided
the approximate solution �̃U,ζ is an embedded submanifold of S

2n+1 to begin with.
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