Evolving Through the Looking Glass: Learning
Improved Search Spaces with Variational
Autoencoders

Peter J. Bentley'>®™_ Soo Ling Lim!, Adam Gaier?, and Linh Tran?
1 Department of Computer Science, University College London (UCL), London, UK
p.bentley@cs.ucl.ac.uk
2 Autodesk Research, London, UK

Abstract. Nature has spent billions of years perfecting our genetic representa-
tions, making them evolvable and expressive. Generative machine learning offers
a shortcut: learn an evolvable latent space with implicit biases towards better
solutions. We present SOLVE: Search space Optimization with Latent Variable
Evolution, which creates a dataset of solutions that satisfy extra problem criteria
or heuristics, generates a new latent search space, and uses a genetic algorithm
to search within this new space to find solutions that meet the overall objective.
We investigate SOLVE on five sets of criteria designed to detrimentally affect the
search space and explain how this approach can be easily extended as the prob-
lems become more complex. We show that, compared to an identical GA using
a standard representation, SOLVE with its learned latent representation can meet
extra criteria and find solutions with distance to optimal up to two orders of mag-
nitude closer. We demonstrate that SOLVE achieves its results by creating better
search spaces that focus on desirable regions, reduce discontinuities, and enable
improved search by the genetic algorithm.

Keywords: Variational autoencoder - Latent variable evolution - Generative
machine learning - Genetic algorithm

Step 1 Step 2 Step 3
—>
v=8-Dd—y—s—o
Optimizer Dataset Variational Learned Latent Genetic Solution
T Autoencoder Representation Algorithm

@

Extra Criterion Extra Criterion Objective

Fig. 1. Search space Optimization with Latent Variable Evolution (SOLVE). An optimizer pro-
duces a dataset of random solutions satisfying an extra criterion (e.g., constraint or secondary
objective). A variational autoencoder learns this dataset and produces a learned latent represen-
tation biased towards the desired region of the search space. This learned representation is then
used by a genetic algorithm to find solutions that meet the objective and extra criterion together.

© The Author(s) 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13398, pp. 371-384, 2022.
https://doi.org/10.1007/978-3-031-14714-2_26

https://doi.org/10.1007/978-3-031-14714-2_26

372 P. J. Bentley et al.

1 Introduction

In nature, the mapping from gene to phenotypic effect is hugely complex. Any new
human genetic trait will be propagated through trillions of cells, which via a complex
developmental process involving gene regulatory networks, intercellular communica-
tion, pattern formation and differentiation, results in altered phenotypic characteristics:
an improved ability to taste bitter substances; an increased likelihood of developing an
immunity to certain diseases; a reduced propensity to be creative. There is pervasive
pleiotropy in the human genome [1] and yet like all living organisms, we have evolved
and continue to do so, with most of our offspring remaining viable as healthy functioning
organisms. Somehow, nature has learned a genetic representation that is astonishingly
expressive, searchable, and despite constant genetic innovation, maps to viable living
creatures that satisfy the multiple criteria of survival.

In evolutionary computation our hand-designed genetic representations are usually
mapped directly to phenotypic effects so that we have minimal pleiotropy. Yet if we
introduce any additional criterion or constraint, our evolutionary algorithms still strug-
gle. From an optimization perspective, the additional criteria distort the search space,
adding discontinuities and deceptive regions that result in ineffective optimization [2].
Typical solutions involve modifying the search operators or the optimization algorithm
to overcome problems in the search space [3—5]. These specialized algorithms may need
tuning for each problem and require expertise, which may not always be available.

Recent work has used autoencoders to learn representations when performing black
box optimization. We extend our previous work [6] and propose a variation of this idea:
learn a better search space. In contrast to previous work which aims to reduce the
problem dimensionality, here we investigate the idea that a generative machine learning
approach could map a difficult-to-search genotype space into an easier-to-search latent
space. This new space would be biased towards solutions that satisfy the additional
criteria to the problem, while at the same time smoothing out discontinuities in the
space, effectively achieving evolution of evolvability [9] by using deep learning as a
shortcut.

To achieve this objective, we introduce SOLVE: Search space Optimization with
Latent Variable Evolution (Fig. 1). SOLVE generates a dataset from problem criteria
(a constraint, secondary objective, or heuristic). A Variational Autoencoder (VAE) [10,
11] is applied to the dataset to generate a learned latent representation biased towards
solutions that satisfy the criteria. A Genetic Algorithm is then used to evolve in the
corresponding latent search space and find solutions that also satisfy the overall objec-
tive. We provide a step-by-step investigation of this approach, examining improvements
provided for optimization in latent space vs. genotype search space through a selection
of different types of criterion. To better isolate the effect of the learned search space, we
employ only a very simple optimizer.

SOLVE is not a multi-objective optimization algorithm — it aims to find single solu-
tions that meet one objective and one or more extra criteria. SOLVE is also not a constraint
satisfaction approach — while constraints can be recast as additional criteria [6], it cannot
guarantee that they will always be met. Instead, SOLVE is a search space optimizer. It is
suitable for difficult problems that can be broken down into separate objectives, criteria
and/or constraints, or that may have important domain knowledge available in the form

Evolving Through the Looking Glass 373

of heuristics or required features. SOLVE shows for the first time that a VAE can be
used to map a difficult-to-search space into a latent space that is easier to search, without
relying on parameter reduction.

2 Background

2.1 Variational Autoencoders

An autoencoder [7] is a neural network originally used for feature learning or dimension-
ality reduction, but its concept became widely popular for learning generative models
of the data. An autoencoder consists of two parts - an encoder p and a decoder g. The
encoder maps the observations x to a (lower dimensional) embedding space z, whereas
the decoder maps the embeddings back to the original observation space. We denote the
reconstructed data as x’. The autoencoder is trained to minimize the reconstruction error
between observation and decoded output and simultaneously project the observations
into the lower dimensional “bottleneck”.

The Variational Autoencoder (VAE) is a probabilistic autoencoder proposed concur-
rently by Kingma et al. [8] and Rezende et al. [9]. The architecture of a VAE is similar to
the one of autoencoders described above. However, instead of encoding an observation
as a single point, VAEs encode it as a distribution over the latent space. Due to its sim-
plicity and the resulting analytical solution for the regularization, the distribution is set
to be an isotropic Gaussian distribution. From a Bayesian perspective, VAEs maximize
a lower bound on the log-marginal likelihood, which is given by

logp(x) = By, [logpy(x|2)] — Dxr(qzI0)|lp()] =1 —Lyap(x;6,¢) (1)

log likelihood latent space regularization

where 6 are the model parameters of encoder p and ¢ are the model parameters of decoder
q. The expected log-likelihood or “reconstruction”, the first term of Eq. (1), is propor-
tional to the mean squared loss between decoded output and input observation if the
output distribution is Gaussian. The second term of Eq. (1) denotes the Kullback-Leibler
(KL) divergence and measures the similarity between the latent variable distribution ¢
and a chosen prior p. In the common VAE, the latent variable distribution is isotropic
Gaussian and parameterized through the neural network g4 and the prior distribution
is a Gaussian distribution with zero mean and diagonal unit variance N (0, I). The KL
divergence has an analytical solution. The final minimization objective is

Lyap(x; 0, ¢) = —Ey, [logpo (x]2)] + Dxr(q(zn)lp@)] o¢ I — x>
+ Dkr(q(z)Ip(2)] 2)

2.2 Evolving Latent Variables

The ability of deep learning systems like VAEs to learn representations has not gone
unnoticed by the evolutionary optimization community. Latent variable evolution (LVE)

374 P. J. Bentley et al.

techniques first train generative models on existing datasets, such as video game levels,
fingerprints, or faces and then use evolution to search the latent spaces of those models.
Game levels can be optimized for a high or low number of enemies [10], fingerprints to
defeat biometric security [11], celebrity look-alike faces can be generated with varied
hair and eye colors [12], and VAEs can learn alternative search spaces for GP [13]. When
no existing dataset of solutions is available, these solution sets must be generated. In [14,
15], solutions were collected by saving the champion solutions found after repeatedly
running an optimizer on the problem. A representation learned from this set of champions
can then be effective in solving similar sets of problems.

Quality-diversity [16, 17] approaches have been blended with LVE to improve opti-
mization in high dimensional spaces. DDE-Elites [18] learns a ’data-driven encoding’ by
training a VAE based on the current collection, and uses that encoding together with the
direct encoding to accelerate search. The related Policy Manifold Search [19] uses a VAE
trained in the same way as part of a mutation operator. Standard and surrogate-assisted
GAs have also been shown to benefit from having learned encodings “in-the-loop” in
order to better tackle high-dimensional search spaces [20, 21].

A learned representation does more than reduce the dimensionality of the search
space — it reduces the range of solutions which can be generated [22]. A model trained
on Mario levels will never produce Pac-man levels, a model trained on predominantly
white faces will only produce white faces. In this work we subvert the biases of models
to limit search to desirable regions. Our previous work introduced this idea for constraint
handling [6], here we expand the concept to problems with additional criteria.

3 Method

The SOLVE approach comprises three steps: Dataset Generation, Representation
Learning, and Optimization.

3.1 Step 1: Dataset Generation

SOLVE decomposes the problem of optimization into stages, similar to [23]: the first
step (Fig. 1 left) is the generation of a set of solutions that meet a criterion, without
regard to their performance on the objective. When the only requirement is to satisfy
a single criterion out of several, the search problem becomes much easier. Where it is
feasible to calculate random values that satisfy the criterion using a dedicated algorithm,
e.g., a constraint solver, this is typically the fastest method. However, it is sufficient to
use a simple genetic algorithm for many criteria.

To produce the dataset of solutions we use the simple genetic algorithm defined in
the DEAP framework [22]. We use real encoding, with a real-valued gene corresponding
to each variable of the overall problem including variables that may be in the objective
function and not in the extra criterion. Fitness is defined only by the criterion with a
threshold used to determine acceptability for that criterion. The criterion fitness is zero
if the value is under the threshold, otherwise it is set to a linear distance value representing
the degree to which the criterion has been met, e.g., for 45 —x < = 0: if x < 45 then

Evolving Through the Looking Glass 375

fitness f(x) = 45 — x; otherwise f(x) = 0. If the best individual in the population achieves
a fitness of 0 it is added to the dataset and the run terminates.

The genetic algorithm is run repeatedly until a dataset of d values has been found
(typical execution times for C1 were no more than 10 ms per run, with a dataset of
5000 values taking less than 30 s on a MacBook Air 2020 M1, 16 GB memory). Each
run used different initial populations, producing a distribution of values in the feasible
region. These solutions provide a sampling of the valid region that serves as the basis for
the learned representation. Should coverage be insufficient, or should a more efficient
method be required, alternative algorithms which explicitly search for diversity such
as Clustering [24], Clearing [25], Novelty Search [26], or MAP-Elites [27] could be
employed for this step. Specialized constraint satisfaction algorithms could be used if
the criterion takes the form of a constraint [28, 29].

3.2 Step 2: Representation Learning

Redesigning representations offers an alternative approach to optimization: a represen-
tation that has a bias towards the expression of useful or desirable solutions can enable
simple optimizers to find good solutions, removing the requirement of needing expert
tuning or development of specialized optimization algorithms.

In the second step of SOLVE (Fig. 1 middle), we use a simple VAE! with a standard
loss function from [8]. We use one latent variable for every variable in the problem. We
transform the input from the dataset to -1.0 to 1.0 (although the data-generation GA was
limited to this range, its output data can focus on a smaller area of the search space and
thus the dataset range may be smaller) and learn for E epochs. We refer the reader to the
Supplemental Material® for full details.

3.3 Step 3: Optimization

In the third step (Fig. 1 right), we use the objective function for the first time and use
a GA to search for optimal solutions that also satisfy the extra criterion in the learned
latent space. Again, we use DEAP with real encoding, each gene corresponding to a
latent variable with range —2.0 to 2.0 (typically sufficient to express the full learned
range in the latent representation) with the results of all operators bound to this range.
The same crossover and mutation operators are used as described in step 1.

Individuals are evaluated by decoding the latent values using the learned VAE model,
mapping back to the range of the problem, and applying the fitness function. Fitness is
a combination of the criterion, as formulated in Subsect. 3.1, and objective function. To
ensure both are treated equally, we use tournament fitness, which awards individuals
an average fitness score based on how many times it beats another individual for each
objective and criterion over a series of smaller tournaments, similar to [3], chosen to
encourage diversity akin to [30]. This approach avoids the need for summing and weight-
ing separate criteria or using penalties for constraints [2, 31] and preliminary experiments
using this method on benchmark problems with a standard GA resulted in significant

1 https://github.com/pytorch/examples/tree/master/vae.
2 http://www.cs.ucl.ac.uk/staff/p.bentley/solvesupplemental.pdf.

https://github.com/pytorch/examples/tree/master/vae
http://www.cs.ucl.ac.uk/staff/p.bentley/solvesupplemental.pdf

376 P. J. Bentley et al.

improvements to optimization with the settings used here. See the Supplemental Mate-
rial for the tournament fitness algorithm. Parent selection is then performed using the
same tournament selection (t size = 3) as described in step 1. A small population size
evolving for few generations is sufficient.

4 Experiments

For all experiments we use a simple objective function to minimize for D variables:
D—1
- _ 2
f@=3 3)

Table 1 provides the additional criteria used to modify the search space of Eq. (3).
These represent several commonly observed constraint and optimization functions
inspired by the analysis in [34]: the range limit (C1), correlated variables in the form

Table 1. Extra criteria designed to conflict with the objective optimal.

Criterion Equation Search space
D-1
C1: Range limit 2(45 -x)<0

i=0

vi € {0,..,D — 2}

C2: Dependency 8 < (x11y — ;) < 10

C3: Nonlinear (Shift-
ed, generalised Rosen-
brock [32])

vi€{0,..,D — 2}
100((XL - 3)2 — Xiy1 — 3)2 + (Xl' - 4') <=0

C4: Multiple depend- C4.1: 80 —xy —x; <0
encies and range limits C4.2: x, +45 <0

over different subsets C4.3: 60 — x,/2 —x3 <0
of problem variables C44: =7 < (x5 +x3) <=5

1/[¥32,((x — A[L,jD®
—(x; —A[2,jD6 +)1 +€]—445<0

C5: Discontinuous, N A e RIS 0.002
D=2 (Shifted, rotated W11 4 € and € = %
(Shifted, rotate cos(d) —sin(d)]axo

DeJong [33]) [i:] = [Sin(D cos(d)] [axl] +b
d= —33,a=039b=[9,-3]"

[C—1 Vaiid Region -
== invalid Region =22 Oblective

Evolving Through the Looking Glass 377

Cc1 C2 L&}
Sampling of Latent Space Projected on to Original Space Projected on to Original Space Projected on to Original Space
50 50

Y
2 y - 25 \

50 -50
25 50 =50 -25 0 25 50 -50 -25 [25 50

=3 Valid Region = Invalid Region B Points Sampled from VAE |

Fig. 2. Visualizing the Learned Landscapes. We can observe how the VAE shapes the space to
be searched. Left: xg and x; values from —2 to 2 are color-coded to their locations in the learned
space. Others: when these points in the learned space are projected back to the original space they
are confined closely to the valid regions as defined by C1, C2 and C3.

of chained inequality (C2), the more complex Rosenbrock function [32] used in opti-
mization competitions (C3) [35], multiple criteria (C4), and a discontinuous, multimodal
function (C5). For all experiments, the range of the problem (objective and criteria) is
—50 to 50.

4.1 Single Criterion (C1, C2, C3)

We initially focus on problems with one extra criterion. We investigate C1, C2, and C3,
each designed to create a search space that cannot be solved reliably using a standard
GA. The criteria achieve this by conflicting with the true optimal of Eq. (3) forcing
the optimizer to compromise to meet the objective and criterion equally. We apply
each step of SOLVE: generating data, learning new representation, using a GA to find
optimal solutions with this representation. First, we examine the VAE and its learned
representation.

Visualizing Learned Latent Representations. To understand how the learned latent
representation may be beneficial for the GA in SOLVE, we plot the distribution of values
returned by the latent representation as we vary the latent variables from —2 to 2 for C1
and C2. Figure 2 shows how the search space is compressed and folded into the small
valid region for C1. This gives the dual advantage of reducing the search space to focus
on the valid region and improving evolvability through duplication, with different values
for the latent variables mapping to the same valid region. For C2 the space is compressed
into a straight line, showing that the VAE has learned the correlation between the two
variables.

Comparing Learned Latent Representation with Standard Representation. We
examine criteria C1 to C3, using SOLVE to generate valid, optimal solutions and com-
pare results to a standalone GA. The number of parameters D for the objective and
criterion were varied from 1 to 10 to examine the effects of scaling the problem. The
simple GA within step 1 of SOLVE generated data for C1 and C3 (5000 points).

This GA was unable to generate data for C2 for higher dimensions in feasible time,
so 5000 random datapoints were calculated directly from the criterion in this case. The
algorithm is provided in Supplementary Material.

378 P. J. Bentley et al.

~—— SOLVE ~—— SOLVE 130 — GA 5750
020 350
5500
s 300 125
. 5250
s £ 2 5 5000
% 0.10 2 200 2115 a
e e e S 4150
150
0.05 110 4500
100
0.00 0 105 4250 A
0 o 20 30 40 50 0 o 20 30 40 350 0 10 20 30 40 50 0 10 20 30 40 50

Generation Generation Generation Generation

Fig. 3. Example run showing SOLVE criterion error (far left), SOLVE objective error over time
(middle left), standalone GA criterion error (middle right) and standalone GA objective error over
time (right) for 3 variable C1, and averaged over entire population. Note difference in y-axis scales
for SOLVE and standalone GA results.

C1: Average criterion error (per variable) C2: Average criterion error (per variable) 25 1£3: Average criterion error (per variable)
35 - GA 10 mem GA - GA
W SOLVE W SOLVE W SOLVE

530 5 £ 2.0
I3 g8 e
&
225 H <
s s S1s
g20 g° g
S S S
$15 2 4 2 1.0
4 e s
] g g
210 g 5
e <, <5

5

0 0 0.0

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of variables Number of variables Number of variables
C1: Average percentage objective error C2: Average percentage objective error C3: Average percentage objective error
- GA - GA 6001 mmm GA
. 80 mm SOVE 700 W= SOLVE | == SOLVE
S g 2500
5 £ 600 5
@ o o
860 & 500 8400
g g 400 £ 300
&40 g g
@ 300 o
g g 2200
< < <
100 100
0 0 0
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 1 9 10 2 3 4 5 6 7 9 10
Number of variables Number of variables Number of variables

Fig. 4. Average error per criteria and average percentage error from best solution, over 100 runs,
for different numbers of variables (D = 1..10). SOLVE always met C1 and C2; almost always C3.
Error bars: mean £ SE.

We compare SOLVE with a standalone GA evolving a direct representation of the
same problem (each gene real coded and bound to between —1.0 to 1.0, and using the
same fitness calculation, selection, population size of 20 and 50 generations). Every run
for both representations was repeated 100 times and average (mean) results reported.
In order to enable comparison of achieving different optimal solutions, we calculate
objective error as difference between f (x) (Eq. 3) and optimal, divided by optimal x 100,
and criterion error is distance to criterion divided by number of variables.

Figure 3 shows a representative sample run comparing SOLVE evolution vs. stan-
dalone GA for C1 with D = 3 variables. While the GA struggles to evolve solutions
that satisfy C1 and meet the objective, with evolution becoming stuck in a poor local
optimal, SOLVE is consistently able to evolve solutions that meet C1 and are of high
quality according to the objective. (Similar findings are presented in [6]).

The learned latent representation enables dramatic improvement (two orders of mag-
nitude better) for the evolution of solutions meeting the objective and criteria. Figure 4
shows results for the three criteria with the number of variables increased from 1 to 10.

Evolving Through the Looking Glass 379

In C1 the standalone GA performs equally poorly for criteria and objective in all cases,
while SOLVE achieves all criteria and a good objective for all numbers of variables. In
C2, where variables are correlated, the standalone GA performs worse for larger num-
bers of variables, but objective values improve as the constrained problem reduces the
number of possible good solutions. In contrast, SOLVE consistently nearly always meets
all criteria and achieves solutions that reach the objective more closely for all numbers
of variables. In the more difficult C3, the standalone GA performs worse for criteria and
objectives as the number of variables increases. SOLVE meets the criteria better and
consistently achieves good objective values.

4.2 Multiple Criteria (C4)

We next consider problems with multiple criteria (C4 in Table 1). This common form of
optimization comprises several criteria and an objective. Each criterion applies only to
a subset of the variables in the problem.

While SOLVE may be successfully applied to problems with a single extra criterion as
shown for C1 to C3, for multiple criteria the creation of datasets that comprise examples
of valid solutions for each criterion is incompatible with the VAE. This incompatibility
is caused by the fact that by considering one criterion at a time to keep the problem easily
solvable we can only generate valid values for the subsets of the variables belonging to
that criterion. If we were to create a dataset for each criterion, we would generate valid
values for variables belonging to the criterion in question, and random values for the
free variables. For example, C4.1 applies only to x¢ and x1, leaving x and x3 free to
take any values; conversely, C4.4 applies only to x» and x3, leaving xp and x| free. The
result would be datasets comprising, in part, random values for all variables — effectively
training the VAE that all values for all variables are valid and removing or even harming
its ability to learn a useful representation. (While a GA could generate one dataset for
all criteria simultaneously, this partially solves the difficult problem that we wish to
transform by the VAE, defeating the objective of the work.)

The solution is to layer SOLVEs. We generate a latent representation for the first
criterion, and then use the GA with the learned latent representation to create a dataset for
the second criterion, which is used to learn a new latent representation that encapsulates
both criteria, and so on, until all criteria have been learned in turn. The final latent
representation is then used with all criteria and the objective to evolve optimal solutions
that meet all criteria together, Fig. 5.

To assess the advantages of using a learned latent representation for multiple criteria,
we used C4 with the same objective and compared a standalone GA against the original
SOLVE and the LayeredSOLVE. We grow the difficulty incrementally, first trying C4.1
and C4.2 with a 2-layer SOLVE, then C4.1, C4.2, C4.3 with a 3-layer SOLVE, and finally
C4.1, C4.2, C4.3, C4.4 with a 4-layer SOLVE (using 4 variables for all). To determine
whether the order of the criteria alters the results, we also perform the same experiment,
this time ordered: C4.1, C4.2, C4.4, C4.3. Figure 6 shows the results.

The results show that the original SOLVE offers little advantage compared to the
standalone GA, both showing poor performance and large variance over the 100 runs. In
contrast, the LayeredSOLVE can meet the criteria better, and enable solutions close to
the optimum to be found, both with high consistency. The experiments also show that the

380 P. J. Bentley et al.

h) r2
layer

>.
& Dd—>ry — . ‘ ‘ — O
Genetic Learned Latent Genetlc

Algorithm Aumencoder Rspresenla(lcn
Algorithm .
9 Solution

target

OQCQ@

c1,C2 Objective

Fig. 5. LayeredSOLVE for two criteria over different subsets of problem variables. The number
of stacks = number of criteria in the problem.

Average criterion error (per variable) Average percentage objective error Average criterion error (per variable) Average percentage objective error
- ca

= SOLVE N
= LayeredSOLVE | £

- ca
= SOLVE
== LayeredSOLVE

- A
= SOLVE
= LayeredSOLVE

- ca
- sowe .
- Gyeredsone §

o
cafl2] Cal124] 41,2431 cana Cal124] Cal12.43]
Number of criteria Number of criteria

Fig. 6. Average error per criterion (average degree to which each criterion was broken) and
average percentage error from best solution, over 100 runs, for a standalone GA, SOLVE and
LayeredSOLVE, for 2, 3 and 4 criteria on 4 variables. Left two charts: C4.1, C4.2, C4.3, C4.4;
Right two charts: C4.1, C4.2, C4.4, C4.3. Error bars: mean £ SE.

order in which criteria are presented to LayeredSOLVE has an effect. When presenting
the “stricter” C4.4 before C4.3, the criteria are better satisfied. (Although the objective
error increases, analysis of the solutions shows the better objective error observed for
cases where criteria are not met are caused by the standalone GA cheating — criteria
are conflicted to have invalid but deceptively good objective scores.) The notion that
criteria more difficult to satisfy should be presented first to an algorithm was exploited
in [36] where constraints are ordered according to “the sum of the constraints violations
of all solutions in the initial population from the least violated to the most violated”. Our
results suggest that using the same strategy in the LayeredSOLVE will also improve its
ability to satisfy all criteria.

4.3 Discontinuous Criteria (C5)

Finally, we focus on discontinuous problems. While SOLVE has been successfully
applied to single (C1-C3) and multiple (C4) criteria problems, discontinuous criteria
provide a challenge for the SOLVE model used in Sect. 4.1. We use an intuitive two-
dimensional discontinuous constrained optimization problem (Table 1 C5). The problem
is based on the well-known DeJong #5 function [33, 37], designed as a multimodal opti-
mization benchmark, adjusted to create discontinuous valid regions and rotated to make
it non-trivial for our optimizer, akin to [35].

This problem is difficult for a standalone GA, but its discontinuous nature is also
incompatible with the use of a simple VAE, which attempts to fit a single Gaussian
distribution to the set of valid points, i.e., it assumes a Gaussian distribution N (0, I) as

Evolving Through the Looking Glass 381

Average criterion error (per variable) Average percentage objective error
- GA 400 = GA
= SOLVE = SOLVE

W= SOLVEfm

mmm SOLVEfm

o o
o 3

Average criterion error
°
b

Fig. 7. Average error per criterion (average degree to which each criterion was broken) and
average percentage error from best solution, over 100 runs, for original SOLVE, SOLVE with flow
model (SOLVEfm), and a standalone GA for criterion C5. Average criterion error for SOLVEfm
is zero. Error bars: mean + SE.

A Sampling of Latent Space B Projected on to Original Space (Simple) C Projected on to Original Space (Fl D Learned Landscape
2 50 F 7 50 : s oy 2

== Valid Region == Invalid Region B Points Sampled from VAE |

Fig. 8. Visualizing the learned latent representation. A: Sampling space from -2 to 2. B: Points
projected onto space learned by a simple VAE. C: Points projected onto space learned by VAE with
normalizing flow prior (SOLVEfm). D: Latent space colored by valid and invalid regions — this is
the transformed landscape searched by SOLVEfm.

prior. The solution to improve expressivity in SOLVE is to increase the complexity of
the VAE prior (i.e., “the structure of the sampling space”). While a Gaussian distribution
allows for easy sampling and the KL divergence term can be calculated in closed form, for
many datasets the representation is much more complicated than Gaussian distribution.
For discontinuous criterion C5, we use a normalizing flow [38] as prior. A normalizing
flow transforms a simple Gaussian distribution into a complex one by applying a sequence
of invertible transformations. Given the chain of transformations, we change the latent
variable to obtain a more complex target variable according to the change of variables
theorem.

We compare the standalone GA with SOLVE and SOLVE using a normalizing flow
VAE on C5 plus the usual objective function, reporting the average results of 100 runs.
Figure 7 shows that the standalone GA and original SOLVE find valid solutions with
large variance but fail to locate the optimum much of the time. SOLVE with normalizing
flow model (denoted as SOLVEfm in Fig. 7) finds valid solutions with high consistency
and finds better solutions for the objective with smaller variance.

We can understand how this result is achieved by examining Fig. 8. When using a
simple VAE within SOLVE, the VAE fails to learn a good representation for the nine
unbalanced and separated data modes for valid solutions (Fig. 8B). The generated data
from the simple VAE tries to cover the center of the data, however, it misses some

382 P. J. Bentley et al.

data modes and covers many invalid regions, making this learned representation little
different (and potentially inferior) to the original representation. Figure 8C shows the
resulting expressed values for the flow-based model. Even though we observe some
samples in the invalid regions, the flow-based model is able to cover most modes of the
criterion, thus reducing the search space to the valid regions. Figure 8D illustrates how
this representation “connects the disconnected” — transforming the discontinuous space
into a more connected region, conducive to search.

The advantages of this method still need to be weighed against the generation of
datasets, which even when the problem has been simplified by considering just one
criteria at a time, requires computation time, see [6] for discussion. A comparison of the
quality of SOLVE solutions should also be made with state-of-the-art optimizers.

5 Conclusions

Nature achieved evolution of evolvability in its genetic representations through a compu-
tationally expensive process that is infeasible for us to duplicate. Here we have demon-
strated a viable alternative: SOLVE, which uses generative machine learning to learn
better representations for search. Using this method, not only can we bias the representa-
tion so that it focusses mainly on desirable regions of the space according to extra criteria
or constraints, but the nature of the Kullback-Leibler (KL) divergence used for regular-
ization within the VAE provides a natural “smoothing” effect on the resulting latent space
akin to the notion of evolvability, which can change a discontinuous space into a con-
tinuous space enabling highly effective search by the optimizer. We have demonstrated
that with zero dimensionality reduction (i.e., using the same number of latent variables
as problem variables), SOLVE can map different forms of hard-to-search spaces onto
improved latent spaces. These spaces enable even a simple optimizer to achieve sub-
stantive performance increases in terms of quality of solution found and effort required
to find that solution, as evidenced by the small population sizes and low number of
generations required for the GA within SOLVE.

This work used a GA for data generation and optimization and a VAE for represen-
tation learning, but other equivalent approaches could be employed within SOLVE. The
field of generative machine learning continues to advance at a great pace, so we antici-
pate that the integration of these newer techniques into optimization for the purposes of
generating improved search spaces will be a fruitful area of research going forwards.

Source Code. The source code necessary to reproduce the experiments in this paper is available
at: https://github.com/writingpeter/SOLVE.

References

1. Watanabe, K., et al.: A global overview of pleiotropy and genetic architecture in complex
traits. Nat. Genet. 51, 1339-1348 (2019)

2. Homaifar, A., Qi, C.X., Lai, S.H.: Constrained optimization via genetic algorithms. SIMU-
LATION 62, 242-253 (1994)

3. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods
Appl. Mech. Eng. 186, 311-338 (2000)

https://github.com/writingpeter/SOLVE

10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

23.

Evolving Through the Looking Glass 383

Yu, T., Bentley, P.: Methods to evolve legal phenotypes. In: Eiben, A.E., Bick, T., Schoenauer,
M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 280-291. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0056871

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182—-197 (2002)

Bentley, P, Lim, S.L., Gaier, A., Tran, L.: COIL: Constrained optimization in learned latent
space. Learning representations for valid solutions. In: ACM Genetic and Evolutionary
Computation Conference Companion, p. 8 (2022)

Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.
Science 313, 504-507 (2006)

. Kingma, D.P,, Welling, M.: Auto-encoding variational bayes. In: International Conference on

Learning Representation, p. 14 (2014)

Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate
inference in deep generative models. In: International Conference on Machine Learning,
pp. 1278-1286 (2014)

Volz, V., Schrum, J., Liu, J., Lucas, S.M., Smith, A., Risi, S.: Evolving Mario levels in the
latent space of a deep convolutional generative adversarial network. In: ACM Genetic and
Evolutionary Computation Conference, pp. 221-228 (2018)

Bontrager, P., Roy, A., Togelius, J., Memon, N., Ross, A.: DeepMasterPrints: generating
masterprints for dictionary attacks via latent variable evolution. In: IEEE 9th International
Conference on Biometrics Theory, Applications and Systems, pp. 1-9 (2018)

Fontaine, M.C., Nikolaidis, S.: Differentiable quality diversity. In: 35th Conference on Neural
Information Processing Systems, pp. 10040-10052 (2021)

Liskowski, P., Krawiec, K., Toklu, N.E., Swan, J.: Program synthesis as latent continuous
optimization: Evolutionary search in neural embeddings. In: ACM Genetic and Evolutionary
Computation Conference, pp. 359-367 (2020)

Scott, E.O., De Jong, K.A.: Toward learning neural network encodings for continuous opti-
mization problems. In: ACM Genetic and Evolutionary Computation Conference Companion,
pp. 123-124 (2018)

. Moreno, M.A., Banzhaf, W., Ofria, C.: Learning an evolvable genotype-phenotype mapping.

In: ACM Genetic and Evolutionary Computation Conference, pp. 983-990 (2018)

. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary

computation. Front. Robot. Al 3, 40 (2016)

. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework.

IEEE Trans. Evol. Comput. 22, 245-259 (2017)

Gaier, A., Asteroth, A., Mouret, J.-B.: Discovering representations for black-box optimization.
In: ACM Genetic and Evolutionary Computation Conference, pp. 103—111 (2020)
Rakicevic, N., Cully, A., Kormushev, P.: Policy manifold search: exploring the mani-
fold hypothesis for diversity-based neuroevolution. In: ACM Genetic and Evolutionary
Computation Conference, pp. 901-909 (2021)

Cui, M., Li, L., Zhou, M.: An Autoencoder-embedded Evolutionary Optimization Framework
for High-dimensional Problems. In: IEEE International Conference on Systems, Man, and
Cybernetics, vol. 2020-October, pp. 1046-1051 (2020)

Cui, M., Li, L., Zhou, M., Abusorrah, A.: Surrogate-assisted autoencoder-embedded evolu-
tionary optimization algorithm to solve high-dimensional expensive problems. IEEE Trans.
Evol. Comput. (2021). https://doi.org/10.1109/TEVC.2021.3113923

Hagg, A., Berns, S., Asteroth, A., Colton, S., Bick, T.: Expressivity of parameterized and
data-driven representations in quality diversity search. In: ACM Genetic and Evolutionary
Computation Conference, pp. 678-686 (2021)

Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization using genetic
algorithms. IEEE Trans. Evol. Comput. 9, 424-435 (2005)

https://doi.org/10.1007/BFb0056871
https://doi.org/10.1109/TEVC.2021.3113923

384 P. J. Bentley et al.

24. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis meth-
ods in multimodal function optimization. In: Artificial Neural Nets and Genetic Algorithms,
pp. 450-457 (1993)

25. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: IEEE
International Conference on Evolutionary Computation, pp. 798-803 (1996)

26. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search for novelty
alone. Evol. Comput. 19, 189-223 (2011)

27. Mouret, J.-B., Clune, J.: [lluminating search spaces by mapping elites. arXiv preprint arXiv:
1504.04909 (2015)

28. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolu-
tionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191,
1245-1287 (2002)

29. Tsang, E.: Foundations of constraint satisfaction: the classic text. BoD—Books on Demand
(2014)

30. Forrest, S., Hightower, R., Perelson, A.: The Baldwin effect in the immune system: learning by
somatic hypermutation. Individual Plasticity in Evolving Populations: Models and Algorithms
(1996)

31. Yeniay, O.: Penalty function methods for constrained optimization with genetic algorithms.
Math. Comput. Appl. 10, 45-56 (2005)

32. Biscani, F., 1zzo, D.: A parallel global multiobjective framework for optimization: pagmo. J.
Open Source Softw. 5, 2338 (2020)

33. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
University of Michigan. Ph.D. thesis (1975)

34. Hellwig, M., Beyer, H.-G.: Benchmarking evolutionary algorithms for single objective real-
valued constrained optimization—a critical review. Swarm Evol. Comput. 44, 927-944 (2019)

35. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization. KanGAL Report 2005005, 51 (2005)

36. Sallam, K.M., Elsayed, S.M., Chakrabortty, R.K., Ryan, M.J.: Improved multi-operator dif-
ferential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress
on Evolutionary Computation, pp. 1-8 (2020)

37. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Functions Optim. Needs
101, 43 (2005)

38. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International
Conference on Machine Learning, pp. 1530-1538 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/1504.04909
http://creativecommons.org/licenses/by/4.0/

	Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders
	1 Introduction
	2 Background
	2.1 Variational Autoencoders
	2.2 Evolving Latent Variables

	3 Method
	3.1 Step 1: Dataset Generation
	3.2 Step 2: Representation Learning
	3.3 Step 3: Optimization

	4 Experiments
	4.1 Single Criterion (C1, C2, C3)
	4.2 Multiple Criteria (C4)
	4.3 Discontinuous Criteria (C5)

	5 Conclusions
	References

