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1 Introduction

A model for the asymptotic structure of spacetime was suggested by Roger Penrose in [22] (see
also [15] for a review of the development of these ideas) using the technique of conformal rescaling.
Since the reader is by now familiar with the details of the conformal rescaling construction, only
enough will be said here to fix the notation to be used in the remainder of this article. The object
under study will consist of a physical spacetime — a smooth, time- and space-orientable Lorentz
manifold (M̃, g̃) satisfying the vacuum Einstein equation Ric(g̃) = 0 and that is asymptotically
simple. In other words, it is, conformally diffeomorphic to a Lorentz manifold (M, g), called the
unphysical spacetime, in such a way that g̃ = Ω−2g, where the conformal factor is a smooth
function Ω : M → R+. In addition, the boundary of M is non-empty and is associated to points at
null infinity by requiring that Ω be a defining function for ∂M ; that is, Ω

∣∣
∂M

= 0 while dΩ never
vanishes identically along ∂M .

The purpose of the conformal boundary is to study asymptotic properties of the physical space-
time in null directions. To this end, one could use the fact that, due to the conformal equivalence
with the physical spacetime, the quantities Ω and g must satisfy the conformally rescaled version
of Einstein’s equation, namely that Ric(Ω−2g) = 0. However, this equation has the drawback
that it is degenerate near the boundary of M because there Ω → 0, and is thus not ideally suited
for analytic investigations of the nature of the spacetime at null infinity. One possible means of
avoiding this difficulty is to use a technique developed by Friedrich [16], which aims to describe the
geometry of the unphysical spacetime by means of a new, yet fully equivalent system of equations
derived from the equation Ric(Ω−2g) = 0 that is formally regular at the boundary of the unphys-
ical spacetime. These equations involve g, Ω and several additional quantities and are known as
the conformal Einstein equations.

As with Einstein’s equations in the physical spacetime, it is possible to attempt to solve the
conformal Einstein equations in the unphysical spacetime by means of an initial value formulation,
where appropriate initial data are defined on a spacelike hypersurface Z in M and then evolved
in time. Again as in the physical spacetime, the conformal equations induce certain constraint
equations on the initial data; these equations are known as the conformal constraint equations and
consist of a complicated system of coupled nonlinear differential equations for the induced metric h
and second fundamental form χ of Z, the conformal factor restricted to Z, and several additional
quantities. A particular case of interest is when Z is asymptotically hyperboloidal, i. e. Z intersects
∂M transversely. In this case, the evolution of the boundary of Z forward in time produces the
conformal boundary of the unphysical spacetime, and global questions concerning the existence of
classes of spacetimes satisfying the definition of asymptotic simplicity can be addressed. See [15]
or [17, 18] for a review of these ideas.

The purpose of this article is twofold. First, it is to introduce the conformal constraint equations
and to investigate some of their properties, which will be done in Section 2. It will be found that, in
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a certain sense, they describe in a coupled way two mathematical problems — namely, the elliptic
boundary value problem for the conformal factor Ω and the constraint problem arising from the
Gauss-Codazzi equations of Z. Furthermore, a simple geometric assumption will be shown to lead
to a special case of the equations in which the first problem does not appear and the second is in
the forefront. In this special case, the full system of conformal constraint equations reduces to a
much simpler and smaller system of equations that will be called the extended constraint equations
because they will turn out to be equivalent to the usual vacuum Einstein constraint equations
satisfied by the metric and second fundamental form of Z. (Tackling the boundary value problem
is at present beyond the scope of this article but will be considered in the future.)

The second goal of this article is to set up a perturbative approach for generating solutions of
the extended constraint equations in the neighbourhood of a known solution, but only in the case
of time-symmetric data — the more general case will be handled in another future paper [7]. This
task will be accomplished in Section 3 and the main theorem proved in this section appears on page
3.1. Because the extended constraint equations are equivalent to the usual constraint equations,
the Main Theorem can be interpreted as a new way of finding solutions of these equations, and
furthermore, it will turn out to be a way that is completely different from the ‘classical’ (i. e.
Lichnerowicz-York) method of handling them. This issue will be discussed further in the Section
3.

2 The conformal constraint equations

2.1 Deriving the equations

Suppose (M, g,Ω) is an unphysical spacetime satisfying the assumptions of asymptotic simplicity
and thus that the metric and conformal factor satisfy the rescaled version of Einstein’s equation

Ric(Ω−2g) = 0 . (1)

This section sketches briefly how equation (1) for g and Ω leads first to the conformal Einstein
equations for g, Ω and additional quantities, and then to the conformal constraint equations. Begin
by expanding (1) to obtain

Rµν = −2Ω
Ω

gµν −
2
Ω
∇µ∇νΩ +

3∇λΩ∇λΩ
Ω2

gµν , (2)

where Rµν are the components of the Ricci tensor in the unphysical spacetime, ∇µ is the covariant
derivative of the four-metric and 2 is its D’Alembertian operator. Notice that, as it is written,
equation (2) contains terms with negative powers of Ω which tend to infinity near the boundary
of the unphysical spacetime. Alternatively, if the equation is multiplied through by Ω2, then
the principal parts of the differential operators acting on g and Ω, would tend to zero at the
boundary. Either way, equation (2) degenerates near the boundary of the unphysical spacetime,
and as mentioned in the Introduction, this makes it an unwieldy choice for studying the geometry
of the spacetime near null infinity.

Helmut Friedrich’s procedure for obtaining a system of equations equivalent to the rescaled
Einstein equations (2) and formally regular at the boundary of the unphysical spacetime can be
found in several papers, see for example [16]. His derivation proceeds in the following way. Let
Cµνλρ be the Weyl tensor of the metric g and define the quantities

Lµν =
1
2
Rµν −

1
12
Rgµν

Sµνλρ = Ω−1Cµνλρ

ψ =
1
42Ω +

1
24
RΩ .

(3)
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The tensor Sµνλρ is smooth on ∂M because under the assumptions of asymptotic simplicity, Penrose
has shown that Cµνλρ vanishes at the boundary of M [23] (a further condition on the topology of
∂M — that ∂M admits spherical sections — is also needed, and will be assumed to hold). Then,
by rephrasing (2) in terms of the quantities (3), adjoining the Bianchi identity for the curvature
tensors in the physical and unphsyical spacetimes, and adjoining the well-known decomposition of
the curvature tensor

Rµνλρ = Cµνλρ + gµλLνρ − gµρLνλ + gνρLµλ − gνλLµρ ,

one obtains the system of equations

∇µ∇νΩ = −ΩLµν + ψgµν

∇µψ = −Lµν∇νΩ

∇λLµν −∇µLλν = ∇ρΩSµλνρ

∇ρSµλνρ = 0

2Ωψ −∇µΩ∇µΩ = 0

Rµνλρ = ΩSµνλρ + gµ[λLν]ρ − Lµ[λgν]ρ ,

(4)

by means of lengthy, though straightforward algebraic manipulations. The equations above are
known as the conformal Einstein equations.

The equivalence of (4) to (2) is confirmed as follows. Suppose the quantities L, S and ψ as well
as g and Ω satisfy (4). Then by algebra, it can be shown that the pair (g,Ω) satisfies (2) and that
L, S and ψ relate to Ω and the curvature quantities in the manner indicated in (3). (The algebra
is fairly straightforward: for instance, the last equation in (4) identifies L and S as components of
the curvature tensor; then it is a matter of computation to recover equation (2) from the remaining
five.)

It is immediately clear that the equations in (4) are regular when Ω = 0. Furthermore, not
only do the conformal Einstein equations contain the rescaled vacuum Einstein equations, but they
also contain the Bianchi identity for the curvature tensor, though expressed in the new unknowns.
Thus one can consider (4) to contain integrability conditions since the Bianchi identity is in some
sense a integrability condition for the curvature tensor — meaning that the Bianchi identity is
a result of requiring second covariant derivatives to commute properly (this can best be seen
explicitly by rewriting the curvature tensor in terms of the vector-valued connection 1-forms as
in [6], whereby the Bianchi identity becomes an incarnation of the identity d2 = 0 satisfied by the
exterior differential operator).

Suppose now that Z is a spacelike hypersurface in M . The fact that the conformal Einstein
equations constrain certain initial data on Z can be seen by performing a 3 + 1 splitting of the
spacetime near Z. Choose a frame Ea, a = 1, 2, 3, for the tangent space of Z and complete this to a
frame for the unphysical spacetime by adjoining the forward-pointing unit normal vector field n of
Z. Use this frame to decompose the equations (4) into components parallel and perpendicular to Z.
The constraint equations induced by the conformal Einstein equations are those equations arising
in this process in which no second normal derivatives of g or Ω, and no first normal derivatives of

3



L, S or ψ appear. These equations are:

∇a∇bΩ = Σχab − ΩLab + ψgab

∇aΣ = χc
a∇cΩ− ΩLa

∇aψ = −∇bΩLba − ΣLa

∇aLbc −∇bLac = ∇eΩSecab − ΣScab − (χacLb − χ
bcLa)

∇aLb −∇bLa = ∇eΩSeab + χc
aLbc − χc

bLac

∇aS̄abc = χa
bSac − χa

cSab

∇aSab = −χacS̄abc

0 = 2Ωψ + Σ2 − ‖∇Ω‖2

∇c
χ

ba −∇b
χ

ca = ΩS̄abc + gabLc − gacLb

Rab = ΩSab + Lab +
1
4
Lc

cgab − χc
c
χ

ab + χ
ca
χc

b

(5)

where ∇ now denotes the covariant derivative operator on Z corresponding to its induced metric
g and Rab is its Ricci curvature. The unknown quantities appearing in these equations are the
initial data. They are:

• the induced metric of Z, which is still called g (no confusion will arise because the 4-
dimensional setting will not be considered further in the remainder of the this article),

• the second fundamental form χ of Z,

• the function Ω restricted to Z,

• the normal derivative n(Ω)
∣∣
Z , denoted Σ,

• the tensors Lab = Eµ
aE

ν
bLµν and La = nµEν

aLµν ,

• the tensors S̄abc = nµEν
aE

λ
b E

ρ
cSνµλρ and Sab = nµnνEλ

aE
ρ
bSλµρν ,

• and the function ψ restricted to Z.

The equations (5) are known as the conformal constraint equations. The derivation of these
equations will not be reproduced here — the reader is asked to consult [16] for this material. How-
ever, it is fairly easy to recognize the origin of the various terms appearing there. For example, the
first two equations arise as the tangential and tangential-normal components of the first equation
of (4). Furthermore, and more importantly for the sequel, the last two equations arise as the
Gauss and Codazzi equations applied to the decomposition of the curvature tensor given by the
last equation of (4).

Note: The various tensor quantities that appear in (5) possess certain symmetries as a result of
their origin as components of the curvature tensor: Lab is symmetric; Sab is symmetric and trace-
free; and S̄abc is antisymmetric on its last two indices, satisfies the Jacobi symmetry S̄abc + S̄cab +
S̄bca = 0 and is trace-free on all its indices. (Tensors with these symmetries will appear often in the
sequel. Tensors of rank three that are antisymmetric on their last two indices and satisfy the Jacobi
symmetry will be called Jacobi tensors for short while those which are in addition trace-free will
be called traceless Jacobi tensors.) Note that even though the tensor Sabcd = Eµ

aE
ν
bE

λ
c E

ρ
dSµνλρ

appears in the constraint equations, it is not a truly independent initial datum because, thanks to
the symmetries of Sµνλρ, it can be written as Sabcd = ga[cSd]b − Sa[cgd]b.

The system (5) is clearly exceedingly complicated because it is quasi-linear and highly coupled.
However, the advantage provided by (5) is once again that it is formally regular at the boundary
of Z. For the sake of comparison, recall the interior of Z can be viewed as a spacelike hypersurface
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of the physical spacetime, and as such, satisfies the usual Einstein constraint equations there. In
other words, if its induced metric is denoted by g̃ and its second fundamental form by χ̃, then

∇̃aχ̃
ab − ∇̃b

χ̃a

a = 0

R̃+ (χ̃
a

a)2 − χ̃abχ̃
ab = 0 ,

(6)

where ∇̃ is the covariant derivative operator of the metric g̃ and R̃ is its scalar curvature. These
equations can be rephrased in terms of g, χ and Ω in the unphysical spacetime by conformal
transformation. The necessary transformation rules are that g̃ = Ω−2g and also that χ̃ = Ω−1χ+
ΣΩ−2g (which can be found by conformally transforming the definition of the second fundamental
form as the normal component of the covariant derivative restricted to Z̃). The resulting equations
are

Ω2
(
R+ (χa

a)2 − χabχ
ab

)
+ 4Ω∆gΩ− 6‖∇Ω‖2 + 4ΩΣχa

a + 6Σ2 = 0

Ω
(
∇a

χa
b −∇b

χa
a

)
− 2∇bΣ− 2χa

b ∇aΩ = 0 ,
(7)

where Σ = n(Ω)
∣∣
Z and ∆g is the Laplacian of the metric g. Once again, the principal parts of

these equations contain factors of Ω and thus degenerate as Ω → 0 near the boundary of Z. This
behaviour does not arise in the conformal constraint equations.

The conformal constraint equations listed in (5) are equivalent to the usual constraint equations
(7) because if (g, χ,Ω,Σ) solves (7) and the additional quantities S, S̄, L and ψ are defined as
indicated in (5) (e. g. the last equation defines ψ; then the first equation defines the 2-tensor
Lab, etc. ), then straightforward computation shows that the conformal constraint equations are
satisfied; furthermore, if (g, χ,Ω,Σ, S, S̄, L, ψ) satisfies (5), then it can be shown that (g, χ,Ω,Σ)
satisfies (7), and consequently, g̃ and χ̃, given by the transformation rules above, satisfy the
usual constraint equations (6). These considerations thus suggest one method for constructing
solutions of the conformal constraint equations: construct any solution (g̃, χ̃) of the usual constraint
equations using standard techniques, choose a conformal factor, perform the transformations to the
unphysical spacetime and use the conformal constraint equations to define the subsidiary quantities
in terms of (g̃, χ̃). Then these new quantities satisfy the conformal constraint equations.

Consequently, it is possible to assume the existence of initial data satisfying (5) with well-
defined asymptotic properties (essentially given by the transformation rules above) and study only
the time evolution of the data according to the conformal Einstein equations (4). This is the idea
behind the work of Friedrich in [16] (extended in [19]), where the time evolution of suitably small
initial data on an asymptotically hyperboloidal hypersurface was studied and a complete future
development was found. The nature of the asymptotic structure of this class of solutions near null
infinity, and in particular the relationship between the asymptotic structure of the solution and the
asymptotic structure of the initial data, was then analyzed extensively by Andersson, Chruściel
and Friedrich in [4] (extended by Andersson and Chruściel in [2, 3]), and was based on the rescaled
Einstein equations (4) and their constraints (7). However, the problem of the vanishing of the
conformal factor near the boundary of the unphysical spacetime and the resultant degeneration of
these equations remains a part of the ACF methods. Thus they are not ideally suited for certain
applications, in particular for implementing numerical studies of asymptotically hyperboloidal data
near null infinity where the presence of negative powers of Ω can cause computational codes to
crash (see [15] for details). It is for this reason that new methods for solving (5) directly, rather
than through the usual constraint equations, must be developed. This question will begin to be
tackled in the remainder of this article.

2.2 Reduction to the extended constraint equations

The complexity of the conformal constraint equations makes it a daunting task to attempt to
develop any methods for obtaining solutions of the equations in their full generality. However, a
great deal of structure is contained within these equations, and the hope is that this structure can
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be exploited in the search for solutions. For instance, it is possible to disentangle in some sense
the equations relating to the conformal factor and its associated boundary value problem from
the equations related to the Gauss-Codazzi equations of Z by restricting to a special case of the
equations.

The special case that will be considered in the rest of this article is to assume that the conformal
diffeomorphism between M̃ and M is the identity, and consequently that the conformal factor is
trivial (i. e. Ω = 1) in the unphysical spacetime. This is somewhat of a strange simplification,
because it requires that the spacetime M have empty boundary (since Ω−1(0) = ∂M)! One
would thus not find oneself in this special case in practice since the whole point of the conformal
constraint equations is to study hyperboloidal initial data in a conformally rescaled spacetime
that has a boundary at null infinity. Nevertheless, the simplification afforded by the assumption
Ω = 1 is worthwhile to consider from a mathematical point of view because it accomplishes the
disentanglement described above and allow the Gauss-Codazzi-type equations within the conformal
constraint equations to be studied in isolation.

To see this explicitly, one must substitute Ω = 1 and Σ = 0 (which is consistent with the
assumption that Ω = 1 in spacetime since Σ = n(Ω)

∣∣
Z = 0 where n is the forward-pointing unit

normal of Z) into the equations (5). One first sees that Lab, La and ψ are forced to vanish under
this assumption, and then that the conformal constraint equations reduce to the following system
of four coupled equations:

Rab = Sab − χc
c
χ

ab + χc
a
χ

cb

∇c
χ

ab −∇b
χ

ac = S̄abc

∇aS̄abc = χa
bSac − χa

cSab

∇aSab = −χacS̄abc .

Here, covariant derivatives are taken with respect to the induced metric gab of Z and χ
ab is the

second fundamental form of Z. As before, the tensor Sab is symmetric and trace-free with respect
to gab whereas the tensor S̄abc is a traceless Jacobi tensor. These four quantities are the unknowns
for which these equations must be solved. For reasons that will become apparent later on, it will
be helpful work instead with the equivalent system obtained by replacing Sab and Sac in the third
equation by Rab and Rac from the first equation. The system one obtains is actually just

Rab = Sab − χc
c
χ

ab + χc
a
χ

cb

∇c
χ

ab −∇b
χ

ac = S̄abc

∇aS̄abc = χa
bRac − χa

cRab

∇aSab = −χacS̄abc ,

(8)

because the terms cubic in χ vanish.
Notice that because of the symmetries of S and S̄, if the traces of the first two equations of

(8) are taken, then the usual constraint equations (6) result. Furthermore, if gab and χ
ab satisfy

the usual constraint equations and one defines S̄abc and Sab by the first two equations of (8)
respectively, then the remaining two equations follow by straightforward algebra and the Bianchi
identity. Thus equations (8) are equivalent to the usual vacuum Einstein constraint equations and
for this reason are called the extended constraint equations.

2.3 Properties of the extended constraint equations

The extended constraint equations (8) are clearly formally much simpler than the full system of
conformal constraint equations. However, several essential features of the full equations remain.
These features refer to the ellipticity properties of the various differential operators appearing in
(8) as well as to the integrability conditions built into these equations.

Ellipticity Properties
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One must consider the principal symbols of the operators that appear on the left hand sides of
the extended constraint equations in order to understand their ellipticity properties. Begin with
a definition of the symbol. Recall that if P : C∞(Rn,RN ) → C∞(Rn,RM ) is a linear differential
operator of order m with constant coefficients, then it can be expressed as

P (u) =
∑

α1+···+αn=m

(
N∑

i=1

bα1···αn
i

∂mui

(∂x1)α1 · · · (∂xn)αn

)
+ P0(u) ,

where P0 is a differential operator of order less than or equal to m−1 and the bα1···αn
i are elements

of RM . The principal symbol of P is the family of linear maps σξ : RN → RM given by

σξ(v) =
∑

α1+···+αn=m

(
N∑

i=1

bα1···αn
i ξα1

1 · · · ξαn
n vi

)

for any non-zero (ξ1, . . . , ξn) ∈ Rn and v ∈ RN . The operator P is called underdetermined elliptic
if the symbol is surjective for each non-zero ξ, overdetermined elliptic if the symbol is injective for
each non-zero ξ and simply elliptic if the symbol is bijective for each non-zero ξ. An operator with
non-constant coefficients has a symbol at each point of the domain, while for a nonlinear operator,
it is the linearization which has a symbol at each given u ∈ C∞(Rn,RN ). Such operators are
overdetermined, underdetermined or elliptic if their symbols possess these properties uniformly.

To understand the ellipticity properties of the conformal constraint equations, begin with the
equation for the metric gab. It is quasi-linear in g, with highest-order terms given by

gab 7→ gcd

(
∂2gad

∂xb∂xc
+

∂2gbd

∂xa∂xc
− 1

2
∂2gab

∂xc∂xd
− 1

2
∂2gcd

∂xa∂xb

)
.

The linearization of this expression at a given metric is neither over- nor underdetermined elliptic,
nor is it elliptic. However, it is well known that the Ricci curvature is degenerate as an operator
on metrics because it is invariant under changes of coordinates of the metric, and that the Ricci
curvature operator can be made formally elliptic by making an appropriate choice of coordinate
gauge. The standard choice is to require that the metric be expressed in harmonic coordinates,
which are defined by the requirement that the coordinate functions xa are harmonic functions,
i. e. that ∆hx

a = 0 for each a. (Since the metric itself depends on the coordinate functions, the
requirement that the coordinates be harmonic is in fact a nonlinear condition. Nevertheless, the
existence of such coordinates, defined outside sufficiently large balls in R3 for any asymptotically
flat metric, has been guaranteed by Bartnik in [5].)

To show that the Ricci operator is elliptic in harmonic coordinates, first note that a straightfor-
ward calculation implies that the harmonic coordinate condition ∆gx

a = 0 for all a is equivalent
to the condition gbcΓa

bc = 0 for all a on the Christoffel symbols of g. Now set Γa = gbcΓa
bc (and

also Γa = gasΓs), and then recall that the components of the Ricci tensor satisfy

Rab = RH
ab +

1
2
(Γa;b + Γb;a) (9)

where RH
ab are the components of the reduced Ricci operator defined by

RH
ab = −1

2
grsgab,rs + q(Γ) . (10)

In the expressions above, a comma denotes ordinary differentiation with respect to the coordinates,
a semicolon denotes covariant differentiation (since Γa is not a tensor, this is to be taken formally;
i. e. Γa;b = Γa,b − ΓsΓs

ab), and q(Γ) denotes a term that is quadratic in the components Γa. The
reduced Ricci operator is clearly elliptic in g. Since Γa = 0 for all a in harmonic coordinates,
Rab(g) = RH

ab(g) in these coordinates, and thus the Ricci operator is elliptic in g when g satisfies
the harmonic coordinate condition.
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The second equation in the extended constraint equations is linear in χab and its left hand side
defines a differential operator χab 7→ ∇c

χ
ab − ∇b

χ
ac from the space of symmetric tensors to the

space of Jacobi tensors. (It can be easily verified that the left hand side of the first equation in (8)
satisfies the relevant symmetries. However, it can also be verified that the left hand side is not a
priori traceless on all its indices — this is only a requirement on the eventual solution since the
left hand side is equated with a traceless Jacobi tensor.) The principal symbol of this operator is

σξ : χab 7→ ξcχab − ξbχac .

By the following simple argument, one can show that σξ has a one-dimensional kernel and is not
surjective.

Suppose first that σξ(χab) = 0 for some non-zero ξ. Since ξaξa 6= 0, one can write uniquely
χ

ab = χ0
ab + cξaξb for some c, where χ0

ab is trace-free. Substituting this expression for χab yields

ξbχ
0
ac − ξcχ

0
ab = 0 . (11)

Taking the trace over a and b implies that ξcχ0
ac = 0. Then, contracting with ξc gives ξcξcχ

0
ab = 0,

or χ0
ab = 0. Consequently, the kernel of the symbol σξ is one-dimensional, and consists of tensors

of the form cξaξb. Next, since the space of symmetric 2-tensors is six-dimensional, the image
of the symbol is five-dimensional. Now, the target space of Jacobi tensors is eight-dimensional
because any Jacobi tensor can be decomposed as Tabc = εe

bcFae + Abgac − Acgab where Fae is a
trace-free and symmetric tensor (accounting for five dimensions), Ab is a 1-form (accounting for
the remaining three), and εabc is the fully antisymmetric permutation symbol. The symbol can
thus not be surjective. Note, however, that when it is restricted to trace-free tensors, the principal
symbol is at least injective. Consequently, the first equation of (8) is overdetermined elliptic when
restricted to the space of trace-free symmetric 2-tensors.

The third and fourth equations in (8) are linear in S̄abc and Sab respectively. It can be shown
that the operators S̄abc 7→ ∇aS̄abc and Sab 7→ ∇aSab are underdetermined elliptic by demonstrating
that their principal symbols S̄abc 7→ ξaS̄abc and Sab 7→ ξaSab are surjective maps from the space
of symmetric, trace-free tensors onto the space of 1-forms and from the space of traceless Jacobi
tensors onto the space of antisymmetric 2-tensors, respectively. These are fairly straightforward
calculations and left to the reader.

Integrability Conditions

As mentioned in Section 2.1, the conformal Einstein equations (4) satisfied by the unphysical
spacetime contain the Bianchi identity which was interpreted as being a integrability condition.
Integrability conditions are also to be found in the conformal constraint equations — at least in
the special case Ω ≡ 1. (It is also true that many integrability conditions are contained within the
full equations, but these will not be explicitly demonstrated here). To exhibit these integrability
conditions, begin by considering the first and fourth equations in (8). The Bianchi identity for the
Ricci curvature is

∇aRab −
1
2
∇bR = 0 ,

whereby the first equation of (8) implies

0 = ∇a
(
Sab − χc

c
χ

ab + χc
a
χ

cb

)
− 1

2
∇b

(
− (χc

c)
2 + χacχ

ac

)
= ∇aSab −

(
χc

cδ
a
b − χa

b

)(
∇uχ

au −∇a
χu

u

)
− χca

(
∇b
χ

ac −∇c
χ

ab

)
= ∇aSab −

(
χc

cδ
a
b − χa

b

)
huvS̄uav + χacS̄abc (12)

using the second equation in (8) and its trace. By the symmetries of S̄abc, the middle term in (12)
vanishes, leaving

0 = ∇aSab + χacS̄abc ,
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which is exactly the fourth equation of (8). Thus the fourth equation of (8) encodes the Bianchi
identity, the integrability condition for the curvature.

The second and third equations of (8) also consist of a constraint equation and its integrability
condition as well, but in a different sense. Recall that what a integrability condition should
reflect is that second second covariant derivatives commute properly. Consider, then, the result of
commuting the second covariant derivatives of the second equation of (8). Begin with

S̄abc = ∇c
χ

ab −∇b
χ

ac

and compute

εebc∇eS̄abc = 2εebc∇e∇c
χ

ab

= εebc
(
∇e∇c

χ
ab −∇c∇e

χ
ab

)
= εebc

(
R s

eca
χ

sb +R s
ecb

χ
as

)
= εebcR s

eca
χ

sb (13)

since the symmetries of Rabcd imply that εabcRabcd = 0. Now substitute in (13) the well-known
decomposition of the curvature tensor in three dimensions, namely that

R s
eca = geaR

s
c − δs

eRca + δs
cRea − gcaR

s
e −

1
2
R
(
geaδ

s
c − δs

egca

)
,

to obtain
εebc∇eS̄abc = 2εbc

a
χs

bRcs . (14)

Claim: equation (14) is exactly the third equation of (8). To see this, recall that a traceless Jacobi
tensor can be decomposed as S̄abc = εe

bcFae where Fae is trace-free and symmetric. Consequently,

εebc∇eS̄abc = εebc∇eε
u
bcFau

= 2∇eFae

= 2∇eFea (by symmetry)

= ε bc
a ∇eεu

bcFeu

= ε bc
a ∇eS̄ebc . (15)

Thus (15) together with (14) implies that

ε bc
a ∇eS̄ebc = 2εbc

a
χs

bRcs ,

which is the third equation of (8) (or at least its dual, but this is equivalent).

3 Asymptotically flat solutions of the extended constraint

equations in the time symmetric case

3.1 Statement of the main theorem

Because the conformal boundary of the spacetime M̃ is absent under the triviality assumptions
that have been made on the conformal diffeomorphism, a natural setting in which to investigate the
extended constraint equations (8) is the case in which M̃ is asymptotically Minkowski space and
that Z is asymptotically flat. In fact, one solution of the extended constraint equations satisfying
these conditions is when Z = R3 and the initial data is the Euclidean metric g = δ with vanishing
tensors χ, S and S̄. Neighbouring asymptotically flat solutions are those whose metric g is a small
perturbation of δ that decays suitably to δ near infinity, and χ, S̄ and S are also small and decay
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suitably. These solutions are in addition called time symmetric if their second fundamental form
χ actually vanishes identically.

The theorem that will be proved in the remainder of this article is a characterization of the
space of asymptotically flat and time-symmetric solutions of the extended constraint equations in
the neighbourhood of the trivial solution given above. The case of non-time-symmetric solutions is
as yet beyond the scope of this article, though a future paper by the Author will clear this up [7].

Under the assumption of time-symmetry, the requirement that χ = 0 implies that S̄ = 0 as
well, and so the extended constraint equations further reduce to the following system of equations:

∇aSab = 0

Rab(g) = Sab

for the unknown metric g and unknown trace-free and symmetric tensor S. Since these equations
will be solved for metrics near the Euclidean metric, it will be preferable to write metrics as small
perturbations of the Euclidean metric of the form δ + h where h is a symmetric tensor suitably
near 0. Thus the above system should be replaced with the system

∇aSab = 0

Rab(δ + h) = Sab .
(16)

The covariant derivative here corresponds to the metric δ+ h. The theorem that will be proved is
the following.

Main Theorem: There exists a Banach space B of free data along with a neighbourhood U of
zero in B, Banach spaces Y and Y ′ of symmetric 2-tensors, and smooth functions ψ : U → Y and
ψ′ : U → Y ′ with ψ(0) = ψ′(0) = 0 so that for every b ∈ U , the following hold:

1. ψ(b) and ψ′(b) tend asymptotically towards zero;

2. g ≡ δ + ψ(b) defines an asymptotically flat Riemannian metric on R3;

3. S ≡ ψ′(b) defines a symmetric tensor that is trace-free with respect to g;

4. g and S satisfy the equations (16).

The proof of this theorem will be presented in the remaining sections of this article, and consists
of essentially two steps. Since (16) is not an elliptic system (as outlined in the previous section),
the first step of the proof consists of exploiting the elliptic properties of these equations to define a
closely related system of equations, called the associated system, which is elliptic. In it, the tensor
S is decomposed into a sum of two components of the form T +Lg(X), where T is a symmetric and
trace-free tensor, X is a 1-form and Lg is the conformal Killing operator which is also the adjoint
of the divergence operator Sab 7→ ∇aSab. The system (16), written in terms of this decomposition,
yields equations for g, X, and T whose linearization in the g and X directions will be seen to
be bijective (or near enough to being bijective — the details will be seen in due course). Thus
the Implicit Function Theorem can be invoked to find solutions where the quantities g and X are
expressed as functions of T . The second step is then to show that all solutions of the associated
system are also solutions of the original system (16). This will turn out to be true when the
metric g = δ + h is sufficiently close to δ, and relies on a Poincaré inequality and the integrability
condition. The Author wishes to thank H. Friedrich for suggesting this approach for solving (16).

The method outlined above for solving the extended constraints in the time symmetric case is
in fact a method for solving the usual vacuum constraint equations in the time-symmetric case
(namely the equation R(g) = 0, which follows from (16) by taking a trace) because of the equiv-
alence of the extended constraints and the usual constraints described earlier. The differences
between this method and the ‘classical’ Lichnerowicz-York method for solving the constraint equa-
tions are now readily apparent. In the classical method, one freely prescribes a metric g0 on R3
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and considers the conformally rescaled metric g = u4g0, where u : R3 → R is an unknown function.
One then reads the equation R(u4g0) = 0 as a semi-linear elliptic equation for u. In contrast, the
present method treats the metric g and the one-form X as the unknowns and leads to a quasi-
linear elliptic system for these quantities in terms of the freely prescribable quantity T , which is a
component of the curvature of the solution.

Remark: The Main Theorem does not fall into the domain of prescribed Ricci curvature as, for
example, do the results of De Turck and his collaborators [9, 12, 13, 14]. In these papers, the
authors suppose a fixed symmetric tensor S is given on a set O and attempt to find conditions
under which a metric g exists on O so that Ric(g) = S. In the Main Theorem, by contrast, the
tensor S is itself an unknown quantity and only a component is prescribed ahead of time by the
free data. Furthermore, De Turck’s results are local in nature since O is usually an open set in Rn,
while the Main Theorem of this article gives a global (though perturbative) result.

3.2 Formulating an elliptic problem

The first task in the proof of the Main Theorem is to construct the associated elliptic system that is
to be solved by the Implicit Function Theorem. To this end, recall that the Ricci curvature operator
in (16) is not elliptic, but that imposing the coordinate gauge choice defined by the harmonic
coordinate condition makes the Ricci operator elliptic. As indicated in Section 2.3, assuming
a priori that the harmonic coordinate condition is satisfied by the metric δ + h is equivalent
to replacing the Ricci operator by the reduced Ricci operator RicH(δ + h). (Of course, this
assumption must be justified later on; i. e. it must be shown that δ + h does indeed satisfy the
harmonic coordinate condition, and this is precisely what the second step of the proof of the Main
Theorem will accomplish). The remaining operator in (16) is underdetermined elliptic, and an
elliptic operator can be constructed from this by using a standard technique known as the York
decomposition (see [26] but also [8, 11] for a thorough analysis of this method). Write a symmetric,
trace-free tensor S in terms of a 1-form X and a freely prescribed tensor symmetric T as

S(h,X, T ) = T ∗ + Lδ+h(X) . (17)

where T ∗ = T − 1
3Trδ+h(T )(δ+h) is the trace-free part of T and Lδ+h(X) is the conformal Killing

operator with respect to the metric δ + h acting on X. This is defined for a general metric g by

Lg
ab(X) = ∇aXb +∇bXa −

2
3
∇cXcgab ,

where ∇ is the covariant derivative of the metric g. The reason for making this choice is that
the composition of the divergence operator in (16) and the conformal Killing operator, that is the
composite operator divg ◦ Lg given componentwise by

[divg ◦ Lg(X)]b = ∇a
(
∇aXb +∇bXa −

2
3
∇cXcgab

)
= ∇a∇aXb +

1
3
∇b∇aXa +Ra

b (g)Xa ,

is elliptic, as can easily be seen by computing its symbol. However, the observation that the
conformal Killing operator is the formal adjoint of the divergence operator Sab 7→ ∇aSab taking
symmetric, trace-free tensors to 1-forms obviates these calculations because it is well-known that
the compositon PP ∗ of an underdetermined elliptic operator P with its adjoint is elliptic.

These considerations lead to the following definition of the associated system, given here in
index-free notation for ease of presentation:

RicH(δ + h) = S(h,X, T )

divδ+h ◦ S(h,X, T ) = 0
(18)
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where S(h,X, T ) is as in (17) and is called the York operator. As will be shown in due course, the
map defined by

Φ(h,X, T ) ≡

(
RicH(δ + h)− S(h,X, T )

divδ+h ◦ S(h,X, T )

)
(19)

on appropriate Banach spaces has a bounded, elliptic linearization in the h and X directions and
as a result, the Implicit Function Theorem yields solutions h(T ) and X(T ) as smooth functions of
sufficiently small tensors T .

3.3 Choosing the Banach spaces

Before proceeding with the solution of the equations (18), it is necessary to specify in what Banach
spaces of tensors the equations are to be solved. The notion of asymptotic flatness in R3 should
be encoded rigorously into the function spaces by requiring that the relevant objects belong to
a space of tensors with built-in control at infinity. Furthermore, the spaces should be chosen to
exploit the Fredholm properties of the operators appearing in the map Φ. Both these ends will be
served by weighted Sobolev spaces, and an appropriate choice of these spaces for use in the Main
Theorem will be made below. Begin, however, with a short introduction to these spaces.

Let T be any tensor on R3. (This tensor may be of any order — the norm ‖ · ‖ appearing in
the following definition is then simply the norm on such tensors that is induced from the metric
of R3. Also, Sobolev spaces for tensors on Rn can be defined equally well, but since solving
the conformal constraint equations is explicitly a three-dimensional problem, all definitions and
theorems concerning these spaces will be stated for R3.) The Hk,β Sobolev norm of T is the
quantity

‖T‖Hk,β =

(
k∑

l=0

∫
R3
‖∇lT‖2σ−2(β−l)−3

)1/2

,

where σ(x) = (1 + r2)1/2 is the weight function and r2 = (x1)2 + (x2)2 + (x3)2 is the squared
distance to the origin. Note that Bartnik’s convention for describing the weighted spaces is being
used (the reason for this is psychological: if f ∈ Hk,β and f is smooth enough to invoke the Sobolev
Embedding Theorem (see below), then f(x) = o(rβ) as r → ∞, which is easy to remember —
see [5] for details).

The space of Hk,β functions of R3 will be denoted by Hk,β(R3) and the space of Hk,β sections
of a tensor bundle B over R3 will be denoted by Hk,β(B). As an abbreviation, or where the
context makes the bundle clear, such a space may be indicated simply by Hk,β . Note also that the
following convention for integration will be used in the rest of this paper. An integral of the form∫

R3 f , as in the definition above, denotes an integral of f with respect to the standard Euclidean
volume form. Integrals of quantities with respect to the volume form of a different metric will be
indicated explicitly, as, for example,

∫
R3 f dVolg.

The spaces of Hk,β tensors satisfy several important analytic properties and the reader is asked
to consult Bartnik’s paper, or others on the same topic [5, 8, 10, 11], for details. The three most
important properties that will be used in the sequel are the Sobolev Embedding Theorem, the
Poincaré Inequality and Rellich’s Lemma; these will be restated here for easy reference.

1. The Sobolev Embedding Theorem states that if k > 3
2 and T is a tensor in Hk,β , then T is

C0. Furthermore, if the weighted Ck
β norm of a tensor T is given by

‖T‖Ck
β

=
k∑

l=0

‖∇lfσ−β+l‖0 ,

where ‖T‖0 = sup{‖T (x)‖ : x ∈ R3} (using the Euclidean metric of R3 to define and measure
the pointwise norm of T and its derivatives), then in fact, T ∈ C0

β and ‖T‖C0
β
≤ C‖T‖Hk,β ,
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2. The Poincare Inequality states that if β < 0, then

‖f‖H0,β ≤ C‖∇f‖H0,β−1 ,

whenever f is a function in H1,β(R3).

3. The Rellich Lemma states that the inclusion Hk,β(B) ⊆ Hk′,β′(B), for any tensor bundle B,
is compact when k′ < k and β′ > β. In other words, if Ti is a uniformly bounded sequence
of tensors in Hk,β , then there is a subsequence Ti′ converging to a tensor T in Hk′,β′ .

Remark: The constant C appearing in the estimates above is meant as a general numerical
constant, independent of the tensors or functions measured in the estimate. In the remainder of
this article, any such constant will be denoted by a generic C, unless it is important to emphasize
otherwise.

In addition to the three properties above, two important results that are valid in weighted
Sobolev spaces will be needed in the sequel. The first concerns integration.

Duality Lemma: If u ∈ H l,γ(R3) and v ∈ H l−2,−γ−3(R3), then the integral
∫

R3 u·v is well defined.
Furthermore, the functional analytic dual space of H0,γ(R3) is isomorphic to H0,−γ−3(R3) under
the pairing v 7→ φv where φv(u) =

∫
R3 u · v.

Proof: Choose u and v as in the statement of the lemma. Then by Hölder’s inequality,∫
R3
|u · v| ≤

∫
R3
|u|σ−γ−3/2 · |v|σ−(−γ−3)−3/2

≤
(∫

R3
u2σ−2γ−3

)1/2(∫
R3
v2σ−2(−γ−3)−3

)1/2

<∞ .

The product u · v is thus in L1 and so its integral is well defined. The statement about duality
follows from the Riesz Representation Theorem for L2 and the inequality above. See [20, 25] for
details.

The second result concerns the Fredholm properties of certain linear, elliptic partial differential
operators on weighted Sobolev spaces.

Invertibility Theorem: Suppose B is any tensor bundle over R3 and let Q : Hk,β(B) →
Hk−2,β−2(B) be any linear, second order, elliptic, homogeneous, partial differential operator with
constant coefficients mapping between weighted Sobolev spaces of sections of B, and k ≥ 2. Then
Q is surjective if β 6∈ Z and β > −1 and injective if β 6∈ Z and β < 0. It is thus bijective when
β ∈ (−1, 0). The operator Q is not Fredholm if β ∈ Z.

Proof: The proof of this result can be found in [10], but see also [21] for an excellent discussion of
the intuitive foundation underlying the theory of elliptic operators on weighted spaces.

Choice of Banach spaces

Denote by S2(R3) the symmetric tensors over R3 and by Λ1(R3) the 1-forms of R3. Let β be
any number in (−1, 0) and let k be any integer strictly larger than 7

2 . Solutions of the associated
system will be found in the following Banach spaces:

• metrics δ + h will be found so that h ∈ Hk,β
(
S2(R3)

)
;

• 1-forms X will be found in Hk−1,β−1
(
Λ1(R3)

)
;

• tensors T will be found in Hk−2,β−2
(
S2(R3)

)
.
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The preceding choice of Banach spaces will be justified in the next section by showing that
solutions of the associated system exist in these spaces. However, an argument can be made
right now that suggests that the spaces above are indeed the correct ones in which to expect
to find solutions. First, in order to ensure that the metric δ + h is asymptotically flat, h must
decay as r → ∞, and this holds by the Sobolev Embedding Theorem when β < 0. Next, a
non-trivial, asymptotically flat metric satisfying the constraint equations must satisfy the Positive
Mass Theorem [24] and consequently must have non-zero ADM mass. Thus the r−1 term in the
asymptotic expansion of h must be allowed to be non-zero, which by the Sobolev Embedding
Theorem imposes the further requirement that β > −1. Furthermore, k ≥ 4 implies that the
Sobolev Embedding Theorem can be applied to the second derivatives of the metric, and thus the
curvature of the metric decays pointwise as r →∞. Finally, the h, X and T quantities are chosen
in different Sobolev spaces because of the differing numbers of derivatives taken on these quantities
in the associated system. For instance, the reduced Ricci curvature operator is homogeneous and
of degree two and thus sends a metric in Hk,β to a tensor in Hk−2,β−2. The operator S(h,X, T )
is homogeneous but is only of degree one in X and of degree zero in T ; it thus maps to Hk−2,β−2

only when the weightings on X and T match together properly and match the weighting on the
metric h as in the choice above.

3.4 First attempt to solve the associated system

The Implicit Function Theorem, the tool which will be used to solve the associated system, is
restated here for ease of reference.

Implicit Function Theorem: Let Φ : A × B → C be a smooth map between Banach spaces
and suppose that Φ(0, 0) = 0. If the restricted linearized operator DΦ(0, 0)

∣∣
A×{0} : A → C is

an isomorphism, then there exists an open set U ⊂ B which contains 0 and a smooth function
φ : U → A with φ(0) = 0 so that Φ

(
φ(b), b

)
= 0.

For an excellent discussion and proof of this theorem, see [1]. In order to use this theorem, let

A =
{
(h,X) ∈ Hk,β

(
S2(R3)

)
×Hk−1,β−1(Λ1

(
R3)
)}

B =
{
T ∈ Hk−2,β−2

(
S2(R3)

)}
C = Hk−2,β−2

(
S2(R3)

)
×Hk−3,β−3(Λ1

(
R3)
)
;

then the linearization of the operator Φ in the A direction at the origin must be calculated and its
mapping properties understood.

The linearization of Φ is actually quite simple when evaluated at the origin because the only
nonlinearities in Φ occur in the second order terms of the reduced Ricci operator and in terms that
are quadratic in the derivatives of the metric (such as in products of Christoffel symbols or in the
connection terms). Since the covariant derivative of the Euclidean metric is trivial, it is thus easy
to see that the linearization of a covariant derivative operator at the Euclidean metric is just the
Euclidean derivative operator, and it is now a straightforward matter to deduce from the definition
of the associated system in (18) that the linearization of Φ in the A× {0} direction is

DΦ(0, 0, 0) (h,X, 0) =

(
− 1

2∆h− L(X)

div ◦ L(X)

)
, (20)

where ∆ is the Euclidean Laplacian and L is the Euclidean conformal Killing operator.
Denote by Pδ the operator DΦ(0, 0, 0)(·, ·, 0). It is a bounded linear operator between the

appropriate weighted Sobolev spaces because of the way in which the weights were chosen in Section
3.3. To determine whether Pδ is an isomorphism, one appeals to the Invertibility Theorem. Recall
that the weight β in the domain spaces of Pδ has been chosen between −1 and 0.
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Injectivity of Pδ

Suppose (h,X) belong to the kernel of Pδ(h,X). In other words, (h,X) solves the equation
Pδ(h,X) = (0, 0), or

−1
2
∆h− L(X) = 0

div ◦ L(X) = 0 .

Since the operator div ◦ L : Hk−1,β−1
(
Λ1(R3)

)
→ Hk−3,β−3

(
Λ1(R3)

)
is a linear, elliptic, homoge-

neous, constant coefficient operator of second order, the Invertibility Theorem applies, and since
β − 1 ∈ (−2,−1) when β ∈ (−1, 0), it is thus injective. Hence X = 0. The remaining equation
now reads ∆h = 0 and again, since ∆ : Hk,β

(
S2(R3)

)
→ Hk−2,β−2

(
S2(R3)

)
and β ∈ (−1, 0), ∆ is

an isomorphism and thus h = 0. Hence Pδ is injective.

Surjectivity of Pδ

Although the operator Pδ is injective, it is not surjective. First note that the Invertibility
Theorem does not guarantee surjectivity in the same way that it guaranteed injectivity. To see
this, attempt to solve the equations Pδ(h,X) = (f, g) for any f ∈ Hk−2,β−2

(
S2(R3)

)
and g ∈

Hk−3,β−3
(
Λ1(R3)

)
. In other words, consider the system of equations

−1
2
∆h− L(X) = f

div ◦ L(X) = g .

Because β − 1 ∈ (−2,−1), the operator div ◦ L is not necessarily surjective according to the
Invertibility Theorem. The full equations Pδ(h,X) = (f, g) can thus not necessarily be solved.

To show that Pδ actually does fail to be surjective, it is necessary to show that the dimension
of its cokernel in Hk,β

(
S2(R3)

)
×Hk−1,β−3

(
Λ1(R3)

)
is strictly greater that zero. First, note that

if Xg satisfies div ◦ L(Xg) = g, then the remaining equation − 1
2∆h = L(Xg) + f can be solved by

the Invertibility Theorem since the weight β is chosen such that ∆ is an isomorphism. Thus the
dimension of the cokernel of Pδ is equal to the dimension of the cokernel of div ◦ L as an operator
between Hk−1,β−1

(
Λ1(R3)

)
and Hk−3,β−3

(
Λ1(R3)

)
.

To characterize the cokernel of div ◦ L, one appeals to general, function-theoretic properties of
linear, second order, homogeneous, elliptic operators on weighted Sobolev spaces. The following
lemma and its proof show how this is done.

Cokernel Lemma: Suppose B is any tensor bundle over R3 and let

Q : Hk,γ(B) → Hk−2,γ−2(B)

be a linear, second order, homogeneous, elliptic operator on weighted Sobolev spaces of sections of
B where k ≥ 2 and γ 6∈ Z, γ < −1. The image of the operator Q is the space:

Im(Q) =
{
w ∈ Hk−2,γ−2(B) :

∫
R3
〈w, z〉 = 0 ∀ z ∈ Ker (Q∗;−1− γ))

}
, (21)

where the inner product 〈·, ·〉 is induced on B from the Euclidean metric of R3, the operator Q∗

is the formal adjoint of Q, and Ker(Q∗;−1− γ) is its kernel as an operator from Hk,−1−γ(B) to
Hk−2,−3−γ(B).

Proof: Denote the space on the right hand side of equation (21) by W . Suppose that k = 2 and
consider first the containment Im(Q) ⊆W . Choose Q(y) ∈ Im(Q) and z ∈ Ker(Q∗;−1−γ). Since
Q(y) ∈ H2,γ−2(B), the integral

∫
R3〈Q(y), z〉 is well defined by the Duality Lemma.

Claim: This integral equals
∫

R3〈y,Q∗(z)〉.

15



The equality of the integrals on smooth, compactly supported sections of B is true by definition of
the adjoint. The equality of the integrals for Hk,γ sections follows because C∞c sections of B are
dense in Hk,γ sections of B [5].

The integral
∫

R3〈Q(y), z〉 is thus zero and so Q(y) ∈W .
The reverse containment W ⊆ Im(Q) is proved as follows. Suppose w0 belongs to W ; thus,

w0 ∈ H0,γ−2(B) and satisfies
∫

R3〈w0, z〉 = 0 for all z ∈ Ker(Q∗;−1 − γ). Suppose also that
w0 6∈ Im(Q). Since Q is elliptic, Im(Q) is closed; thus by the Hahn-Banach theorem, there exists a
linear functional φ on H0,γ−2(B) so that φ(w0) 6= 0 but φ

∣∣
Im(Q)

= 0. Again by the Duality Lemma,
there is a unique z0 ∈ H0,−1−γ(B) so that φ(w) =

∫
R3〈w, z0〉 for all w ∈ H0,γ−2(B). Therefore,

φ
∣∣
Im(Q)

= 0 implies that

0 = φ(Q(y))

=
∫

R3
〈z0, Q(y)〉

=
∫

R3
〈Q∗(z0), y〉

for all y ∈ H2,γ(B). Thus Q∗(z0) = 0 or z0 ∈ Ker(Q∗;−1 − γ). But now, the assumptions
φ(w0) 6= 0 and

∫
R3〈w0, z〉 = 0 for all z ∈ Ker(Q∗;−1 − γ) are mutually contradictory. Thus it

must be that w0 ∈ Im(Q). Finally, the extension to k > 2 follows in a similar manner by standard
functional analysis.

Apply this theorem to the operator Q = div ◦ L with γ = β − 1. Now, Q∗ = Q, so in order to
solve the equation div ◦ L(X) = g, the tensors g must satisfy the constraints∫

R3
gaY

a = 0 ,

where Y is any tensor in the kernel of the operator div ◦ L in the space Hk−1,−1−γ
(
Λ1(R3)

)
.

The kernel of div◦L is well known and consists of 1-forms dual to the the conformal Killing fields
of R3. There are precisely ten linearly independent families of such vector fields: the translation
vector fields, the rotation vector fields, the dilation field and three so-called special conformal
Killing fields (these correspond to transformations of the form i◦T ◦ i, where i is the inversion with
respect to the unit circle and T is a translation). The asymptotic behaviour of these vector fields
can thus be computed exactly: the translations have constant norm, the rotations and dilations
have norm growing linearly in the distance from the origin, and the special vector fields have
quadratic growth in the distance from the origin. Since −1 − γ ∈ (0, 1) when β ∈ (−1, 0), the
only 1-forms dual to the conformal Killing fields in Hk−1,−1−γ

(
Λ1(R3)

)
are thus those spanned by

the translation 1-forms dx1, dx2 and dx3. Consequently, the image of Q = div ◦ L in the space
Hk−3,γ−2

(
Λ1(R3)

)
can be characterized as follows:

Im(div ◦ L) =
{
g ∈ Hk−3,β−3

(
Λ1(R3)

)
:
∫

R3
ga = 0 , a = 1, 2, 3

}
,

where ga are the components of g in the standard coordinates of R3.
The conclusion that can be drawn from the analysis of this section is that the equation

Φ(h,X, T ) = (0, 0) is not solvable near (0, 0, 0) using the Implicit Function Theorem. The non-
surjectivity of the linearized operator at (0, 0, 0) is the essential obstruction. The best that can
be achieved using the Implicit Function Theorem is thus that the equation Φ(h,X, T ) = (0, 0) can
be solved up to a term that is transverse to the space Im(div ◦ L). It will turn out that this is
nevertheless sufficient for solving the full equations as a result of the integrability conditions built
into the equations. But in order to show this, the associated system defined in the previous section
must be modified somewhat.
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3.5 Reestablishing surjectivity and solving the associated system

In order to modify the associated system appropriately, first note that the space Hk−3,β−3
(
Λ1(R3)

)
can be written as Im(div◦L)⊕W in many different ways; but in each case, W is a three dimensional
subspace of Hk−3,β−3

(
Λ1(R3)

)
whose members do not integrate to zero upon taking the Euclidean

inner product with the translation 1-forms. One such choice is

W = span {φdxa}a=1,2,3 ,

where φ is any smooth, positive function of compact support whose integral over R3 is equal to 1.
Again, denote the domain space of the operator Φ by A. The previous paragraph suggests that

one should attempt to construct a new associated operator Φ′ that extends Φ in such a way that
Φ′ : A × R3 → Im(Pδ) ⊕W , where the additional R3 factor in the domain should map under the
linearization DΦ′ at the solution (0, 0, 0; 0) ∈ A × R3 onto the W factor in the image. If such a
construction is possible, then the equation Φ′(h,X, T ;λ) = (0, 0) can be solved using the Implicit
Function Theorem.

Construct the operator Φ′ : A× R3 → Hk−3,β−3
(
Λ1(R3)

)
according to the prescription

Φ′(h,X, T ;λ) =

(
RicH(δ + h)− S(h,X, T )

divδ+h ◦ S(h,X, T )−
∑3

a=1 λaφdxa

)
, (22)

where, as before, RicH is the reduced Ricci operator and S(·, ·, ·) is the York operator. The
linearization of Φ′ at (0, 0, 0; 0) in the directions transverse to the T direction is easily seen to be

DΦ′(δ, 0, 0; 0)(h,X, 0;λ) =

(
− 1

2∆h− L(X)

div ◦ L(X)−
∑3

a=1 λaφdxa

)
. (23)

Denote this new operator by P ′δ. It is still bounded because φ has compact support, and it is now
also bijective by the following arguments.

Injectivity of P ′δ

Suppose P ′δ(h,X;λ) = (0, 0). Integrate the components of the second equation; by the diver-
gence theorem for the Euclidean metric (valid because constant functions can be integrated against
Hk−3,β−3 functions when β ∈ (−1, 0) according to the Duality Lemma), the divergence terms in-
tegrate to zero, yielding λa = 0 for all a. The argument that both X and h are then equal to zero
follows as in Section 3.4.

Surjectivity of P ′δ

Suppose that P ′δ(h,X;λ) = (f, g). First choose the components λa so that∫
R3

(
ga + λaφ

)
= 0

for each a. The equation div ◦ L(X) = g −
∑3

a=1 λaφdxa can then be solved for Xg according to
the characterization of the image of the operator div ◦L from the previous section. The remaining
equation − 1

2∆h = L(Xg) + f can then be solved because β ∈ (−1, 0) makes ∆ an isomorphism.

The Implicit Function Theorem can now be invoked to solve the equation Φ′(h,X, T ;λ) = (0, 0)
near (0, 0, 0; 0). To be precise, there is a neighbourhood U ⊂ Hk−2,β−2

(
S2(R3)

)
with the following

property. If T ∈ U , then there is a metric δ + h(T ) with h(T ) ∈ Hk,β
(
S2(R3)

)
, a covector field

X(T ) ∈ Hk−1,β−1
(
Λ1(R3)

)
, and three real numbers λa(T ) so that

Φ′
(
h(T ), X(T ), T ;λ(T )

)
= (0, 0).
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Furthermore, the various functions T 7→ h(T ), etc. are smooth in the appropriate Banach space
norms. In particular, there exists a constant C so that

‖h‖Hk,β ≤ C‖T‖Hk−2,β−2

‖X‖Hk−1,β−1 ≤ C‖T‖Hk−2,β−2

‖λ‖R3 ≤ C‖T‖Hk−2,β−2 ,

(24)

where ‖ · ‖R3 denotes the standard Euclidean norm of R3, as long as T ∈ U .

3.6 Satisfying the harmonic coordinate condition

Section 3.5 shows how the associated system (18) can be modified in such a way that it can be
solved using the Implicit Function Theorem. This procedure results in a family of solutions of the
equations

RicH(δ + h) = S(h,X, T )

divδ+h ◦ S(h,X, T ) = λφ ,
(25)

where λ =
∑3

a=1 λa dxa. It remains to show whether the original equations (16) are satisfied by the
solution δ+ h and S(h,X, T ). This will be done by showing that the integrability conditions built
into the extended constraint equations (i. e. the Bianchi identity only, since the time-symmetric
assumption has eliminated the other integrability condition) actually ensure that if (h,X, T ;λ)
solves (25), then λ = 0 and h+ δ satisfies the harmonic coordinate condition. Therefore Rich(δ +
h) = Ric(δ + h) and solutions of (25) are indeed solutions of the full equations.

To prove this claim, assume instead that λ and the quantities Γa are nonzero. Argue towards
a contradiction as follows. First, write g = δ + h for short. The Bianchi identity divg

(
Ric(g) −

1
2R(g)g

)
= 0, applied to equation (9) defining the reduced Ricci operator yields the identity

0 =
(
RH

ab −
1
2
RHgab

) a

;
=
(
Γa;b + Γb;a − Γc

;chab

) a

;

which is equivalent to
Γ a

b;a +Ra
bΓa = 2φλa , (26)

after using the modified associated system and commuting covariant derivatives appropriately. If
Qh denotes the operator ua 7→ ∆δ+hua + [Ric(δ + h)]baub, then (26) asserts that 2φλa is in the
image of Hk−1,β−1(Λ1(R3)) under Qh, because h ∈ Hk,β

(
S2(R3)

)
and the Γa are obtained from

δ + h by differentiation. This, however, can be shown to violate the following basic result about
elliptic operators.

Stability Lemma: Let B be a tensor bundle over R3 and let Qε : H l,γ(B) → H l−2,γ−2(B),
ε ∈ [0, 1], be a continuous family of linear, homogeneous, second order, elliptic operators, for all
γ 6∈ Z, γ < −1. Furthermore, suppose Qε is uniformly injective for any ε whenever γ < −1; i. e. for
each γ 6∈ Z, γ < −1, there is a constant C independent of ε so that ‖Qε(y)‖Hl−2,γ−2 ≥ C‖y‖Hk,γ .
If z 6∈ Im(Q0), then there exists ε0 > 0 so that z 6∈ Im(Qε) for all ε < ε0.

Proof: Suppose the contrary; then for some γ < −1, there exists a sequence εi → 0 and a sequence
yi ∈ H l,γ(B) so that z = Qεi(yi). By the uniform injectivity of Qε, ‖yi‖Hl,γ ≤ C‖z‖Hl−2,γ−2 and
is thus uniformly bounded. By Rellich’s Lemma, there exists a subsequence yi′ which converges
to an element y in H l−1,γ+ρ, where ρ is small enough so that γ + ρ < −1. Again, by uniform
injectivity,

‖yi′ − yj′‖Hl,γ+ρ ≤ C‖Qεi′ (yi′ − yj′)‖Hl−2,γ+ρ−2

≤ C‖(Qi′ −Qj′)(yj′)‖Hl−2,γ+ρ−2

≤ C‖Qi′ −Qj′‖op · ‖yj′‖Hl,γ+ρ

18



≤ C‖Qi′ −Qj′‖op · ‖yj′‖Hl,γ

−→ 0 ,

by the continuity of Qε and the uniform boundedness of yi. Here, ‖ · ‖op denotes the relevant
operator norm. The subsequence yi′ is thus Cauchy in the H l,γ+ρ norm and so yi′ → y in this
norm. But now,

z = lim
i′→∞

Qεi′ (yi′) = Q0(y) ,

contradicting the fact that z 6∈ Im(Q0).

In order to derive a contradiction from (26) using this lemma, the uniform injectivity of Qh

must be established and it must be shown that φλa does not belong to the image of Q0.

Uniform Injectivity of Qh

Suppose that Qh(u) = 0 for u ∈ Hk−1,γ
(
Λ1(R3)

)
where γ < −1. In other words, Γ a

b;a +Ra
bΓa =

0. From this, one easily deduces

−∆g‖u‖2 = 2
(
Rabu

aub − ‖∇u‖2
)
. (27)

Before continuing, recall the following facts about Green’s identity in weighted Sobolev spaces.
If functions u and v are chosen such that v ∈ Hk,γ(R3) and u ∈ Hk,−1−γ(R3) for some γ, then the
integrals appearing in Green’s identity for a general metric g on a large ball Br, that is∫

Br

u∆gv dVolg +
∫

Br

∇u · ∇v dVolg =
∫

∂Br

u
∂v

∂n
dAg , (28)

where dAg is the area form of the metric g, are all well defined as r → ∞. Thus by applying a
density argument as in the proof of the Cokernel Lemma, one can conclude that∫

R3
u∆gv dVolg +

∫
R3
∇u · ∇v dVolg = 0 ,

in the limit of (28) as r →∞.
With this in mind, integrate both sides of equation (27) against the volume form of the metric

g = δ + h to obtain

−1
2

∫
R3

∆g‖u‖2 dVolg =
∫

R3
Rabu

aub dVolg −
∫

R3
‖∇u‖2 dVolg . (29)

Since u ∈ Hk−1,γ and 1 ∈ Hk−1,−γ−1 (true since γ < −1), Green’s Identity applied to the left
hand side of (29) gives

∫
R3 ∆g‖u‖2 = 0. Consequently,

0 ≤
∫

R3
‖Ric(g)‖ ‖u‖2 dVolg −

∫
R3
‖∇u‖2 dVolg

≤
∫

R3
‖Ric(g)‖ ‖u‖2 dVolg − C

∫
R3
‖∇‖u‖ ‖2 dVolg (30)

for some constant C, by the Cauchy-Schwarz inequality and straightforward algebra. Next, assume
that h is small in a pointwise sense (this assumption follows from the Sobolev Embedding Theorem
if h is sufficiently small in the Hk,β norm and k > 3

2 ). In fact, assume that h is sufficiently close
to 0 so that all norms, derivatives and volume forms of the metric g can be replaced by their
Euclidean counterparts (at the expense of changing C of course). Finally, since ‖u‖ is a scalar
function, the derivative operator in (30) can be replaced by the Euclidean derivative operator
without introducing lower order terms. Thus, there exists a new constant C so that the estimate

0 ≤
∫

R3
‖Ric(g)‖ ‖u‖2 − C

∫
R3
‖∇‖u‖ ‖2 (31)
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holds, where the norms and derivatives appearing here are those of the Euclidean metric. Next,
Ric(g) ∈ Hk−2,β−2 because g− δ ∈ Hk,β . But since k > 7

2 , the Sobolev Embedding Theorem gives
Ric(g) ∈ C0

−β+2. That is,
sup
R3

∥∥Ric(g) · σ−β+2
∥∥ ≤ C <∞ ,

which implies that
sup
R3

∥∥Ric(g) · σ2
∥∥ ≤ C <∞ ,

since β < 0. Finally, apply the Poincaré inequality for weighted Sobolev norms to the function ‖u‖
to deduce ∫

R3
‖Ric(g)‖ ‖u‖2 ≤ ‖Ric(g) · σ2‖ 0

∫
R3
‖u‖2σ−2

≤ C‖Ric(g)‖C0
−2

∫
R3
‖∇‖u‖ ‖2

≤ C‖g − δ‖C2
0

∫
R3
‖∇‖u‖ ‖2

≤ C‖h‖Hk,β

∫
R3
‖∇‖u‖ ‖2 (32)

again by the Sobolev Embedding Theorem and the fact that β < 0. Using (32) in inequality (31)
leads to the contradiction because the preceding estimates imply

0 ≤ (C‖h‖Hk,β − 1)
∫

R3
‖∇‖u‖ ‖2 ,

while if ‖h‖Hk,β is sufficiently small, the right hand side above is clearly negative. Avoiding
this contradiction requires ∇‖u‖ = 0. But since the Sobolev Embedding Theorem applied to
u ∈ Hk−1,γ shows that ‖u‖ decays at infinity when γ < −1, it must be true that u = 0.

The operator Qh acting on Hk−1,γ 1-forms is injective for all γ < −1 whenever h is sufficiently
close to zero in the Hk,β norm. The uniform injectivity follows in the standard way from the
injectivity of each Qh and the fact that the constant in the elliptic estimate for these operators is
independent of h, again provided h is sufficiently near to 0.

Image of Q0

The φλ term in (25) was specifically chosen in Section 3.5 to satisfy the integral condition∫
R3〈λφ,dxb〉 6= 0 (since λa 6= 0 for all a). This condition ensures that indeed 2φλa is not in the

image of the operator Q0 = ∆δ acting on the space of H l,γ 1-forms of R3 because the image of ∆δ

in H l,γ for γ < −1 is perpendicular to the harmonic polynomials of degree less than the nearest
integer less than γ, and this always includes the constants.

The Stability Lemma thus applies to equation (26) and implies that φλ can not be in the image
of Qh when h is sufficiently small in the Hk,β norm, unless of course λ = 0. Now, by the injectivity
of the operator Qh, this in turn implies that ‖Γ‖ = 0, or that Γa = 0 for each a. Consequently,
the harmonic coordinate condition for the metric δ + h is satisfied, and as indicated earlier, this
implies that the the metric δ + h and the tensor S(h,X, T ) satisfy the time-symmetric extended
constraint equations (16). This completes the proof of the Main Theorem.
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