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Abstract—Fast simulation of incompressible fluid flows is 

necessary for simulation-based design optimization. Traditional 

Computational Fluid Dynamics techniques often don’t exhibit the 

necessary performance when used to model large systems, 

especially when used as the energy function in order to achieve 

global optimization of the system under scrutiny. This paper 

maps an implementation of the Stable Fluids solver for Fast 

Fluid Dynamics to Intel’s Single-ship Cloud Computer (SCC) 

platform to understand its data communication patterns on a 

distributed system and to verify the effects of the on-die 

communication network on the algorithm’s scalability traits. 
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I.  INTRODUCTION 

Simulation of incompressible fluids is often used in 
conjunction with the design and analysis phases of engineering 
and construction projects. 

Fast Fluid Dynamics (FFD) is a technique originally 
introduced by Foster and Metaxas [2] for computer graphics, 
used to simulate incompressible fluid flows using a simple and 
stable approach.  

In recent years FFD has been applied to numerous 
scenarios and its validity has been independently verified by 
multiple groups [1]. While simulations results diverge from 
experimental data, the accuracy of the prediction is often 
sufficient to provide guidance when fast simulation turnaround 
is required for design optimization and emergency planning 
scenarios. 

FFD techniques use a regular grid spatial partitioning 
scheme. In order to simulate very large problems the amount of 
memory a single system can support is often not sufficient. 
Aggregating collections of systems is often used to simulate 
large domains and this technique corresponds to employing 
distributed-memory architecture. Even when memory on a 
single system is sufficient, the number of computing cores 
operating in single-image SMP architectures can exhaust the 
total available memory bandwidth. The overall algorithms 
scalability can thus suffer, regardless of the amount of 
available parallelism the algorithms actually exhibit. 

The goal of our work is to design and implement a variant 
of the FFD method to evaluate its scalability traits on a system 

that employs an on-die network and not to produce the fastest 
possible implementation. 

II. THE SCC ARCHITECTURE AND THE RCCE 

COMMUNICATION LIBRARY 

Intel’s Single Chip Cloud system is a novel microprocessor 
system design based on computing “tiles” organized in a 2D 
grid topology [5][6]. No hardware support for cache coherence 
is provided, but hardware support for message passing, 
message routing and synchronization primitives is available. 

The main message communication library available on the 
system is RCCE [7], and offers basic synchronous message 
passing and synchronization facilities. 

III. STABLE FLUIDS ALGORITHM 

Stable Fluids was introduced by Stam [3][4] as a fast, stable 
technique to solve incompressible fluid field motion; the fluid 
domain is decomposed in a regular voxel grid. Each voxel 
contains the density and the velocity at the corresponding 
spatial location, thus defining a vector velocity field U and a 
density scalar field D. 

 

Figure 1.  Regular voxel grid 

 

To solve for a time step the simulator performs a series of 
sequential phases that operate on the velocity field and the 
density field: 

Add velocity forces: compute contribution of external 
forces on the velocity field. 



 

 

Core 0 Core 1

Core 2 Core 3

Diffuse velocity: compute the diffusion effect of the 
velocity field. 

Advect velocity: compute the movement of velocity as 
affected by the velocity field itself. 

Project velocity: compute the effects of mass conservation 
on the velocity field. 

Add density sources: compute the contribution of external 
density sources on the density field. 

Diffuse density: compute the effects of diffusion on the 
density field. 

Advect density: compute the movement of the density field 
as affected by the velocity field. 

IV. SIMULATING FLUIDS ON THE SCC 

Mapping the Stable Fluids solver on the SCC requires 
decomposing the fluid field into multiple tiled subdomains and 
assigning a core to each subdomain. A block partitioning 
scheme is the most natural solution due to the network 
topology the cores in the SCC architecture are organized into. 

The domain decomposition operation is performed upon 
starting the simulator. In the current implementation the 
subdomains' locations and sizes do not change after 
initialization. The partitions are implicit: system software 
provides to each core its own network row and column index in 
the grid, and the total number of cores present in each row and 
column. Every core can therefore directly compute the size 
(number of rows and columns) and the origin of its own 
subdomain.  

The effect of this partitioning scheme is that cores that are 
physical neighbors in the mesh topology operate on adjacent 
subdomains. This is important for optimizing overall 
communication latencies, as a significant amount of data 
dependencies refer to neighboring subdomains.  

As a result, almost all communication happens between 
cores that are direct neighbors in the SCC mesh network. Fig. 1 
shows how a part of the domain is mapped onto cores at 
indexes (0, 0), (0, 1), (1, 0), (1, 1) on the SCC. 

 

Figure 2.  Domain decomposition 

 

For efficiency reasons the fluid domain data is organized in 
memory in an Array of Structures layout. In this way it is 
possible to maximize spatial and temporal coherence in the 
different phases of the algorithm, and hopefully reduce 
performance degradation due to stalls in the memory hierarchy. 
Almost all data structures are evenly partitioned among the 
cores involved in the execution of the solver, the only 
exceptions are the structures containing details about the voxel 
type of the other data grids: in the current implementation, 
these data structures are replicated on each core, as they are 
involved in handling internal and external boundary conditions. 

We implemented the solver as a C++ class library, using 
template constructs to facilitate changing of the basic data type 
of the simulation; varying the data type between different 
levels of precision obviously affects the overall simulation 
precision, performance and memory usage. 

In the next subsections we analyze the individual phases 
that are performed in solving for a time step in the simulation. 

A. Add forces/sources phase 

Adding forces to the velocity field and the density field is a 
trivially parallel operation that doesn't require any data 
communication across subdomain boundaries; considering F as 
a vector field of external forces and S an external scalar field of 
density sources, this phase can be expressed as follows: 

The formula for velocity is: 
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B. Diffusion phase 

The diffusion phase computes the effect of diffusion on 
velocity and density in the voxel grid, which involves solving a 
system of linear equations. In this system h represents the size 
of a voxel as shown in Figure 1. ν represents the fluid 
viscosity constant, and κ represents the density diffusion 
constant. 

The formula for velocity is: 
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The formula for density is: 
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Our implementation uses the Conjugate Gradient method to 
solve the linear systems due to its ability to handle internal 
boundaries. Solving the linear systems results in a strictly data-
parallel 5-point stencil data access pattern. Due to the 
predictable nature of the data access the communication 
requirements are all statically known. For this reason we can 
perform all the required data exchanges concurrently at the 
beginning of the phase then proceed to compute the voxels that 
do not require subdomain boundary values. At the end, we 



 

 

process the boundary voxels and as a result, completely overlap 
the data communication of all the cores. 

C. Advection phase 

The purpose of the Advection phase is to move both 
density and velocity along the velocity field. 

 

Figure 3.  Advection phase backtracking and interpolation 

 

In this phase h represents the size of a voxel as shown in 
Figure 1, Δ t represents the time step, Interp represents a 2D 
linear interpolation function. 

The formula for velocity is: 
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The data access pattern of the Advection phase is 
unpredictable at compile time, since it is data dependent. In 
fact, the access pattern depends on the evolution of the velocity 
field. This model of computation is known as dynamic stencil 
and its efficient parallelization is generally problematic. 

Currently our solution involves using an implementation of 
a request-response protocol that allows one core to request 
another core for the voxel values of a specific grid. Each core 
batches its requests into a queue for every other core involved.  

The queue data structure is implemented as a collection of 
fixed size arrays. The queue is initially composed of a single 
array of requests per destination core. When the space in each 
array is exhausted it is sent to the target core and a new array is 
allocated, becoming the current requests storage array. We thus 
use a data structure that can grow dynamically to accommodate 
computation requirements. To optimize memory usage, a 
garbage collection mechanism releases unused requests arrays 
as required. At the end of the Advection phase, unused arrays 
in each queue are deallocated in a single operation.  

Take for example a queue composed of four arrays, where 
the three extra arrays have been allocated during a previous 
Advection phase. If the current Advection phase uses only two 
arrays, the last two are deallocated at the end of the phase. This 
strategy is based on the assumption that changes in the velocity 
field are not abrupt between consecutive executions, thus 
generating a similar amount of requests. Since we will likely 
require similar sized sets for the next Advection phase, we 
don’t release all the arrays at the end of the phase. 

To compute the Advection phase on a 2D domain, then for 
each voxel in its local subdomain, each core first computes the 
global grid indices of its four neighbor voxels (eight in a 3D 
environment), resulting from the backtracking operation. If all 
the required voxels are local, the final voxel value is computed. 
Otherwise a new request is added to the queue of the core 
which owns the subdomain containing each remote voxel, and 
the computation of the final voxel value is deferred. 

In summary, since the request-response protocol introduces 
some communication overhead, we use a batching strategy to 
minimize overhead. Core specific requests are batched and sent 
at the end of the local computation or when the current request 
array is full. A communication thread running on each core 
monitors incoming requests from other cores, then creates 
messages containing the requested data and enqueues the 
messages for transmission back to the requesting cores.  

On each core when all the required remote data has been 
successfully received, all the previously deferred voxels can 
finally be computed. 

This approach has proven to be quite efficient due to the 
low communication latency on the SCC mesh network. 
However it is important to underline that performance is highly 
data dependent. For example, small velocities and small time 
steps imply a small number of voxels with remote 
dependencies, with the remote voxels likely being stored in the 
memory of physically neighboring cores on the SCC mesh 
network. This results in a limited amount of communication 
between direct physical neighbors, minimizing both the 
required bandwidth and message routing distance on the mesh, 
in turn minimizing latency.  

In a different scenario, large velocities and/or large time 
steps introduce large amounts of voxels with remote 
dependencies, which may involve communicating across larger 
routing distances on the mesh. This implies additional hops in 
the communication network, more message collisions/conflicts 
and in general, higher communication latency. 

The implementation of our request-response protocol on the 
SCC required functionality not available in the RCCE library, 
which only supports pure send-receive communications. Our 
protocol requires both asynchronous message passing and data-
dependent message destinations. We then extend the RCCE 
library with additional functions which will be discussed in 
section V. 

D. Projection phase 

The Projection phase corrects the velocity field to ensure 
conservation of mass, and involves computing the current flow 
gradient field and solving the Poisson equation to force the 
flow in and out of each voxel to be equivalent. 

The current flow gradient field is easily obtained using the 
current velocity field, and only requires statically known 
communication of voxel values along borders of the 
subdomains. The solver then proceeds to solve the following 
linear system, where P represents the pressure field in the 
Poisson equation:  
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Solving the linear system is accomplished by re-using the 
Conjugate Gradient method already applied during the 
Diffusion phase. The data access pattern is the same and we 
can easily overlap all data communication by using 
asynchronous communication functions. 

V. RCCE EXTENSION 

Due to the data-dependent and unpredictable nature of the 
data access pattern in the Advection phase, the basic RCCE 
library provided by the SCC SDK is not suitable. The RCCE 
API does not contain functionality to efficiently listen to 
incoming messages which can arrive at any time from any 
core. It also lacks support for asynchronous communication, 
which is fundamental to implement our request-response 
protocol. 

Some other communication libraries have been developed 
since the SCC architecture has been released, iRCCE [11] and 
RCKMPI [10] are the most popular. The former is an extension 
to the RCCE library while the latter is an implementation of the 
MPI standard for the SCC. 

iRCCE is a promising library, as it adds non-blocking 
point-to-point communication capabilities to RCCE and 
introduces a new, smarter version of the “send/receive” 
functions. This alternative communication scheme is referred 
to as “pipelined”. It splits the Message Passing Buffer (MPB) 
into two chunks, allowing both the sender and the receiver to 
access the MPB at the same time, in parallel. While the new 
features introduced by the iRCCE extension are useful in the 
context of our work, they are still not sufficient for our 
purposes. In particular it is not possible to efficiently receive a 
message without knowing the sender in advance, and mixing of 
non-blocking communication requests with blocking collective 
operations is not supported.  

In our computation we often need to compute the norm of a 
vector partitioned among all the cores’ address spaces. Without 
mixing point-to-point communication requests with collective 
operations, we would require a barrier every time we need to 
compute a norm. Moreover, the pushing mechanism used by 
iRCCE to allow the communication to progress leads to a more 
complicated and less portable application code. One of our 
purposes is to write the algorithm in a way that minimizes the 
effort required to port the code to different distributed memory 
architectures, a cluster, for example. For this reason we decided 
to isolate the architecture-dependent aspects of the 
communications in a separate thread that emulates a 
communication controller, for example a DMA engine, or a 
hardware thread in a Simultaneous Multithreading system.  

Using a dedicated thread for communication management 
introduces a small amount of overhead due to the context 
switches between the computation thread and the 
communication thread. However this solution is more flexible, 
because the communication management thread waking pattern 
(and hence the context switch frequency) is configurable. An 
additional advantage is that the application code is cleaner, as 

the calls to the functions that allow communication progress is 
not interleaved with the algorithm code. 

RCKMPI is one of several implementations of the MPI 
standard [8] developed for the SCC architecture, derived from 
the MPICH2 implementation [9]. Its main advantage is that 
many parallel applications programmers are familiar with MPI 
and a parallel application written with RCKMPI only needs to 
be recompiled with an MPI implementation to be ported to a 
variety of distributed systems. However, RCKMPI is affected 
by some of the issues already discussed: in particular the need 
for a receiver to statically know the rank of the sender and the 
size of the message. 

For these reasons we implement our own extension of the 
basic RCCE library, reusing most pre-existing data structures 
to support asynchronous communication and a request-
response protocol. Our extension uses an interface similar to 
the standard TCP/IP “select” function, and introduces a non-
blocking operation to quickly identify incoming messages and 
operate on them. 

Our “select” function takes an array of chars as input, 
which will be filled with the ranks of the cores that are 
requesting to initiate a communication. Upon completion, our 
function returns the number of valid entries in the array. Our 
“select” is based on custom variants of the low-level RCCE 
“send_general” and “receive_general” primitives.  

Our new “send” adds a header to the message containing 
the type of the message and its size in bytes, so that the new 
“receive” does not require the size of the message as a 
parameter.  

The type of the message is an additional one-byte field that 
can be used by the sender program to mark the content of the 
message, so that the receiver program can perform different 
tasks according to this information. 

We allocate two new sets of communication flags in the MPB, 
that are used for signaling by all the new functions (“select”, 
size-agnostic “send” and “receive”). This way we can handle 
both point-to-point and collective communication requests 
without signaling conflicts. The new flags allocated on the 
MPB reduce the size of the largest data chunk transferable by 
48 bytes (using flags of 1 byte), but we consider this trade-off 
acceptable. 

VI. RESULTS 

We tested our solver on domains of different sizes. For 
each experiment we incremented the size of the domain 
proportionally to the number of cores involved, which provided 
a good measure of the impact of communications on the overall 
performance.  

For each domain size, the domain partitions were assigned 
to neighboring cores in the mesh network by using the logical 
layout provided by the RCCE library. This ensured 
neighboring logical domain partitions were assigned to 
physically adjacent cores.  

While our experiment provided a test of both the processor 
cores and the on-chip mesh communication network, initially 



 

 

we only used the default frequencies for the processor cores 
and communication mesh. 

The focus of the tests was not absolute performance but an 
analysis of the scalability traits. 

TABLE 1. EXECUTION TIMES FOR ONE TIME STEP OF SIMULATION 

Domain Size Cores Time (seconds) 

1024 X 1024 1 X 1 116.76 

2048 X 2048 2 X 2 142.63 

4096 X 4096 4 X 4 153.00 

6144 X 6144 6 X 6 153.45 

8192 X 6144 8 X 6 153.85 

 

 
Figure 4.  Scalability results 

 

Table 1 reports the execution times for solving one 
simulation time step using single precision floating point as the 
basic data type. Fig. 1 represents the actual scalability of the 
current implementation of the solver on the SCC and compares 
it with the ideal scalability curve. 

The reference single-core solver used for obtaining the 
baseline timing does not contain any form of communication. 
The multi-core distributed solver thus introduces a certain 
amount of overhead even in its minimal 2x2 cores 
implementation. 

The results demonstrate that while communication indeed 
introduces overhead, the overall scalability traits of the 
algorithm are good. The overhead is constant beyond 4x4 
cores. As a result the solver exhibits a constant execution time 
for larger domains, up to the maximum size tested. The 
memory used approached the upper limit of the SCC system 
used for our tests. 

VII. CONCLUSION AND FUTURE WORK 

The approach chosen in our implementation exhibited fairly 
good scalability, with the experimental results being quite 
promising. We plan to continue the work with the introduction 

of additional optimizations for performance, communication 
and synchronization.  

This paper focused on simulations performed on 2D 
domains, but work is already underway on an extension of the 
solver to 3D domains. The performance optimization work will 
concentrate on the improvement of memory access, additional 
exploitation of asynchronous data transfer, and better 
exploitation of temporal coherence, especially in the Advection 
phase. 

Variations of the cores and mesh frequencies will also be 
evaluated to understand their effects on power usage, and to 
find the optimal frequencies that allow the fastest algorithm 
performance while minimizing power usage. The chosen 
domain partitioning layout is expected to benefit this 
experiment by minimizing the average distance messages need 
to travel on the mesh network.  
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