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Abstract The techniques developed by Butscher (Gluing constructions amongst constant
mean curvature hypersurfaces of S

n+1) for constructing constant mean curvature (CMC)
hypersurfaces in S

n+1 by gluing together spherical building blocks are generalized to handle
less symmetric initial configurations. The outcome is that the approximately CMC hyper-
surface obtained by gluing the initial configuration together can be perturbed into an exactly
CMC hypersurface only when certain global geometric conditions are met. These balancing
conditions are analogous to those that must be satisfied in the “classical” context of gluing
constructions of CMC hypersurfaces in Euclidean space, although they are more restrictive
in the S

n+1 case. An example of an initial configuration is given which demonstrates this
fact; and another example of an initial configuration is given which possesses no symmetries
at all.

1 Introduction

Gluing constructions of constant mean curvature hypersurfaces. A constant mean curvature
(CMC) hypersurface� contained in an ambient Riemannian manifold M of dimension n +1
has the property that its mean curvature with respect to the induced metric is constant. This
property ensures that the n-dimensional area of� is a critical value of the area functional for
hypersurfaces of M subject to an enclosed-volume constraint. One very important method
for constructing CMC hypersurfaces is the gluing technique in which a more complex CMC
hypersurface is built up from simple CMC building blocks. This technique was pioneered
by Kapouleas in the context of CMC hypersurfaces in R

3 [6–8]. The idea is that a very
good approximation of a CMC hypersurface can be constructed by forming the connected
sum of an initial configuration of simple CMC building blocks, which can then be perturbed
to an exactly CMC hypersurface if certain global geometric conditions, called balancing
conditions, are satisfied by the initial configuration.

A. Butscher (B)
Department of Mathematics, Stanford University, Stanford, CA 94305, USA
e-mail: butscher@stanford.edu

123



2 A. Butscher

The gluing technique has been a very successful method for constructing CMC hypersur-
faces in R

3, with the proviso that the resulting hypersurfaces are always small perturbations
of the simple building blocks from which they are constructed, namely spheres and nearly
singular truncated Delaunay surfaces. This is because the quality of the approximate solution
that one can construct improves as the approximate solution more and more closely resembles
a union of mutually tangent spheres. Although it is easy to imagine how to use the gluing
technique in ambient manifolds other than R

3, provided one has enough simple building
blocks, it is not clear that the gluing technique will be quite as successful, in particular when
the ambient manifold is compact.

In Butscher’s and Butscher-Pacard’s work [2–4], the gluing technique for constructing
CMC hypersurfaces has been successfully adapted to work in the compact ambient manifold
S

n+1. In these papers, the CMC building blocks of the sphere—namely the hyperspheres ob-
tained by intersecting S

n+1 with hyperplanes and the product spheres of the form S
p(cos(α))×

S
q(sin(α)) for α ∈ (0, π/2) called the generalized Clifford tori—are configured in a variety

of different ways, glued together using small embedded catenoidal necks, and perturbed into
CMC hypersurfaces. One should imagine that the hypersurfaces constructed in the papers
are analogues of “classical” constructions possible in Euclidean space. Indeed, there are obs-
tructions for solving the CMC equation on an arbitrary initial configuration in S

n+1 that are
analogous to the obstructions appearing in Euclidean space; and just as in the Euclidean set-
ting, when certain global geometric conditions are met, the obstructions disappear. However,
the geometric conditions found in [2–4] for S

n+1 constructions, though close analogues of
the conditions identified by Kapouleas for Euclidean space, appear to be somewhat stronger.
This is to be expected since S

n+1 is compact and the additional requirement that the initial
configurations must close should have ramifications in the analysis of the CMC equation.

The balancing condition is best explained in the more general context found in Korevaar,
Kusner and Solomon’s work [9]. First, suppose that � is a hypersurface with constant mean
curvature h in an (n+1)-dimensional Riemannian manifold (M, g) possessing a Killing field
V . Let U be an open set in � and Ū be an open set in M such that ∂Ū = ∂U ∪ C where C is
a bounded n-dimensional cap which may have multiple components. Then the first variation
formula for the n-volume of U subject to the constraint of constant enclosed (n + 1)-volume
of Ū in the direction of the variation determined by V implies

∫

∂U
g(ν, V )− h

∫

C

g(η, V ) = 0 (1)

where ν is the unit normal vector field of ∂U in � and η is the unit normal vector field of C
in M . This formula can now applied to the approximate solution of the CMC perturbation
problem, having mean curvature approximately equal to h, in the following way. Choose
the open set U as one of the building blocks of the approximate solution. Then ∂U consists
of a disjoint union of small (n − 1)-spheres at the centres of the necks attaching U to its
neighbours, and C is the disjoint union of the small disks that cap these spheres off. The left
hand side of (1) now encodes information about the width and location of the neck regions
of U . If one hopes to perturb U into a piece of CMC hypersurface for which (1) holds exactly,
then one should expect to start with U for which (1) holds in some approximate sense, to be
made precise later on. An approximately CMC hypersurface for which this is true is called
balanced.

The balancing condition amounts to a form of local symmetry satisfied by each building
block with respect to its nearest neighbours in the initial configuration that is to be glued
together. This is similar to what happens in Euclidean space. However, force balancing in itself
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is not the end of the story—a balanced approximate solution can not necessarily be perturbed
to an exactly CMC hypersurface. It is in addition necessary to be able to re-position the various
building blocks with respect to each other so as to maintain the force balancing condition
even under small perturbations. Technically speaking, this amounts to the requirement that
the mapping taking a re-positioned approximate solution to a set of small real numbers via
the integrals on the left hand side of (1) be surjective. This requirement also exists in the
Euclidean case, but is more restrictive in the case of S

n+1. In fact, only by imposing a high
degree of symmetry on their initial configurations are Butscher and Butscher-Pacard able to
satisfy both types of obstruction to the solvability of the CMC equation.

One impression that the reader might have, after studying the implementation of the
gluing technique in S

n+1 presented in Butscher and Butscher-Pacard’s papers, is that it might
be impossible to construct CMC hypersurfaces in S

n+1 without imposing a high degree of
symmetry. Indeed, the totality of local symmetry conditions imposed by force balancing
and the fact that CMC hypersurfaces in S

n+1 must close seems to force a degree of global
symmetry on the initial configuration; and the methods developed in [2] do not seem to
apply perfectly to initial configurations with small symmetry groups. However, this paper
will show that it is quite possible to develop a gluing technique that is applicable to initial
configurations with less symmetry.

Statement of results. The theorem that will be proved in this paper can be explained as
follows. Let � := {γ1, . . . , γL } be a set of oriented geodesic segments with the property that
the one-dimensional variety

⋃
s γs has no boundary. Without loss of generality: the points of

contact between any two segments are always amongst the endpoints of the segments; and
two segments are never parallel whenever they meet. Thus the endpoints of each geodesic
segment γs make contact with at least two other segments. Let {p1, . . . , pM } be the set of all
endpoints of the geodesic segments and for each ps let T1,s, . . . , TNs ,s ∈ Tps S

n+1 be the unit
tangent vectors of the geodesics emanating from ps . Now position hyperspheres of radius
cos(α) separated by a distance τs along each of the geodesics, perhaps winding multiple
times around S

n+1. Note that there is a transcendental relationship between the τs and the
number of windings around γs that must be satisfied for this to be possible. Denote this initial
configuration of hyperspheres by �#

�,τ .

In Sect. 2 a procedure will be developed for gluing the hyperspheres in �#
�,τ together by

embedding small catenoidal necks between each pair of hyperspheres to form an approximate
solution �̃�,τ of the CMC deformation problem. It will be shown in Sect. 4 that �̃�,τ is
balanced if

Ns∑
j=1

εn−1
j,s Tj,s = 0 (2)

for each point ps , where ε j,s is a parameter related to the separation parameter τ j,s along
the geodesic whose tangent vector is Tj,s . (Actually, ε j,s is the width of the neck connecting
the hypersphere at ps to its neighbour in the direction of Tj,s . The relation with τ j,s will be
established during the description of the gluing process).

Main Theorem 1 Let �#
�,τ be the initial configuration of hyperspheres described above.

Suppose that balancing condition (2) holds and also that the mapping between finite-
dimensional vector spaces which takes small displacements of the geodesics forming �#

�,τ

to the quantity given by the left hand side of (2) has full rank. If τ is sufficiently small, then
�̃�,τ can be perturbed into an exactly CMC hypersurface ��,τ . This hypersurface can be
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4 A. Butscher

described as a normal graph over �̃�,τ where the graphing function has small C2,β -norm.
In particular, ��,τ is embedded if and only if �̃�,τ is embedded.

The proof of this theorem will follow broadly the same lines as Main Theorem 2 in
Butscher’s paper [2]. That is, it will be shown that the partial differential equation for the
graphing function whose solution gives a CMC perturbation of �̃�,τ can be solved up to a
error term belonging to a finite dimensional obstruction space spanned by the approximate
Jacobi fields of �̃�,τ (as explained more fully in [2] and in the proof below). Then it will be
shown that the balancing conditions given in the theorem above are sufficient to eliminate
the error term.

2 Construction of the approximate solution

This section of the paper carries out the construction of the approximately CMC submani-
folds which will be perturbed into exactly CMC submanifolds. The construction is in most
respects identical to the construction carried out in [2] and will thus be sketched somewhat
briefly. An important point of departure from [2] should be mentioned: since less symmetric
configurations are being considered in this paper, it is necessary to build greater flexibility
into the approximate solutions than was needed in [2].

2.1 The initial configuration of hyperspheres

Write R
n+2 as R × R

n+1 and give it the coordinates (x0, x1, . . . , xn+1). Consider the hyper-
sphere

Sα := {x ∈ R
n+2 : x0 = cosα and (x1)2 + · · · + (xn+1)2 = sin2(α)} .

This hypersphere has constant mean curvature Hα . An arbitrary configuration of rotated
copies of Sα positioned along geodesic segments can be defined concretely as follows.

First let � := {γ1, . . . , γL } be a set of oriented geodesic segments with the property that
the one-dimensional variety

⋃
s γs has no boundary. Without loss of generality: the points of

contact between any two segments are always amongst the endpoints of the geodesics; and two
segments are never parallel whenever they meet. Thus the endpoints of each geodesic segment
γs make contact with at least two other segments. Let |γs | be the length of γs and use γs(t) to
denote the point on γs lying a distance t from its starting point. Hence t �−→ γs(t) is the arc
length parametrization of γs . Suppose that there is one fixed α ∈ (0, π/2) along with positive
integers Ns and ms and small separation parameters τs > 0 so that |γs |+2πms = Ns(2α+τs)

for each s = 1, . . . , L .
Define the points p̊sk := γs(k(2α + τs)) as well as the hyperspheres S̊sk

α := ∂Bα( p̊sk).
Thus the S̊sk

α for k = 0, . . . , Ns are a collection of Ns hyperspheres of the same mean
curvature winding around the geodesic γs a number ms times and separated from each other
by a distance τs . The proof of the Main Theorem will in addition require small displacements
of the hyperspheres above from these “equilibrium” positions. To this end, introduce the small
displacement parameters �σsk ∈ Tp̊sk S

n+1 and define the points psk := exp p̊sk
(�σsk) as well as

the hyperspheres Ssk
α [�σsk] := ∂Bα(psk). To avoid ambiguity, the displacement parameter for

any hypersphere corresponding to an endpoint of a geodesics must be unique; this is achieved
by setting the appropriate �σs0 and �σs′ Ns′ equal. One should note that each hypersphere Ssk

α

now has at least two nearest neighbours. If k �= 0, Ns then Ssk
α is situated near an interior

point of the geodesic γs and thus has exactly two nearest neighbours Ss,k−1
α and Ss,k+1

α along
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this geodesic. If k = 0 or Ns then Ssk
α is situated near an endpoint of the geodesic γs and has

strictly greater than two nearest neighbours corresponding to hyperspheres of the form Ss′k′
α

where s′ ∈ {0, . . . , L}\{s} and k′ = 1 or Ns′ − 1.
The initial configuration of hyperspheres is defined as follows.

Definition 1 The initial configuration of hyperspheres of mean curvature Hα positioned
along the collection of geodesics � having separation parameters τ := {τ1, . . . , τL } and
displacement parameters �σ := {�σ10, . . . , �σL NL } is defined to be

�#[α, �, τ, �σ ] :=
L⋃

s=1

Ns⋃
k=0

Ssk
α [�σsk] .

Note that there is redundancy in the labeling above due to the intersections amongst the
geodesics.

Finally, one can choose once and for all an SO(n + 2)-rotation Rsk[�σsk] taking Ssk
α [�σsk]

to Sα as follows. First fix a particular Rsk ∈ SO(n + 2) take S̊sk
α to Sα (here, the choice does

not matter so long as it is fixed a priori). Then let W�σsk be the distance-one rotation in the
one-parameter family of rotations generated by the (n + 2)× (n + 2) anti-symmetric linear
transformation given by W�σsk (X) := 〈�σsk, X〉 p̊sk − 〈 p̊sk, X〉�σsk for X ∈ R

n+2. This is the
unique SO(n + 2)-rotation that coincides with exp p̊sk

(�σsk) at p̊sk . Now define

Rsk[�σsk] := Rsk ◦ W−1
�σsk
. (3)

A consequence of this choice is that the dependence of Rsk[�σsk] on �σsk is smooth.

2.2 Symmetries

Let G� be the largest subgroup of O(n + 2) preserving the collection of geodesics �. The
idea is that G� should become the group of symmetries of the CMC hypersurface constructed
in the proof of the Main Theorem. Therefore in all steps leading up to the proof of the Main
Theorem, it will be necessary to ensure that invariance with respect to G� is preserved.

The initial configuration �#[α, �, τ, 0] is clearly invariant with respect to G� but once
non-zero displacement parameters are introduced, this may no longer be so. To preserve
G�-invariance, it will be necessary to choose only special values of the displacement para-
meters. Let N := ∑L

s=1(Ns + 1) be the total number of hyperspheres in �#[α, �, τ, 0] so
that there are a total of N displacement parameters, each of which belongs to R

n . Define the
set

D� :=
{
�σ ∈ R

n× N times· · · · · · ×R
n : �#[α, �, τ, �σ ] is G�-invariant

}
. (4)

Henceforth the condition �σ ∈ D� on the displacement parameters will be assumed.

2.3 Preliminary perturbation of the initial configuration

As in [2], the first step in gluing the initial configuration�#[α, �, τ, �σ ] together is to replace
each hypersphere Ssk

α [�σsk] in �#[α, �, τ, �σ ] by a small normal perturbation of itself. The
purpose is to give each hypersphere a catenoidal shape near its gluing points.

To proceed, recall that Ssk
α [�σsk] = Rsk[�σsk]−1(Sα). Let p1, . . . , pK be the images under

Rsk[�σsk] of the points on Ssk
α [�σsk] that are nearest to the neighbours of Ssk

α [�σsk] amongst the
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6 A. Butscher

hyperspheres of �#[α, �, τ, �σ ]. Introduce a small radius parameter r to be determined later
and define

S̃sk
α [�ask, �σsk] := (Rsk[�σsk])−1 ◦ exp (Gsk Nα)

⎛
⎝Sα\

K⋃
j=1

Br (p j )

⎞
⎠ , (5)

where Gsk : Sα\{p1, . . . , pK } → R is the function determined by the following procedure.
Refer to (a1, . . . , aK ) as the asymptotic parameters of S̃sk

α [�ask, �σsk].
Let LSn := 
Sn + n be the linearized mean curvature operator of Sα and recall that

the smooth kernel of LSn consists of the linear span of the restrictions of the coordinate
functions qt := xt |Sn for t = 1, . . . , n + 1. Let δ(p j ) be the Dirac δ-mass centered at
the point p j . Then for each �ask := (a1, . . . aK ) ∈ R

K , one can find a unique solution
Gsk : Sα\{p1, . . . , pK } → R of the distributional equation

LSn (Gsk) =
K∑

j=1

a j

(
δ(p j )−

n∑
t=1

λt
j χ · qt

)
(6)

that is L2-orthogonal to the smooth kernel of LSn . Here χ is a cut-off function vanishing in
a neighbourhood of each of the p j that will be defined precisely later, and the λt

j ∈ R are

coefficients designed to ensure that the right hand side of (6) is L2-orthogonal to all the qt ,
thereby guaranteeing the existence of the solution.

2.4 Assembling the approximate solution

One must now find the catenoidal necks that fit optimally in the space between the various
perturbed hyperspheres produced in the previous section. Then one can construct a smooth
approximate solution by interpolating from one perturbed hypersphere to the next through
these necks. Here is a summary of how this was done in [2]. The same method works here.

Choose two hyperspheres S and S′ in��[α, �, τ, �σ ] positioned somewhere on the geodesic
γ along with their associated perturbed hyperspheres S̃ and S̃′. Let p� be the midpoint
between the centers of S and S′ on γ and consider the images in R

n+1 of S̃ and S̃′ under the
stereographic projection sending p� to the origin and γ to the (y1, y2)-coordinate axis. Here
R

n+1 has been given coordinates (y1, . . . , yn+1). From the formulæ for normal graphs over
hyperspheres and the properties of the stereographic projection, one finds that the images
of S̃ and S̃′ can be given as graphs over the ŷ := (y2, . . . , yn+1) factor in the form y1 :=
±G±(‖ŷ‖) where the function G± has the expansion

G±(‖ŷ‖) =
⎧⎨
⎩

− tan(τ/4)− ‖ŷ‖2

2r + a± (c2 − C2 log(‖ŷ‖))+ O(‖ŷ‖4) n = 2

− tan(τ/4)− ‖ŷ‖2

2r + a±C3
‖ŷ‖ + O(‖ŷ‖4) n ≥ 3

(7)

near ŷ = 0. Here c2, C2, C3, C4 and Cn are constants, while a± are the asymptotic parameters
corresponding to the gluing points of S and S′ under consideration, respectively.

The standard catenoid in R
n+1, scaled by a factor ε > 0, can be written as the union of two

graphs over the ŷ-coordinates. That is ε� := �+
ε ∪�−

ε where �±
ε := {

(±εF(‖ŷ‖/ε), ŷ) :
‖ŷ‖ ≥ ε

}
and the function F : {x ∈ R : x ≥ 1} → R is defined by

F(x) :=
x∫

1

(σ 2n−2 − 1)−1/2dσ .
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In dimension n = 2 this function is simply F(x) = arccosh(x). Therefore one has the
expansion

εF(‖ŷ‖/ε) =

⎧⎪⎨
⎪⎩
ε log(2/ε)+ ε log(‖ŷ‖)− ε3

4‖ŷ‖2 + O
(

ε5

‖ŷ‖4

)
n = 2

εcn − εn−1

(n−2)‖ŷ‖n−2 − ε3n−3

2(3n−4)‖ŷ‖3n−4 + O
(

ε5n−5

‖ŷ‖5n−6

)
n ≥ 3

(8)

when ‖ŷ‖/ε is large, where cn is yet another constant. In order to find the optimally matching
catenoid, one must compare the asymptotic expansions (7) with the asymptotic expansion
(8) and choose ε, a+ and a− so that the leading-order terms coincide. As in [2], these
matching conditions determine a± and ε completely in terms of the separation τ between
the hyperspheres. In fact, one has ε = c−1

n tan(τ/4) in dimension n ≥ 3 and ε satisfies
tan(τ/4) = c2C−1

2 ε + ε log(2/ε) in dimension n = 2.
To complete the gluing, one defines a new surface in R

n+1 that interpolates between the
images of S̃ and S̃′ and the appropriately scaled and truncated catenoid ε�. This interpolating
surface is the union of the two graphs �̃±

ε = {(±F̃±
a,τ (ŷ), ŷ) : ‖ŷ‖ ∈ [ε, 2rε]} where

F̃+
α,τ (ŷ) = ε

(
1 − η(‖ŷ‖/rε)

)
F(‖ŷ‖/ε)+ η(‖ŷ‖/rε)G(‖ŷ‖)

F̃−
α,τ (ŷ) = −ε (1 − η(‖ŷ‖/rε)

)
F(‖ŷ‖/ε)− η(‖ŷ‖/rε)G′(‖ŷ‖) .

(9)

and η : [0,∞) → R is a smooth, monotone cut-off function satisfying η(s) = 0 for
s ∈ [0, 1/2] and η(s) = 1 for s ∈ [2,∞) while rε := ε(3n−3)/(3n−2).

All neighbouring perturbed hyperspheres corresponding to the hyperspheres in the initial
configuration �#[α, �, τ, �σ ] can now be glued together by repeating the process outlined
above.

Definition 2 The approximate solution with parameters τ, �σ is the hypersurface �̃[α,�,τ, �σ ]
obtained from the gluing process above.

Note that by choosing the functions Gsk invariant under all ρ ∈ G� preserving Ssk
α [�σsk] and

equal to Gs′k′ whenever there is ρ ∈ G� taking Ssk
α [�σsk] to Ss′k′

α [�σs′k′ ], then �̃[α, �, τ, �σ ]
becomes invariant under G� as well.

3 The exact solution up to finite-dimensional error

3.1 The analytic set-up

Deforming the approximate solution. Since �̃[α, �, τ, �σ ] is a hypersurface, it is possible to
parametrize deformations of �̃[α, �, τ, �σ ] in a very standard way via normal deformations.
These can be constructed by choosing a function f : �̃[α, �, τ, �σ ] → R and then considering
the deformation φ f : �̃[α, �, τ, �σ ] → S

n+1 given by φ f (x) := expx ( f (x) · N (x)) where
expx is the exponential map at the point x and N (x) is the outward unit normal vector field
of �̃[α, �, τ, �σ ] at the point x . For any given function f , the hypersurface φ f (�̃[α, �, τ, �σ ])
is a normal graph over �̃[α, �, τ, �σ ], provided f is sufficiently small in a C1 sense. Finding
an exactly CMC normal graph near �̃[α, �, τ, �σ ] therefore consists of finding a function f
satisfying the equation Hφ f (�̃[α,�,τ,�σ ]) = Hα , where H� denotes the mean curvature of a
hypersurface �.

123



8 A. Butscher

Definition 3 Let �τ,�σ be the operator f �−→ Hφ f (�̃[α,�,τ,�σ ]) − Hα .

This is a quasi-linear, second-order partial differential operator for the function f are a
solution of �τ,�σ ( f ) = 0 gives the desired deformation of �̃[α, �, τ, �σ ].

The strategy of the proof. Finding a solution of the equation �τ,�σ ( f ) = 0 when τ and �σ
are sufficiently small will be accomplished by invoking the Banach space inverse function
theorem exactly as in [2]. As a reminder to the reader, this fundamental result will be stated
here in fairly general terms [1].

Theorem (IFT) Let � : X → Z be a smooth map of Banach spaces, set �(0) := E and
define the linearized operator L := D�( f ) = d

ds�( f + su)
∣∣
s=0. Suppose L is bounded

and surjective, possessing a bounded right inverse R : Z → X satisfying

‖R(z)‖ ≤ C‖z‖ (10)

for all z ∈ Z. Choose R so that if y ∈ BR(0) ⊆ X, then

‖L(x)− D�(y)(x)‖ ≤ 1

2C
‖x‖ (11)

for all x ∈ X, where C > 0 is a constant. Then if z ∈ Z is such that

‖z − E‖ ≤ R

2C
, (12)

there exists a unique x ∈ BR(0) so that �(x) = z. Moreover, ‖x‖ ≤ 2C‖z − E‖.

As in [2], it is not true that Lτ,�σ is surjective with a bounded right inverse because
of the obstruction caused by the Jacobi fields that generate an eigenspace of Lτ,�σ whose
corresponding eigenvalues tend to zero as τ → 0. A significant point of departure between
this paper and [2] is that because of the lesser degree of symmetry considered here, the space
of Jacobi fields that needs to be taken into account is much larger. The technique of projecting
Lτ,�σ onto a subspace of functions which is transverse to the co-kernel associated to suitable
approximations of the Jacobi fields and then constructing a bounded right inverse for the
projected linear operator will once again be used to resolve this difficulty. In conjunction
with the IFT, this technique provides the solution of the CMC deformation problem up to a
finite-dimensional error term lying in the span of the approximate Jacobi fields.

3.2 Function spaces and norms

The CMC deformation problem will once again be solved in weighted Hölder spaces since
these properly determine the dependence on the parameter τ of the various estimates needed
for the application of the IFT. A number of definitions are needed.

Definition 4 Identify the following regions of �̃[α, �, τ, �σ ].
• Let N sk be the neck region between the kth and (k + 1)st perturbed hypersphere along

the geodesic γs . Note that N sk carries a scale parameter εsk depending smoothly on
τs and �σsk and �σs,k+1. In the stereographic coordinates N sk is the set of points (y1, ŷ)
corresponding to ‖ŷ‖ ≤ rεsk .

• Let T sk,± be the transition regions associated to the neck N sk . In the stereographic
coordinates used to define this neck, T sk,+ is the set of points (y1, ŷ) corresponding to
rεsk < ‖ŷ‖ ≤ 2rεsk and y1 > 0 whereas T sk,− is the set of points (y1, ŷ) corresponding
to rεsk < ‖ŷ‖ ≤ 2rεsk and y1 < 0.
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• Let Esk be the spherical region corresponding to the kth neck along the geodesic γs .
This is the set of points in S̃sk

α [�ask, �σsk]\⋃K
j=1 Br (p j ) where p1, . . . , pK are the points

of Ssk
α [�σsk] closest to its neighbouring hyperspheres and r is a small radius chosen to

exclude exactly the neck and transition region connecting S̃sk
α [�ask, �σsk] to its neighbour

near p j .

Let P := {p�sk : k = 0, . . . , Ns −1 and s = 1, . . . , L} be the set of all points of S
n+1 upon

which the necks of �̃[α, �, τ, �σ ] are centered. Let Ksk denote the stereographic projection
used to define the neck N sk . Fix some r0 independent of τ such that the balls of radii 2r0

centered on any two points of P do not intersect.

Definition 5 The weight function ζτ : �̃[α, �, τ, �σ ] → R is defined by

ζτ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εsk cosh(s) x = K −1
sk (εskψ(s), εskφ(s)�) ∈ N sk

Interpolation x ∈ T sk

√
ε2

sk + dist(x, p�sk)
2 x ∈ �̃[α, �, τ, �σ ] ∩

[
B̄r0(p

�
sk)\T sk,− ∩ N sk ∪ T sk,+

]

Interpolation x ∈ �̃[α, �, τ, �σ ] ∩
[

B̄2r0(p
�
sk)\Br0(p

�
sk)
]

2r0 x ∈ �̃[α, �, τ, �σ ]\⋃P B2r0(p
�
sk) .

The interpolation is such that ζτ is smooth and monotone in the region of interpolation, and
invariant under the group G� .

Definition 6 Let U ⊆ �̃[α, �, τ, �σ ] and δ ∈ R and β ∈ (0, 1). The Cl,β
δ norm of a function

defined on U is given by

| f |
Cl,β
δ (U) := | f |l,β,U∩E + sup

P
sup

r∈[0,r0]

{(
sup

x∈U∩Ask
r

[ζτ (x)]
−δ
)

| f |l,β,δ,U∩Ask
r

}
(13)

using the notation of [2]. The Banach space Ck,β
δ (�̃[α, �, τ, �σ ]) denotes the Cl,β functions

of �̃[α, �, τ, �σ ] measured with respect to the norm (13), while Cl,β
δ,sym(�̃[α, �, τ, �σ ]) denotes

functions f ∈ Ck,β
δ (�̃[α, �, τ, �σ ]) satisfying f ◦ ρ = f for all ρ ∈ G� .

It is easy to deduce that �τ,�σ : C2,β
δ (�̃[α, �, τ, �σ ]) → C0,β

δ−2(�̃[α, �, τ, �σ ]) is a well-

defined and smooth operator and that Lτ,�σ : C2,β
δ (�̃[α, �, τ, �σ ]) → C0,β

δ−2(�̃[α, �, τ, �σ ]) is
bounded in the operator norm by a constant independent of τ . Furthermore �τ,�σ and Lτ,�σ
can by symmetrized to yield new operators (which will be given the same names) on the
symmetrized Ck,β

δ spaces.

3.3 Jacobi fields

The obstructions preventing the solvability of the equation �τ,�σ ( f ) = 0 on �̃[α, �, τ, �σ ]
can be explained geometrically as follows. One can imagine transformations of �̃[α, �, τ, �σ ]
which rotate exactly one of its constituent hyperspheres or catenoidal necks by a rotation in
SO(n+2)while leaving all the other constituent hyperspheres and necks fixed. The associated
approximate Jacobi field is of the form χqV where χ is a cut-off function supported on one
constituent of �̃[α, �, τ, �σ ] and qV is one of the exact Jacobi fields for this constituent. It
is known that the linear span of these functions approximates the small eigenspaces of Lτ,�σ
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10 A. Butscher

well [5, Appendix B]. An explicit representation of the exact Jacobi fields on hypersphere
and the catenoid will now be given.
1. Jacobi fields of the hyperspheres.

The linearized mean curvature operator of Sα is easily computed to be

La := sin−2(α) (
Sn + n) .

The non-trivial rotations of Sα are generated by the vector fields

Vk := xk ∂

∂x0 − x0 ∂

∂xk
for k = 1, . . . , n + 1 .

Taking the inner products of the Vk with the normal vector of Sα yields the Jacobi fields.
They are the coordinate functions xk restricted to Sα .
2. Jacobi fields of the catenoidal necks.

The linearized mean curvature operator of the standard catenoid � ⊆ R
n+1 with respect

to the Euclidean background metric is

L� := 1

φn

∂

∂s

(
φn−2 ∂

∂s

)
+ 1

φ2
Sn−1 + n(n − 1)

φ2n

in its standard parametrization given in [2, Sect. 2.1]. The isometries generating the relevant
Jacobi fields of � are as follows. First, the ambient space R

n+1 = R × R
n possesses n

translations along the R
n factor and one translation in the R direction, which are generated

by the vector fields

V trans
k := ∂

∂yk
for k = 1, . . . , n + 1.

Then there are n rotations of R×R
n that do not preserve the R-direction, which are generated

by the vector fields

V rot
1k := y1 ∂

∂yk
− yk ∂

∂y1 for k = 2, . . . , n + 1.

Finally, the motion of dilation in R
n+1, though not an isometry, does preserve the mean

curvature zero condition. Dilation is generated by the vector field

V dil :=
n+1∑
k=1

yk ∂

∂yk
.

By taking the inner product with the normal vector of �, one obtains the following non-
trivial functions:

J1(s) := 〈N�, V trans
1 〉 = φ̇(s)

φ(s)

Jk(s,�) := 〈N�, V trans
k 〉 = − �k

φn−1(s)
k = 2, . . . , n + 1

J1k(s,�) := 〈N�, V rot
1k 〉 = �k

(
ψ(s)

φn−1(s)
+ φ̇(s)

)
k = 2, . . . , n + 1

J0(s) := 〈N�, V dil〉 = ψ(s)φ̇(s)

φ(s)
− 1

φn−2(s)
.

(14)

Note that the functions Jk with k �= 0 have odd symmetry with respect to the central sphere
of �, i.e. with respect to the transformation s �→ −s; while J1k and J0 have even symmetry.
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Also J1 is bounded while J0 has linear growth in dimension n = 2 and is bounded in higher
dimensions; Jk decays like exp(−(n − 1)|s|) for large |s|; and J1k grows like exp(|s|) for
large |s|.

3.4 The linear analysis

The purpose of this section of the paper is to explicitly define the projected linearized mean
curvature operator of �̃[α, �, τ, �σ ] and to find its right inverse on the appropriate Banach
subspace of C0,β

δ−2,sym(�̃[α, �, τ, �σ ]). The material that follows is quite similar to [2, Sect. 2.7]
and important differences will be pointed out where appropriate.

The arguments that follow will require two carefully defined partitions of unity for the
constituents of �̃[α, �, τ, �σ ]. First, for s ∈ {1, . . . , L} and k ∈ {0, . . . , Ns − 1}, define the
smooth cut-off functions

ηsk
neck(x) :=

⎧⎪⎨
⎪⎩

1 x ∈ N sk

Interpolation x ∈ T sk

0 elsewhere

and for s ∈ {1, . . . , L} and k ∈ {0, . . . , Ns}, define the smooth cut-off functions

ηsk
ext(x) :=

⎧⎪⎨
⎪⎩

1 x ∈ Esk
ε

Interpolation x ∈ any adjoining T s′k′

0 elsewhere

in such a way that
∑

s,k η
sk
ext +

∑
s,k η

sk
neck = 1. In addition, one can assume that these cut-off

functions are invariant under the group of symmetries G� and monotone in the interpolation
regions. Second, set rτ := maxs,k{rεsk } and for s ∈ {1, . . . , L} and k ∈ {0, . . . , Ns − 1}
introduce the subsets N sk(r) := �̃[α, �, τ, �σ ] ∩ Br (p

�
sk) where r ∈ [rτ , r0]. This is a

slightly enlarged version of the neck N sk and its transition regions. Define the smooth cut-
off functions

χ sk
neck,r (x) :=

⎧⎪⎨
⎪⎩

1 x ∈ N sk(r)

Interpolation x ∈ N sk(2r)\N sk(r)

0 elsewhere

and for s ∈ {1, . . . , L} and k ∈ {0, . . . , Ns}, define the smooth cut-off functions

χ sk
ext,r (x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x ∈ Esk\
⎡
⎣ ⋃

adjoining

N s′k′
(2r)

⎤
⎦

Interpolation x ∈ any adjoining N s′k′
(2r)\N s′k′

(r)

0 elsewhere

so that once again
∑

s,k χ
sk
ext,r +∑s,k χ

sk
neck,r = 1 and invariance with respect to G� as well

as the monotonicity in the interpolation regions hold.
The cut-off functions above and the considerations of Sect. 3.3 leads to the definition of

the space of approximate Jacobi fields of �̃[α, �, τ, �σ ] needed to construct the right inverse.
Fix r ∈ [rτ , r0] to be small but independent of τ . Let xt be the t th coordinate function for
t = 1, . . . , n. For each s, k recall that Rsk[�σsk] is the SO(n + 2)-rotation bringing Ssk

α [�σsk]
into Sα .
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12 A. Butscher

Definition 7 Define the following objects.

• The approximate Jacobi fields of �̃[α, �, τ, �σ ] are the functions

q̃ t
sk := χ

s,k
ext,r ·

(
xt
∣∣∣S̃sk
α [�ask ,�σsk ] ◦ (Rsk[�σsk])−1

)
.

Set K̃ := spanR

{
q̃ t

sk all s, t, k
}
.

• The set of G�-invariant approximate Jacobi fields of �̃[α, �, τ, �σ ] is

K̃sym := spanR

{
q̃ ∈ K̃ : q̃ ◦ ρ = q̃ ∀ ρ ∈ G�

}

• Denote the L2-orthogonal complement of K̃sym in Cl,β
δ,sym(�̃[α, �, τ, �σ ]) by[

Cl,β
δ,∗(�̃[α, �, τ, �σ ])

]⊥
and denote by

π : Cl,β
δ,sym(�̃[α, �, τ, �σ ]) →

[
Cl,β
δ,sym(�̃[α, �, τ, �σ ])

]⊥

the corresponding L2-projection operator.

The preliminary notation is in place and the key result of this section of the paper can now
be stated and proved.

Proposition 8 Suppose that the dimension of �̃[α, �, τ, �σ ] is n ≥3 and choose δ∈(2−n, 0).
If τ and ‖�σ‖ are sufficiently small, then the operator

L⊥
τ,�σ : C2,β

δ,sym(�̃[α, �, τ, �σ ]) →
[
C0,β
δ−2,sym(�̃[α, �, τ, �σ ])

]⊥

possesses a bounded right inverse Rτ,�σ satisfying the estimate

|Rτ,�σ ( f )|
C2,β
δ

≤ C | f |
C0,β
δ−2

where C is a constant independent of τ and �σ . If the dimension of �̃[α, �, τ, �σ ] is n = 2
then one can choose δ ∈ (−1, 0) and find a right inverse satisfying the estimate

|Rτ,�σ ( f )|
C2,β
δ

≤ Cεδ| f |
C0,β
δ−2

where ε := maxs,k{εsk} is the maximum of all the scale parameters of the necks of �̃[α, �,
τ, �σ ] and C is a constant independent of τ and �σ .

Proof The proof of this result follows broadly the same plan as the proof in [2, Proposi-
tions 12, 13]. The significant differences occur in the first two steps, namely the derivation of
the local solutions on the neck regions and the spherical regions of �̃[α, �, τ, �σ ], while the
other steps remain essentially unchanged. Thus only the first two steps will be given here in
full detail, and moreover only in the dimension n ≥ 3 case since the modifications needed
for the n = 2 case can be readily adapted from [2, Proposition 13]. Furthermore, only the
case G� = {Id} will be presented since the more general case simply amounts to additional
book-keeping.

Suppose that f ∈
[
C0,β
δ−2,sym(�̃[α, �, τ, �σ ])

]⊥
is given. The solution of the equation

Lτ,�σ (u) = f will be constructed in three stages: local solutions on the neck regions will be
found; then local solutions on the exterior regions will be found; and finally these solutions
will be patched together to form an approximate solution which can be perturbed to a solution
by iteration. To begin this process, write f = ∑

s,k f sk
ext +

∑
s,k f sk

neck where f sk
ext := f ·χ sk

ext,r

and f sk
neck := f · χ sk

neck,r .
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Step 1. Local solutions on the neck regions. Consider a given neck N := N sk and for
the moment, drop the super- and sub-scripted sk notation for convenience. The function
fneck := f sk

neck and the equation Lτ,�σ (u) = fneck can be pulled back to the scaled catenoid
ε� which carries a perturbation of the catenoid metric 4ε2g� . In this formulation, one can
view fneck as a function of compact support on ε�. The equation that will be solved in
this step is 1

4 Lε�(u) = fneck where 1
4 Lε� is the linearized mean curvature operator of ε�

carrying exactly the metric 4ε2g� .
By the theory of the Laplace operator on asymptotically cylindrical manifolds, there is

a solution uneck ∈ C2,β
δ (ε�) that satisfies 1

4 Lε�(uneck) = ( fneck)
�, where (·)� denotes

the L2-orthogonal projection onto the L2-orthogonal complement of the linear span of the
approximate Jacobi fields and the norm is the standard weighted norm on ε�. One can write

( fneck)
� = fneck +

n∑
t=1

(λ+
t Q̃t,+ + λ−

t Q̃t,−)

where Q̃t,+ and Q̃t,− are the pull-backs of the functions χ s,k+1
neck,2r q̃ t

s,k+1 and χ sk
neck,2r q̃ t

sk to
ε�, and

λ±
t := −

∫
ε�

fneck · Jt∫
ε�

Q̃t,± · Jt
.

One can check that |λ±
t | ≤ Cεδ−2+n | f |

C0,β
δ−2(ε�)

≤ Cεδ−2+n | f |
C0,β
δ−2

where C is a constant

independent of ε. Hence the estimate |uneck|C2,β
δ (ε�)

≤ C |( fneck)
�|

C0,β
δ−2(ε�)

≤ C | f |
C0,β
δ−2

is

valid, where C is also independent of ε. Finally, the function uneck can be extended to all
of �̃[α, �, τ, �σ ] by defining ūsk

neck := χ sk
neck,r · uneck. One has the estimate |ūsk

neck|C2,β
δ

≤
C | f |

C0,β
δ−2

.

Step 2. Local solutions on the exterior regions. Consider a given spherical region E := Esk

and again, drop the super- and sub-scripted sk notation for convenience. Given the local
solution ūneck constructed in the previous step, choose a small κ ∈ (0, 1) and define f̂ext :=
f̂ sk
ext where

f̂ sk
ext := χ sk

ext,κr

⎛
⎝ f − Lτ,�σ

⎛
⎝∑

s′,k′
ūs′k′

neck

⎞
⎠
⎞
⎠ .

This function vanishes within an ε := εsk-independent distance from the union of all the
neck regions associated to E . Therefore one can determine without difficulty | f̂ext|C0,β ≤
Cκ | f |

C0,β
δ−2

for some constant Cκ that depends on κ and δ. Here, | · |C0,β is the un-weighted

Schauder norm.
The function f̂ext can be viewed as a function of compact support on the standard

hypersphere Sα vanishing in the neighbourhood of certain points {p1, . . . , pK } ⊆ Sα . The
metric carried by Sα in this identification is a perturbation of the standard induced metric
sin2(α)gSn . The equation that will be solved here is Lα(u) = f̂ext up to projection onto the
approximate co-kernel, where Lα is the linearized mean curvature operator of Sα when it
carries the un-perturbed metric sin2(α)gSn .

Compute the quantitiesµt t ′ := ∫
Sα

q̃t ·xt ′ ∣∣Sα where q̃t ∈ K̃ are the Jacobi fields supported

on S̃α[�a, �σ ] and pulled back to Sα and xt
∣∣Sα are the coordinate functions restricted to Sα .
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14 A. Butscher

Set µt t ′ equal to the components of the inverse of the matrix whose components are µt t ′ . (It
can easily be verified that this matrix is invertible because q̃t is almost equal to xt

∣∣Sα and
these functions form an L2-orthogonal set.) Now

(
f̂ext

)� := f̂ext −
∑
t,t ′

q̃t ′ · µt t ′ ·
∫

Sα

f̂ext · xt
∣∣Sα

is orthogonal to the coordinate functions restricted to Sα . The equation Lα(uext) =
(

f̂ext

)�
can now be solved for uext in C2,β(Sα). The solution satisfies the estimate |uext|C2,β (Sα) ≤
Cκ |( f̂ext)

�|
C0,β
δ−2(Sα)

.

The function uext can be extended to all of �̃[α, �, τ, �σ ] as follows. Suppose that
uext(p j ) := a j for j = 1, . . . K and let Aext : Sα → R be a smooth function that is
locally constant near each p j satisfying Aext(p j ) = a j . Then uext = Aext + ũext where ũext

is smooth function satisfying ũext = O(dist(·, p j )) near each p j . For j = 1, . . . , K , let J j

be the linear combination of the Jacobi fields J0 and J1 defined on the neck adjoining Sα at
the point p j that has limit a j on the end of this neck attached to Sα and has limit zero on the
other end of this neck. Note that J j = a j + J̃ j where J̃ j = O(dist(·, p j )) in the part of this
neck overlapping with Sα . Now define

ūsk
ext := ηextuext +

K∑
j=1

η
j
neckJ j .

The extended function ūext satisfies the estimate |ūext|C2,β
δ

≤ Cκ |( f̂ext)
�|

C0,β
δ−2

for some

constant Cκ depending on κ and δ but not ε.

Step 3. Estimates and convergence. Define the function ū := ∑
s,k ūsk

neck +∑
s,k ūsk

ext. Then
computations along the lines of those found in Step 3 of [2, Propositions 12, 13] shows that

|L⊥
τ,�σ (ū)− f |

C0,β
δ−2

≤ 1

2
| f |

C0,β
δ−2

and |ū|
C2,β
δ

≤ C | f |
C0,β
δ−2
.

The proof of the proposition now follows by a standard iteration argument. ��

3.5 The solution of the non-linear problem up to finite-dimensional error

In order to apply the IFT to the CMC deformation problem, it remains to show thatπ◦�τ,�σ (0)
has small C0,β

δ−2 norm; and it is necessary to show that D(π ◦�τ,�σ )( f )− L⊥
τ,�σ can be made

to have small C2,β
δ -operator norm if f is chosen to have sufficiently small C2,β

δ norm. These
two estimates are in most respects identical to those computed in [2] and will thus only be
sketched here.

Proposition 9 The quantity π ◦ �τ,�σ (0) satisfies the following estimate. If τ and �σ are
sufficiently small, then there exists a constant C independent of τ and �σ so that

|π ◦�τ,�σ (0)|C0,β
δ−2

≤ Cr2−δ
ε (15)

where ε := max{εsk} is the maximum of all the scale parameters of the necks of �̃[α, �, τ, �σ ]
and rε := ε(3n−3)/(3n−2).
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Proof The estimate (15) can be computed as in [2] by verifying separately in the spherical
regions, in the transition regions, and in the neck regions of �̃[α, �, τ, �σ ] that the mean
curvature is sufficiently close to Hα , except with one significant modification in the first of
these computations. To see this, consider one fixed spherical region Esk pulled back to the
standard hypersphere Sα . The expression for the mean curvature of a normal graph over Sα
when the graphing function is G := Gsk , as given in [2], reads

H (exp(G Nα)(Sα))− Hα = −
G + n sin(α + G) cos(α + G)

A sin(α + G)

− ∇2G(∇G,∇G)− cos(α+ G) sin(α+ G)‖∇G‖2

A3 sin(α + G)
− Hα

(16)

where ∇ and 
 are the covariant derivative and the Laplacian of the standard metric of S
n ,

and A = (
sin2(α + G)+ ‖∇G‖2

)1/2
. By formally expanding this expression in when G is

small as in [2], one finds that the largest term is −(
+n)(G). The quantity (
+n)(G) equals
a term in K̃sym by definition, and it disappears under L2 projection. The desired estimate
follows as in [2]. ��

Proposition 10 The linearized mean curvature operator satisfies the following general
estimate. If τ and �σ are sufficiently small and f ∈ C2,β

δ,sym(�̃[α, �, τ, �σ ]) has sufficiently

small C2,β
δ norm, then there exists a constant C independent of τ and �σ so that

∣∣∣D(π ◦�α,τ �σ )( f )(u)− L⊥
τ,�σ (u)

∣∣∣
C0,β
δ−2

≤ Cεδ−1| f |
C2,β
δ

|u|
C2,β
δ

(17)

for any function u ∈ C2,β
δ,sym(�̃[α, �, τ, �σ ]), where ε := max{εsk} is the maximum of all the

scale parameters of the necks of �̃[α, �, τ, �σ ].

Proof This follows from a scaling argument exactly as in [2]. ��

The non-linear estimates derived above, coupled with the construction of the right inverse
and its estimate carried out in the previous sections now yield a solution of the equation
π ◦�τ,�σ ( f ) = 0 up to a finite-dimensional error term contained in the kernel of π .

Proposition 11 If τ and �σ are sufficiently small, then there exists fτ,�σ ∈ C2,β
δ (X) satisfying

π ◦�τ,�σ ( fα,τ,�σ ) = 0 and there exists a constant C independent of τ and �σ so that

| fτ,�σ |
C2,β
δ

≤ C(ε) · r2−δ
ε

where C(ε) = O(1) in dimension n ≥ 3 and C(ε) = O(εδ) in dimension n = 2. Here
ε := max{εsk} is the maximum of all the scale parameters of the necks of �̃[α, �, τ, �σ ] and
rε := ε(3n−3)/(3n−2). As a result, the hypersurface obtained by deforming �̃[α, �, τ, �σ ] in the
normal direction by an amount determined by fτ,�σ is embedded if �̃[α, �, τ, �σ ] is embedded.

Proof This follows exactly as in [2]. ��
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16 A. Butscher

4 Solution of the finite-dimensional problem

4.1 The balancing map

Proposition 11 shows that the equation�τ,�σ ( f ) = 0 can be solved up to a finite dimensional

error term; i.e. a function fτ,�σ ∈ C2,β
δ,sym(�̃[α, �, τ, �σ ]) can be found so that only the

L2-projection of �τ,�σ ( fτ,�σ ) to the subspace K̃sym fails to vanish identically. Since there is
such a function for each sufficiently small �σ ∈ D� , one can consider the map �σ �→ �τ,�σ ( fτ,�σ )
as a function of �σ . It will now be shown that under the hypotheses of Main Theorem 1 there
is a special choice of �σ for which �τ,�σ ( fτ,�σ ) vanishes completely. Therefore the solution
fτ,�σ for this choice of �σ yields the desired deformation of �̃[α, �, τ, �σ ] into an exactly CMC
hypersurface. In order to show how this special value of �σ is found, one must first understand
in greater detail the relationship between �σ and the quantity (id − π) ◦�τ,�σ ( fτ,�σ ) where π
is the L2-projection onto K̃⊥

sym.
To analyze this relationship properly, the first step to re-phrase the problem slightly. Let

q̃1, . . . , q̃N be a basis for K̃sym constructed from an L2-orthonormal basis for the eigenfunc-
tions of 
S + n on Sα as in Definition 7. Next, define a slightly different set of functions
q̃ ′

1, . . . , q̃ ′
N obtained from the q̃1, . . . , q̃N by replacing each χext,r appearing in the definition

of a q̃ j with χext,rε . As usual, here ε := max{εsk} and rε := ε(3n−3)/(3n−2) where εsk is the
scale parameter of the kth neck along the geodesic γs . Now one can decompose

(id − π) ◦�τ,�σ ( fτ,�σ ) =
N∑

i, j=1

Mi j (�σ) · Bi (�σ) · q̃ j

where Mi j (�σ) are the coefficients of the inverse of the matrix with coefficients∫
φ fτ,�σ (�̃[α,�,τ,�σ ]) q̃i · q̃ ′

j and Bi : D� → R are real-valued functions of the displacement

parameters defined by

B j (�σ) :=
∫

φ fτ,�σ (�̃[α,�,τ,�σ ])
�τ,�σ ( fτ,�σ ) · q̃ ′

j (18)

where φ fτ,�σ is the normal deformation corresponding to fτ,�σ . One can check that the matrix
Mi j is a small perturbation of the identity matrix and is indeed invertible.

Definition 12 The balancing map of �̃[α, �, τ, �σ ] with respect to the chosen basis {q̃1, . . .

q̃N } of K̃sym is the function Bτ : D� → R
N given by

Bτ (�σ) := (B1(�σ), . . . , BN (�σ)) ,
and each B j : D� → R is defined as in (18).

In terms of the balancing map, what remains to be done in order to prove Main Theorem 1
is to find a value of �σ for which Bτ (�σ) = 0.

4.2 Approximating the balancing map and its derivative

The approximate balancing map. The balancing map can be better understood by deriving
an approximation of the map which is independent of fτ,�σ . To see how this is done, note that
each q̃ ′

j is a G�-invariant linear combination of the approximate Jacobi fields in Definition

123



Constant mean curvature hypersurfaces in S
n+1 by gluing spherical building blocks 17

7, each of which is supported on exactly one of the constituent perturbed hyperspheres of
�̃[α, �, τ, �σ ]. Thus it suffices to find a good approximation of the function

B : �σ �→
∫

φ fτ,�σ (�̃[α,�,τ,�σ ])
�τ,�σ ( fτ,�σ ) · q̃ ′

where q̃ ′ = ∑n
t=1 atχ

sk
ext,rεq

t
sk and qt

sk are the Jacobi fields of this hypersphere as in
Definition 7.

Suppose that the (s, k)-perturbed hypersphere in �̃[α, �, τ, �σ ] is a perturbation of
Ssk
α [�σsk] := (Rsk[�σsk])−1 (Sα\{p1, . . . , pK }). Recall that the infinitesimal generator of ro-

tation associated to qt
sk is the vector field

Y t
sk := (Rsk[�σsk])−1∗

[
Y t ◦ (Rsk[�σsk])

]
where Y t := xt ∂

∂x0 − x0 ∂

∂xt
. (19)

Set Y := ∑n
t=1 at Y t

sk and q := ∑n
t=1 at qt . An analysis of the function B reveals the

following.

Proposition 13 Let q̃ be as above. Then the function B can be decomposed as

B(�σ) = B̊(�σ)+ E(�σ) .

In this decomposition, B̊ : D� → R is defined as follows. Suppose that p j := expp0
(αTj )

where Tj is the unit vector in Tp0 S
n+1 tangent to the geodesic connecting p0 and p j . Then

B̊(�σ) :=
K∑

j=1

ωεn−1
j 〈Tj , Y 〉 . (20)

Furthermore, E : D� → R satisfies the estimate

‖E(�σ)‖C2 ≤ Crn
ε

where C is a constant independent of τ and �σ .

Proof The integral defining B is invariant under rotation, so that one can assume that Rsk [�σsk]
is the identity so that B integrates over the standard punctured hypersphere Sα\{p1, . . . , pK },
which shall be denoted here by S̃0[�σ0]. Denote the nearest neighbours of S̃0[�σ0] by S̃ j [�σ j ].
Let these be connected to S̃0[�σ0] through necks N j with scale parameters ε j . Finally, denote
by D j the disk {(0, ŷ) ∈ R × R

n : ‖ŷ‖ ≤ ε j } pushed forward by the canonical coordinate
chart corresponding to the neck N j and let c j = ∂D j . In other words, c j is the smallest sphere
in the throat of N j and D j is an n-dimensional cap for c j . Denote by N−

j the component of

N j\c j that is attached to S̃0[�σ0] at the point p j and set N− := N−
1 ∪ · · · ∪ N−

K .
Consider now the integral defining B. The idea is to apply the Korevaar–Kusner–Solomon

and Kapouleas balancing formula (1) for the integral of�τ,�σ ( fτ,�σ ) := Hφ fτ,�σ (�̃[α,�,τ,�σ ])−Hα

to replace this integral with a sum of boundary terms. Then the fact that fτ,�σ is small gives
an approximate expression that pertains solely to the initial configuration of hyperspheres.
These calculations are
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18 A. Butscher

B(�σ) =
∫

φ fτ,�σ (S̃0[�σ0]∪N−)

�τ,�σ ( fτ,�σ ) · χext,rε · q

=
∫

φ fτ,�σ (S̃0[�σ0]∪N−)

�τ,�σ ( fτ,�σ ) · q + O(rn
ε )

=
K∑

j=1

∫

φ fτ,�σ (c j )

〈
ν j , Y

〉+ O(rn
ε )

=
K∑

j=1

∫

c j

〈
ν j , Y

〉+ O(εδ+n−1| f |
C2,β
δ

)+ O(rn
ε ) (21)

where ν j is the outward unit normal vector field of c j tangent to N j,−. Note that the
∫

D j

terms have been absorbed into the error term. This is because when ε is small then these
quantities are much smaller than the

∫
c j

terms.

Finally, the calculation of the integrals
∫

c j
〈ν j , Y 〉 in (21) can be carried out in the stereo-

graphic coordinate chart used to define N j . This is very straightforward and yields a quantity
proportional to the (n − 1) dimensional area of c j in the form ωε n−1

j 〈γ̇ j (α), Y 〉 where γ j is
the geodesic from p0 to p j while ω is a constant independent of ε. But since Y is a Killing
field, this quantity remains constant along γ j and can thus be transported to p0. The desired
formulæ follow. ��

The calculations of the previous proposition show that the balancing map consists of a col-
lection of principal terms like (20), one for each perturbed hypersphere in �̃[α, �, τ, �σ ], plus
error terms which are of size O(rn

ε ). The principal term corresponding to a given perturbed
hypersphere depends on the displacement parameter of this perturbed hypersphere, as well as
on the displacement parameters of all neighbouring perturbed hyperspheres. It is important
to realize that the principal term depends on no other displacement parameters. As defined
in the introduction, an initial configuration of hyperspheres is approximately balanced if
B̊(0) = 0.

The derivative of the approximate balancing map. A formula for the derivative of the
approximate balancing map at �σ = 0 will also be needed in the sequel. To this end, a
more explicit formula illustrating the dependence of B̊ on �σ is needed. In what follows,
denote once again the (s, k)-perturbed hypersphere by S̃0[�σ0] and suppose it is centered on
p0[�σ0]. As before, one can assume that S̃0[0] is a perturbation of the punctured hypersphere
Sα\{p1, . . . , pK }. Denote the nearest neighbours of S̃0[�σ0] by S̃ j [�σ j ] for j = 1, . . . , K
and suppose these are centered at p j [�σ j ] with p j [0] = p j . Denote the geodesic connec-
ting p0[�σ0] to p j [�σ j ] by γ j [�σ0, �σ j ]. Let the tangent vectors of γ j [�σ0, �σ j ] at p0[�σ0] and
p j [�σ j ] be Tj [�σ0, �σ j ] := csc(τ j + 2α)

(
p j [�σ j ] − p0[�σ0] cos(τ j + 2α)

)
and T ′

j [�σ0, �σ j ] :=
csc(τ j + 2α)

(
p0[�σ0] − p j [�σ j ] cos(τ j + 2α)

)
.

The map B̊ can be related to �σ explicitly as follows. First, the relationship between the
scale of the neck used to connect two perturbed hyperspheres and their separation (found
in Sect. 2.4) gives ε j := ε(τ j ) where τ j := dist(p0[�σ0], p j [�σ j ]) − 2α and ε : R → R is
some universal function determined via the matching process. Recall further that S̃ j [�σ j ] =
W�σ j

(
S j [0]) for j = 0, . . . , K where W�σ j is the unique SO(n + 2)-rotation that coincides
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with the exponential map at p j [0] in the direction of �σ j . Moreover, the basis of infinitesimal
generators of the rotations of S̃0[�σ0] are of the form

(
W�σ0

)
∗ Y ◦ W−1

�σ0
where Y is a linear

combinations of the vector fields given in (19). One therefore obtains the formula

B̊(�σ0, �σ1, . . . , �σK ) =
K∑

j=1

ωεn−1
j

〈(
W�σ0

)−1
∗ Tj [�σ0, �σ j ], Y

〉 ∣∣p0[0] . (22)

This illustrates completely how B̊ depends only on �σ0 and �σ j for j = 1, . . . , K .

Proposition 14 Let V be a tangent vector at the origin in the space of displacement para-
meters. Suppose that V0 ∈ Tp0[0]Sn+1 is the component of V corresponding to the perturbed
hypersphere S̃0[�σ0] and Vj ∈ Tp j [0]Sn+1 are the components of V corresponding to the

nearest neighbours S̃ j [�σ j ] for j = 1, . . . , K . Then

DB̊(0)(V ) = −
K∑

j=1

(n − 1) ω εn−2
j ε̇(τ j )

(〈
V

‖ j
0 , Y

〉
− tan(τ j + 2α)

〈[
V �

j

]‖ j
, Y

〉)

−
K∑

j=0

ω εn−1
j

(〈
V

⊥ j
0 , Y

〉
− tan(τ j + 2α)

〈[
V �

j

]⊥ j
, Y

〉)
(23)

where X‖ j and X⊥ j denote the projections of a vector X parallel and perpendicular to
Tj [0, 0] while

V �
j := Vj − p0[0]〈p0[0], Vj 〉

sin(τ j + 2α)

is the re-scaled orthogonal projection of Vj into Tp0[0]Sn+1.

Proof The various terms in the formula (22) for B̊(�σ) must be differentiated at �σ = 0. Let
�σ0(t) = tV0 and �σ j (t) = tVj be paths in the displacement parameter space, where V0 and
Vj are considered as vectors in Tp0[0]Sn+1 and Tp j [0]Sn+1 respectively. First,

d

dt

∣∣∣∣
t=0

ε j (tV0, tVj ) = ε̇(τ j ) · d

dt

∣∣∣∣
t=0

arccos
(〈p0[tV0], p j [tVj ]〉

)

= − ε̇ j (τ j ) · (〈V0, p j [0]〉 + 〈p0[0], Vj 〉
)

√
1 − 〈p0[0], p j [0]〉2

.

The first term in the formula for DB̊(0)(V ) involving the parallel parts of V0 and Vj follows
from this using the formula for Tj [0, 0] as well as 〈p0[0], V0〉 = 〈p j [0], Vj 〉 = 0.

Next, realize that
(
W�σ0

)−1
∗ Tj [�σ0, �σ j ] is the tangent vector of the geodesic connecting the

point p0[0] to W−1
�σ0

◦ W�σ j (p j [0]) at p0[0]. A calculation reveals

(
W�σ0

)−1
∗ Tj [�σ0, �σ j ] =

W−1
�σ0

◦ W�σ j (p j [0])−
〈
W−1

�σ0
◦ W�σ j (p j [0]) , p0[0]

〉
· p0[0]√

1 −
〈
W−1

�σ0
◦ W�σ j (p j [0]), p0[0]

〉2 .

123



20 A. Butscher

Together with the definition of W�σ j one then finds after some work

d

dt

∣∣∣∣
t=0

(
WtV0

)−1
∗ Tj [tV0, tVj ] = Tj [0, 0] · (〈Vj , p0[0]〉 + 〈V0, p j [0]〉) · 〈p j [0], p0[0]〉

1 − 〈p j [0], p0[0]〉2

+ V �
j − V0 · 〈p j [0], p0[0]〉√

1 − 〈p j [0], p0[0]〉2
.

The second term in the formula for DB̊(0)(V ) involving the transverse parts of V0, V �
j

follows. ��

4.3 Conclusion of the proof of Main Theorem 1

The finite-dimensional inverse function theorem will be used to locate a zero of Bτ . The first
step is to approximate Bτ by the simpler mapping B̊τ : D� → R

K obtained by replacing
each B j term in (18) by the corresponding function B̊ j : D� → R of the form (20). The
mapping B̊τ is independent of fτ,�σ and therefore depends only on the geometry of initial
configuration �#[α, �, τ, �σ ]. The hypotheses of Main Theorem 1 assert that �#[α, �, τ, �σ ]
is balanced, meaning that B̊τ (0) = 0. By Proposition 13, one now has Bτ (0) = Eτ (0)where
Eτ (�σ) := Bτ (�σ)− B̊τ (�σ). This error term satisfies ‖Eτ (0)‖ = O(rn

ε ) which is smaller than
the operator norm of DB̊(0). One can therefore attempt to use the finite-dimensional IFT to
find a nearby �σ so that Bτ (�σ) = 0.

It is important to incorporate into the analysis the fact that Bτ can often not be a full-
rank mapping. To see this why this is so, let Y1, . . . , Yd be a basis for the infinitesimal
generators of one-parameter families of rotations of S

n+1 that are equivariant with respect
to the symmetries of �̃[α, �, τ, �σ ]. This means ρ∗(Y j ◦ ρ) = Y for all ρ ∈ G� and this
ensures that the functions 〈Y j , ν〉 : �̃[α, �, τ, �σ ] → R, where ν is the outward unit normal
of �̃[α, �, τ, �σ ], are invariant with respect to G� . Now the first variation formula for the
volume of hypersurfaces, applied to the volume-preserving deformation given by rotation in
the Y j direction, leads to the equation

∫

φ f (�̃[α,�,τ,�σ ])
�τ,�σ ( f ) · 〈ν, Y j 〉 = 0 ∀ j = 1, . . . , d

where ν f is the unit outward normal vector field of φ f (�̃[α, �, τ, �σ ]). Therefore one sees
that there are maps Y j : D� → R

K for j = 1, . . . , d with
[
Bτ (�σ)

] · [Y j (�σ)
] = 0 ∀ j = 1, . . . , d (24)

where · denotes the Euclidean inner product. Hence the rank of Bτ is at most K − d .
The correct interpretation of (24) is to say that the graph {(�σ, Bτ (�σ)) : �σ ∈ D�} is contai-

ned in the submanifold {(�σ , b) : b · Y1(�σ) = · · · = b · Yd(�σ) = 0} of D� × R
K . Therefore

it suffices to show that the equation pr ◦ Bτ (�σ) = 0 has a solution, where pr is the orthogo-
nal projection to the orthogonal complement of the subspace spanned by Y1(0), . . . ,Yd(0).
Note that the linearization of pr ◦ Bτ at zero maps into this orthogonal complement, and thus
D (pr ◦ Bτ ) (0) = DBτ (0). In addition, the calculations of the proof of Proposition 13 show
that (id − pr) ◦ DB̊τ (0) = L where L is a linear operator with O(rn

ε ) coefficients.
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The hypotheses of Main Theorem 1 assert that�#[α, �, τ, �σ ] has the property that DB̊τ (0)
has full rank. Hence (id − pr) ◦ DB̊τ (0) and DBτ (0) do as well. Furthermore, the operator
norm of DB̊τ (0) is O(C(ε)εn−1). Hence Bτ (�σ) = b will be solvable for b inside a ball
centered on pr ◦ Eτ (0) whose radius is O(C(ε)εn−1). When ε is sufficiently small, 0 is
contained within this ball. Hence the equation Bτ (�σ) = 0 is solvable for small �σ ∈ D� . The
proof of Main Theorem 1 is complete. ��

5 Applications of the balancing formulæ

5.1 A simple example

A simple example serves both to develop intuition for the approximate balancing map (20)
and its derivative (23), as well as to show that the kernel of the derivative of the approximate
balancing map can be quite large in the absence of symmetries. While this feature is also
present in the CMC gluing construction in Euclidean space, it is here much more restrictive
because the trick of imposing decay conditions at infinity to reduce the size of the kernel of the
Euclidean analogue of the approximate balancing map is not available. Therefore one must
impose symmetry conditions or else expect to work quite hard to find an initial configuration
of hyperspheres that can be glued together and perturbed into an exactly CMC hypersurface
using the gluing technique.

Consider exactly one geodesic, without loss of generality the (x0, x1)-equator γ , and let
R01
θ be the rotation by an angle θ in the (x0, x1)-plane that translates along γ . Position N

hyperspheres of radius cos(α) around γ , separated by a distance of τ from each other, so
that (τ + 2α)N = 2πm for some integer m. These hyperspheres are of the form Sk

α :=(
R01
τ+2α)

)k
(Sα) which are centered at pk := γ ((τ + 2α)k). Let �# := ⋃N−1

k=0 Sk
α . Note that

this initial configuration is balanced because the vanishing of the approximate balancing map
is equivalent to the equal spacing of the hyperspheres along a single geodesic.

The initial configuration �# yields the Delaunay-like hyperspheres in Butscher’s paper
[2] using the gluing technique together with imposing as many symmetries as possible on the
deformations. Now, however, no symmetries will be imposed and as a result the approximate
balancing map becomes non-trivial. In the absence of any symmetry conditions constraining
the displacement parameters of�#, there are n displacement parameters for each hypersphere
in�#. For each hypersphere Sk

α , these will be decomposed into one displacement parameter
corresponding to the displacement of Sk

α along γ and n − 1 displacement parameters cor-
responding to the displacement of Sk

α perpendicular to γ . To parametrize these displacement
parameters in a uniform way, note that Tpk S

n+1 is spanned by Tk := γ̇ ((τ + 2α)k) and
∂
∂x2 , . . . ,

∂
∂xn . Thus one can set

�σ k := σ k
1 Tk +

n∑
j=2

σ k
j
∂

∂x j

as the displacement parameter for Sk
α . Note that �σ 0 = �σ N by periodicity.

It will now be shown that the kernel of the derivative of the approximate balancing map
is very large. Note that Main Theorem 1 still applies because each element in the kernel of
DB̊(0) is induced from a rotation of S

n+1. Let �V k := (V k
1 , V k

2 , . . . , V k
n ) denote infinitesimal

displacements satisfying �V 0 = �V N . To compute DB̊(0, . . . , 0)( �V 1, . . . , �V N ) one needs
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formulæ for the re-scaled orthonormal projection operators X �→ X � that appear there. It is
easy to deduce

(V k±1
1 )�k = V k

1

tan(τ + 2α)
Tk

(V k±1
j )�k = V k

j

sin(τ + 2α)

∂

∂x j
j = 2, . . . , n

Consequently, the derivative of the approximate balancing map on the kth perturbed hyper-
sphere takes the form

DB̊(0)( �V k−1, �V k, �V k+1) = −ωεn−2ε̇
(

2V k
1 − V k−1

1 − V k+1
1

)

− ωεn−1
(

2V k
j − sec(τ + 2α)(V k−1

j + V k+1
j )

)
.

The recursion formulæ 2V k
1 −V k−1

1 −V k+1
1 = 0 and 2V k

j −sec(τ +2α)(V k−1
j +V k+1

j ) = 0

for elements in the kernel of DB̊(0), together with the periodic boundary conditions V 0
j = V N

j
for all j = 1, . . . , N , are easy to solve and yield

V k
1 = 1 for all k = 0, . . . , N

V k
j = sin ((τ + 2α)(k0 + k)) for j = 2, . . . , n and k0 ∈ {0, . . . , N − 1}.

There are either 1
2 N (n − 1) + 1 or N (n − 1) + 1 linearly independent solutions of this

type, depending on whether N is even or odd. These solutions correspond to the change of
displacement parameter induced by the rotation of S

n+1 parallel to γ and transverse to γ .

5.2 An unachievable configuration

The intuition gained from the preceding example can be used to explain why a reasonably
simple configuration, possessing an analogue in Euclidean space, cannot be achieved using
the methods developed in this paper. The configuration in question consists of positioning
hyperspheres around two intersecting geodesics that make an arbitrary angle to each other at
the point of intersection. This is a slightly less symmetric version of the configuration consi-
dered in [2] where a CMC hypersurface is created from hyperspheres positioned around two
orthogonally intersecting geodesics. One should note that the existence of a CMC hypersur-
face of this kind has not been ruled out; it is just that the techniques developed herein are not
sufficient for its construction.

The reason the methods of this paper fail for the less symmetric configuration can be des-
cribed as follows. First, let R0 j

θ be the rotation of the (x0, x j )-plane. Let γ j be the (x0, x j )-
equator for j = 1, 2. Choose α, τ ∈ (0, π) and integers m, N so that (τ + 2α)N = 2πm.
Also, choose N of the form N = 4N0. The initial configuration in question, which shall be
denoted�#

θ , consists of the hyperspheres S2,k,±
α := R01±θ◦(R02

τ+2α)
k(Sα) for k = 0, . . . , N−1.

When θ �= π/2, the maximal symmetries one can impose on the deformations of the approxi-
mate solution constructed from �#

θ are: all orthogonal transformations of the x3, . . . , xn+1

coordinates; and the reflections sending x j to −x j and keeping all other coordinates fixed, for
j = 0, 1, 2. As a result, there are two sets of invariant approximate Jacobi fields. These are:
the translation of S2,k,+

α along the geodesic R01
θ (γ2) for k ∈ {1, . . . , N0 − 1} and extended

by symmetry to S2,k,−
α , S2,−k,±

α and S2,2N0±k,±
α ; and the rotation of S2,k,+

α in the (x0, x1)-
plane transverse to R02

θ (γ ) and similarly extended by symmetry. None of these invariant
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approximate Jacobi fields are induced by rotations of S
n+1. Note that there are no Jacobi

fields associated to S2,0,±
α , S2,N0,±

α , S2,2N0,±
α and S2,3N0,±

α .
In order to apply Main Theorem 1 to the hypersurface described above, one would have

to apply the balancing arguments as in Sect. 4.3 to deal with the invariant approximate
Jacobi fields. Clearly �#

θ is balanced for each θ because the separation parameters between
all hyperspheres are equal and its geodesic segments meet in parallel pairs. Thus it would
remain to check only that the derivative of the approximate balancing map has full rank
(which corresponds to being invertible in this case because the imposed symmetries rule out
all co-kernel coming from induced rotations of S

n+1). However, the analysis of the simple
example of Sect. 5.1 shows that the kernel of DB̊(0) is one-dimensional and consists of
the transverse motion V k = sin((τ + 2α)(N0 + k) ∂

∂x1 and extended by symmetry. This
approximate Jacobi field is induced by the change of the θ -parameter and not by a rotation
of Sphn+1. Therefore Main Theorem 1 does not apply to�#

θ unless θ = π/2, in which case
there is an additional symmetry (invariance with respect to the rotation R01

π/2) that eliminates
this approximate Jacobi field from consideration.

Remark The analogue of the example above in Euclidean space consists of two Delaunay
surfaces with non-parallel axes meeting at a common spherical region. It is possible to glue
this initial configuration together and perturb it into a CMC hypersurface. This is because
the decay conditions at infinity that are built into the function space used in the analysis rules
out the approximate Jacobi fields corresponding to the change-of-angle parameter and the
translation parameter.

5.3 A related achievable configuration

A modification of the previous example yields an initial configuration of hyperspheres to
which Main Theorem 1 does apply. The key is to “freeze” the motion of the θ -parameter
without imposing additional symmetries, which can be achieved by adding another set of
spheres along the geodesic orthogonal to the initial configuration of Sect. 5.2. The requirement
that the spheres at the intersection points of the geodesic with the initial configuration of
Sect. 5.2 match perfectly is what freezes the motion in the θ -parameter. That is, choose an
integer k0 and let

�# :=
[

N−1⋃
k=0

S2,k,+
α

⋃
S2,k,−
α

]
∪
[

N−1⋃
k=0

S1,k
α

]

where S1,k
α := (R01

τ+2α)
k(Sα). Note that �# has the same group of symmetries as before.

Its approximate Jacobi fields are those described before as well as the translation of S1,k
α

along the geodesic γ1 for any given k ∈ {1, . . . , N0 − 1} and extended by symmetry. Again,
there are no approximate Jacobi fields associated to the hyperspheres S1,0

α , S1,N0
α , S1,2N0

α and
S1,3N0
α .

The initial configuration �# is balanced because the separation parameters between all
hyperspheres are equal and its geodesic segments meet in parallel pairs. Thus to apply Main
Theorem 1 it remains to check that the derivative of the approximate balancing map is

invertible. Let T1,k := γ̇1((τ + 2α)k) and T2,k,± :=
(

R01
±(τ+2α)k0)

)
∗ γ̇2((τ + 2α)k) be the

tangent vectors of the geodesics γ1 and γ2 at the centers of the hyperspheres of�# and define
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�V 1,k := uk T1,k

�V 2,k,± := vk,±T2,k,± + wk,± ∂

∂x1

as the displacement parameters of these hyperspheres. Note that

uk = vk,± = 0 k ≡ 0 mod 4

w0,± = w2N0,± = 0

uk = −u−k = −u2N0+k = u2N0−k k = 1, . . . , N0 − 1

and similarly for v∗ and w∗ by symmetry. In addition uk0 = w0,+ since the corresponding
hyperspheres coincide. Thus it is only necessary to analyze the action of DB̊(0) on the vector
�V := ( �V 1,1, . . . , �V 1,N0−1, �V 2,1,+, . . . , �V 2,N0−1,+) and set vk := vk,+ and wk := wk,+.
One finds

DB̊(0)( �V ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

−(n − 1)ωεn−2ε̇
(
2uk − uk+1 − uk−1

)

−(n − 1)ωεn−2ε̇
(
2vk − vk+1 − vk−1

)

−ωεn−1
(
2wk − wk+1 − wk−1

)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the equations in DB̊(0)( �V ) = 0 were uncoupled, then the kernel would be of the form
found in the simple example of Sect. 5.1. If the boundary conditions are included, then it
follows that vk = 0 for all k, as well as uk = c for all k and wk = c′ sin((τ + 2α)(k + N0))

for c, c′ ∈ R. But the coupling 2w0 − 2 sec(τ + 2α)w1 = 2uk0 − 2 sec(τ + 2α)w1 = 0 then
forces c = c′ = 0. Hence DB̊(0) is invertible and Main Theorem 1 applies to allow �# to
be glued together and perturbed into a CMC hypersurface.

5.4 An achievable configuration without any symmetries

The previous example has much less symmetry than the examples constructed in [2] but
still possesses a large symmetry group. Further modifications of the ideas of the previous
sections leads to examples of initial configurations to which Main Theorem 1 applies with
few symmetries or no symmetries at all. These example are naturally quite hard to write
down, and in any case the purpose of this final section of the paper is to give the reader the
necessary ideas for constructing these examples, so it is sufficient to proceed in the n = 2
case.

The first modification leading to a much less symmetric example is to consider �# from
Sect. 5.3, except with the new geodesic tilted into the x3-direction by some angle which
is not π/2. Such an example would still be balanced because its geodesic segments would
continue to meet in parallel pairs. Also, such an example would clearly possess no symmetries
other than the x �→ −x reflection sending a point on S

3 to the antipodal point. However, it
is not immediately clear that it is possible to tilt the third geodesic so that equally spaced
hyperspheres of radius cos(α) along the third geodesic line up exactly with the hyperspheres
of the same radius along the first two geodesics where these geodesics meet. But a moment’s
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thought reveals that what is needed for some configuration of equally spaced spheres of some
radius winding some perhaps large number of times around S

3 to exist is that all the geodesic
segments have lengths which are rational multiples of 2π . This, in turn, can be achieved if
the three unit vectors N1, N2, N3 orthogonal to the planes containing the three geodesics
have 〈Ni , N j 〉 ∈ 2πQ for all i, j ∈ {1, 2, 3}. This can be achieved. The details of the
balancing arguments that prove that Main Theorem 1 applies are identical to the arguments
of Sect. 5.3 and thus the configuration above can be glued together and perturbed into a CMC
hypersurface.

One final modification of these ideas leads to an example without any symmetries at
all. The idea is to perform the same trick of adding in a tilted geodesic to a configuration
which does not have the x �→ −x antipodal symmetry. Such a configuration is the following:
consider three half-geodesics of the form R02

2π/3 (γ1([0, π])) and choose a fourth geodesic

which is tilted into the x3-direction. The reader can verify that the fourth geodesic can
be chosen in such that equally positioned hyperspheres match appropriately and that the
balancing arguments needed to apply Main Theorem 1 hold. Hence this configuration can be
glued together and perturbed in a CMC hypersurface as well.
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