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Abstract— We propose a digital neuron model suitable for
evolving and growing heterogeneous spiking neural networks on
FPGAs by introducing a novel flexible dendrite architecture and
the new PLAQIF (Piecewise-Linear Approximation of Quadratic
Integrate and Fire) soma model. A network of 161 neurons
and 1610 synapses was simulated, implemented, and verified
on a Virtex-5 chip with 4210 times real-time speed with 1 ms
resolution. The parametric flexibility of the soma model was
shown through a set of experiments.

I. INTRODUCTION

The bewildering complexity of natural organisms, and their
remarkable features such as fault-tolerance, immunity, robust-
ness, parallelism, scalability, learning, and adaptation, has
made them good sources of inspiration for engineers. Nature-
inspired paradigms such as Evolutionary Algorithms (EA),
Artificial Neural Networks (ANN), and Artificial Immune
Systems (AIS) are all efforts to imitate nature’s solutions to
create adaptive, intelligent, and secure systems.

However, natural systems simply outperform engineered
systems in many aspects. The no-free-lunch theorem [1]
implies that, for static and time-dependant problems, there is
no algorithm that can perform better than all other algorithms
on all problems. This is particularly clear in case of traditional
approaches to computation, which have difficulties in solving
natural problems like pattern recognition, optimization, and
design. They can show an acceptable performance only on a
very limited range of problems. For example, a statistical or
heuristic object detection algorithm may perform very well
for detecting faces in the input images but cannot be used for
detecting hands or tools or distorted or incomplete faces. In
contrast, natural systems perform very well on a wide set of
natural problems. In other words they can adapt to different
problems and new situations.

This adaptation of natural systems can show itself in dif-
ferent forms. Scalability can be defined as the ability of a
system to grow (i.e. to organize and employ more resources)
in order to tackle more complicated problems or deal with
(proportionally or even super-linearly) larger amount of work.
Fault-tolerance can be thought as the ability of a system
to cope with resource loss (by graceful degradation) and to
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reorganize available resources to mitigate, or even recover,
the impact of the loss. Robustness could be explained as the
quality of a system to be capable of graceful degradation
in case of a change (even sudden and/or unpredictable) in
its operating environment, including its input. This definition
implies generalization over input patterns and robustness to
noise.

It seems that all these intrinsic properties of natural systems
emerge through intricate interactions of numerous elements on
different levels. These elements could be atoms in a folding
molecule, large molecules in a living cell, cells in a developing
organism, neurons in a learning neural network, individuals in
a swarm or replicating systems in an evolving population. All
these processes can be imagined as manifestation of the same
pattern at different levels, which are perceived on different
time-scales. Evolution, development and learning are three
major processes of this kind.

Recreating such processes in artificial systems requires a
huge amount of resources and computation power. The other
option is to select a high level of abstraction and accept
the curse of oversimplification, which usually happens in
traditional approaches to evolutionary computation [2]. For
example, running a bio-plausible developmental evolutionary
neural network involves iterative nested cycles of evolution,
development, and learning on different time scales. Evolvable
hardware may enable us to exploit the computational resources
at a lower level, leading to fine-grained system interactions,
low-level parallelism, and a biologically more plausible ap-
proach compared to traditional evolutionary computing.

This work is a step towards creating adaptable and bio-
plausible hardware-based neural networks using evolution, de-
velopment, and learning processes. Here, we propose a digital
neuron model suitable for developmental evolution of hetero-
geneous recurrent spiking neural networks on FPGAs (Field
Programmable Gate Array) aiming at: flexibility, development-
friendliness, high simulation and learning speeds, parallelism,
and bio-plausibility, while having hardware implementation in
mind.

In the next section, the relevant literature is reviewed. In
section III we introduce the new digital neuron model and its
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architecture. The implementation of the digital neurons on a
hardware platform is reported in section IV. Experiments on
the neuron model and their results are reported in section V
and VI. In the last section, these results are analysed and future
work is discussed.

II. BACKGROUND

Many researchers evolved neural networks using different
approaches. Yao reviewed some endeavours classifying them
into evolving synaptic weights, evolving network architectures,
evolving learning algorithms, and their combinations [3]. He
concluded that combining evolutionary algorithms and neural
networks can lead to significantly better intelligent systems.
An evolutionary approach is particularly beneficial in case of
Recurrent Neural Networks (RNN) since no systematic and
effective approach for designing such networks for a given
problem is proposed yet [3], [4].

A. Evolving RNNs

Stanley and Miikkulainen devised an effective way of
evolving topology and weights of increasingly complex RNNs
called NEAT (Neuro-Evolution of Augmenting Topologies)
[5]. Tt starts from a very simple topology and adds new nodes
and connections by mutation, keeping track of the chrono-
logical order of innovations to allow meaningful crossovers.
NEAT was successfully used in a number of complex control
applications [5], [6], [7] and pattern generation [8]. Floreano
et al. also used evolutionary spiking RNNs for real-time robot
control [9].

B. Evolving Reservoirs

Recently, with independent works of Buonomano [10],
Maass (Liquid State Machine - LSM [11]), Jaeger (Echo State
Network - ESN [12]) and Steil (Back-Propagation Decorre-
lation - BPDC [13]) a new technique, collectively known as
Reservoir Computing (RC) [14], emerged, which is claimed to
be capable of processing analogue continuous-time inputs and
to mitigate the shortcomings of the RNN learning algorithms.
This method is generally based on a recurrent network of
(usually) non-linear nodes. This recurrent network, which is
called reservoir (AKA liquid, dynamic filter,...) transforms the
temporal dynamics of the recent input signals into a high-
dimensional representation. This multi-dimensional trajectory
can then be used as latent state variables by a simple linear
regression/classification or a feed-forward layer (know as
readout map or output layer) to extract the salient information
from transient states of the dynamic filter and generate stable
outputs. The reservoir is traditionally a randomly generated
RNN with fixed weights. Only the output layer is trained.
Linear nature of the readout map dramatically decreases the
computational cost and complexity of the training. Neverthe-
less, it has been shown that the topology, weights and the
other parameters (e.g. bias, gain, threshold) of the reservoir
elements can change the dynamics of the reservoir and thus
affects the performance of the system [4], [15]. Therefore, a
randomly generated reservoir is not optimal by definition.
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Researchers tried to propose different measures and methods
for generating and/or adapting reservoirs for a given problem
or problem class [14]. However, there is none or very limited
theoretical ground to specify which reservoir is suited for a
particular problem due to the non-linearity of the system [4].
Moreover, with only one positive result, in case of intrinsic
plasticity [16], the development of unsupervised techniques for
effective reservoir adaptation has remained an open research
question [14]. Another open question is the effect of the reser-
voir topology on the performance and dynamics of the system
[4]. There is some evidence that hierarchical and structured
topologies can significantly increase the performance [14].

Evolutionary algorithms, among other methods, were used
for optimizing the performance of the reservoirs [17], [15],
which led to some positive results. However, much work
is still needed to evolve topologies, structures, and regular-
ization/adaptation/learning algorithms. To make this happen,
the evolutionary algorithm must be free to change the size,
topology, structure, node properties, and learning algorithm of
the RNN. An evolutionary system needs emergent properties
such as scalability and modularity to be able to work on
different hierarchical levels of reservoirs.

C. Using Developmental Processes

Development as a combination of cell division, differenti-
ation, and growth is believed to be one of the processes that
can improve the scalability of evolution while it can also bring
other emergent properties like regeneration and fault tolerance
to digital systems [18]. Gordon [19], [20] showed that a
developmental process can enhance the scalability of evolvable
hardware as it uses an implicit mapping from genotype to
phenotype. Liu et al. [21] proposed a model for developmental
evolution of digital systems, which also exhibits transient
fault tolerance. Bentley [22] compared human-designed, GP,
and developmental evolutionary programs facing damage and
showed that the developmental program can exhibit graceful
degradation. Federici [23] showed that development can bring
regeneration and fault tolerance to spiking neural network
robot controllers. Hampton and Adami also proposed a new
developmental model for evolution of robust neural networks
and reviewed some other developmental neural networks [24].
Roggen et al. have a good review and classification of
hardware-based developmental systems in [25].

D. Hardware-based POE Systems

Researchers have sought to create systems capable of evolv-
ing, developing and learning in situ to adapt themselves to a
given problem and environment. These are called POE systems
as they are aimed to show these capabilities in all three aspects
of Phylogeny, Ontogeny and, Epigenesis of an organism. A
spiking neural network on the POEtic chip [26] is an example
of such systems.

E. FPGA-based POE Spiking Neural Networks

The evolution of directly mapped recurrent spiking neural
networks on FPGAs has been tackled by a few researchers



(e.g. [25], [27]) using very simplified versions of the Leaky
Integrate and Fire model (LIF) [28], [29]. Recently, Schrauwen
et. al proposed a high-speed spiking neuron model for FPGA
implementation based on the LIF model with serial arithmetic
and parallel processing of the synapses utilising pipelining in
a binary dendrite tree [30].

However, as yet none of these digital neuron models are
quite suitable for a developmental model capable of regenera-
tion and dendrite growth on FPGA. They are typically either
constricted in terms of number of inputs per neuron or impose
constraints on the patterns of connectivity and/or placement on
the actual chip mostly due to implementation issues. They also
do not allow heterogeneous networks with flexible parametric
neurons and learning rules as important bio-plausible features.

III. DIGITAL NEURON MODEL

To improve the performance of evolution, the developmental
digital neuron model should be as flexible as possible, for any
constraint may impair evolvability. Evolution must be able to
modify everything from network topology and dendrite struc-
tures to learning rules, membrane decay constants and other
cell parameters and processes. Evolution should also be free to
create a suitable neuro-coding technique for each application.
Therefore, even the network activity is not guaranteed to be
restricted as assumed in event-based simulation of spiking
neural networks [30]. Thus, a time-step simulation technique
is used here. This model also needs to be relatively fast as
running a POE system [26] involves iterative nested cycles
of evolution, development and learning. Such a fast parallel
spiking neural network on FPGA can also be used for real-time
applications. Design objectives of the digital neuron model can
be summarised in order of importance as follows:

1) Flexibility and evolvability in terms of:

o Development-friendliness of the dendrite model
o Parametric flexibility of the soma model

« Flexibility of the learning algorithm

« Flexibility of the neural coding

2) Simulation and learning speed (parallelism)
3) Bio-plausibility
4) Minimization of hardware area and resources on FPGA

A. General Architecture

In the proposed model [31], each digital neuron consists of a
set of synapse units and a soma unit connected in a daisy chain
architecture shown in figure 1. The pre-synaptic input of each
synapse is connected to the axon of the pre-synaptic neuron.
This architecture creates a 2-way communication channel and
allows the development of different dendrite structures as
demonstrated in the example of figure 2. The signal pairs
that connect the units form a loop that conveys data packets
(comprising a start bit and 16 data bits). The soma unit
sends an upstream packet containing the current membrane
potential on its upstream output (USO). Synapse units pass
upstream packets unchanged but process downstream packets.
If a synapse unit receives a pre-synaptic action potential it
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Fig. 1. General architecture of the digital neuron (Syn: synapse unit).

Fig. 2. Example of the dendrite structure and its adaptability (Syn: synapse
unit).

adds (or subtracts) its synaptic weight to the first arriving
downstream packet. Therefore, the soma unit receives the
sum of membrane potential and post-synaptic currents in its
downstream input (DSI). After processing this packet, the
soma unit sends another packet with the updated membrane
potential. Serial arithmetic is used in all the units to create
pipelined parallel processing inside each neuron, meaning
that neighbouring units process different bits of the same
packet at the same time. Using this architecture has a number
of collective benefits. First, a 2-way communication channel
makes it possible to have a local synaptic plasticity mechanism
in each synapse leading to a higher level of parallelism. Most
of the bio-plausible unsupervised learning mechanisms like
STDP and its variants involve a local learning process in
each synapse. Secondly, it minimizes the number of local and
global connections, which leads to a significant relaxation of
constraints imposed upon the network architecture as limited
routing resources is the major constraint in optimal utilization
of FPGA functional resources. Each unit needs only a global
clock signal to work. Other global signals can also be added
for global supervised learning mechanisms. Although other
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Fig. 3. Internal architecture of the synapse unit.

architectures may bring about less pipeline latency, they need
more local and global connections. For instance, a binary tree
structure similar to [30] needs about double the number of
local connections including the upstream links (excluding the
global control signals). Third, it allows the development of
dendrite structures similar to biological dendrites. The user
is free to trim (add) dendrite sub-trees at any point simply
by cutting few connections and bypassing (inserting) the root
unit of the sub-tree as shown by the dashed lines in figure
2. This can be implemented in FPGA using multiplexers or
other routing resources (The detail is beyond the scope of this
paper). This flexibility is vital for a developmental model that
needs on-line growth and modification. Fourth, it maintains
the regularity of the model by limiting the diversity of the
module types (synapse and soma units) and connection types
(dendrites, axons) to a biologically plausible bare minimum.
This simplifies the place and route or dynamic reconfiguration
process if a regular infrastructure of cells and connections
(similar to [32]) is used. Finally, it is possible to add other
variables to the data packet (e.g. the membrane recovery
variable in the Izhikevich model [33]).

B. The Synapse Unit

The synapse unit, shown in figure 3, comprises a 1-bit
adder (with carry flip-flop), a shift register containing the
synaptic weight, two pipeline flip-flops, and a control unit. The
upstream input (USI) is simply directed to the upstream output
(USO) through a pipeline flip-flop. The control unit disables
the adder and weight register when no spike has arrived by
redirecting the downstream input (DSI) to the downstream
output (DSO) through another pipeline flip-flop. When the
control unit detects a spike, it waits for the next packet and
resets the carry flip-flop of the adder when it receives the start
bit. Then it enables the shift register and the adder until the
whole packet is processed. A learning block can be simply
inserted into the feedback loop of the weight register in order
to realize a local unsupervised learning mechanism like STDP.
This learning block can access the current membrane potential
and the input. It is also possible to modify the synapse to create
a digital DC current input unit by loading the DC current into
the weight register.

C. The Soma Unit (PLAQIF Model)

Most of the hardware models are based on the Leaky
Integrate and Fire (LIF) [29], [28] or simplified LIF neuron
models [25], [27]. However, a Quadratic Integrate and Fire
neuron model (QIF) is biologically more plausible compared
to the popular LIF model as it can generate action potentials
with latencies, has dynamic threshold and resting potentials
and it can have two bistable states of tonic spiking and silence
[34]. Here, a Piecewise-Linear Approximation of the Quadratic
Integrate and Fire (PLAQIF) is proposed as a new soma model.
Using this new model has a number of benefits in our context.

While it is relatively inexpensive (in terms of hardware
resources) to convert a serial arithmetic implementation of a
LIF neuron model into a PLAQIF model (as shown later),
PLAQIF model can generate a bio-plausible action potential.
This is particularly important as we use the membrane voltage
in the learning process.

Moreover, the Behaviour of the model can be specified
with a number of parameters (i.e. time constants and reset
potential). These parameters can be placed in registers and
look-up-tables (LUT) to be modified at run-time (e.g. by
partial dynamic reconfiguration) or can be hard-wired for
hardware minimization.

Finally, it is easy to extend this model to a piecewise-linear
approximation of Izhikevich model (with a wide range of bio-
plausible behaviours e.g. bursting, chattering, and resonating
[33]) by adding another variable, if hardware budget permits.

The dynamics of the QIF model can be described by a
differential equation and reset condition of the form [29]:

t=alu—u)(u—u)+1 (1)

if U > Upear then U «— Upeger

where u is membrane voltage, a is specifying the time-
constant, [ is the postsynaptic input current, and the u,. and
are nominal resting and threshold voltages respectively, when
I = 0. Note that in contrast with LIF models, the actual resting
and threshold voltages are dynamic and they change with the
input current I [34]. Applying first-order Euler method results
in an equation of general form:

U1 = up + a(ur — up)(up — ug) + I, 2)
if Uk+1 > Upeak then Uk+1 < Ureset

where k is the step number. The PLAQIF model is based on the
serial arithmetic implementation of a LIF model, with equation
Up+1 = ug + I — auy (for a < 1), with a little modification.
The last term of LIF equation can be approximated using two

taps:
Uk Uk
11 = up + I — — 3
U4l = U + k+{P1J+LP2J 3)
Tap 1 Tap 2
where P, = (—1)% - 2Pi with p; and s; being the pa-

rameters of ith tap. Each tap is computed by adding (or
subtracting depending on s;) the shifted version (arithmetic
shift right by p; bits) of the binary representation of wuy.
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Fig. 4. The PLAQIF model approximates the QIF model (the dotted curve)
with a piecewise linear function by modulating the V-shape function V().
The three control points (with arrows) can be moved up and down by tuning
the parameters.

By replacing the sign bit (S) and the most significant bit
(MSB) of uy with the complement of MSB we can produce
the piecewise linear function V' (uy) = |uy| — 2 (assuming
a 16-bit representation). This function is shown in figure 4
as the V-shape function. By tapping (modulating) V (uy) with
different parameters (p;0...pi3 and s; ... s; 3) for different
combinations of S and MSB (positive or negative, small or
large values of uy) we get:

Upy1 = U + I + L 4

X%J " LZ({ZM

where Py(z) = (—1)% - 2Pii | j = [%1 +1G)

It is possible to approximate eq. 2 with eq. 4 by tuning the
parameters p; ; and s; ; as shown in figure 4.

The soma unit, showed in figure 5, comprises a 1-bit adder,
a 32-bit buffer shift register (holding the partial sums from
the last cycle), a 16-bit shift register (holding reset voltage
Ureset), @ lookup-table (LUT, a 8x5 bits RAM, which holds
the parameters p; ; and s; ;), a control unit (CU, which detects
the arriving packet and generates all the control signals e.g.
Tap, ShiftEn, etc.), and a few multiplexers. The soma
unit initiates a data packet thorough USO and waits for a
packet on DSI input. At this point, the buffer holds the value
ug in its left half and S and MSB flip-flops hold the sign
and most significant bit of uy. The LUT selects the correct
shifted version (according to S and MSB) of uy through the
multiplexer and has its first bit ready on the input of the
adder. The first tap starts with receiving a packet. An arriving
packet, which contains the value wuy + I goes to the other
input of the adder. The LUT also selects the add or subtract
operation in each tap(s;). As the operation goes on, the MSB

extension block switches the multiplexer to MSB at the right
V(uk)
Py (ukk)
adder. Therefore, the new value of uy + I + L 1‘3/1 ((ZA;;))J shifts
into the buffer through a multiplexer. The second tap starts

time to generate the value L J on the input of the

immediately and the value in the left half of the buffer goes to
the adder input. The other input of the adder is again U%((Z’Z ))J
now generated by selecting the correct shifted version of the
uy from the right half of the buffer. The adder generates the
updated value of w (ug4q in eq. 4) at its output, which is
shifted into the buffer and is also used to generate a new
packet in the upstream output of the soma unit. This value
is also used to update the S and MSB flip-flops according to
the new value of uy4;. This process continues until the peak
detection block detects a transition of S without any change in
MSB, which indicates an overflow, and immediately corrects
the sign bit of the departing packet, generates a pulse in the
axon, and initiates the absolute refractory period. The absolute
refractory period, which lasts for a complete membrane update
cycle, is like any other cycle except that in the second tap
the output of the adder is ignored and contents of the reset
voltage shift register is used instead as the new membrane
potential uy41. The membrane update period (i.e. latency of
the whole pipeline), thus neuron time constants, depend on the
number of synapses n (I' = 2n + 18 clock cycles). This can
be compensated by the evolving parameters.

IV. IMPLEMENTATION

The behaviour of the neuron model was verified by VHDL
simulation of a single neuron. Random spikes were fed into 16
synapses with different weights using different bio-plausible
parameter settings and its membrane potential was monitored
and compared to the expected dynamics of equation (4). With
efficient use of the 32-bit shift registers in Virtex-5 FPGA, a
random small-world network of 161 16-bit neurons with 20
inputs, 20 outputs and, 10 fixed-weight synapses per neuron,
was simulated and synthesized for a XC5VLX50T chip using
VHDL and Xilinx ISE tools resulting 85% utilization and a
maximum clock frequency of 160MHz (i.e. pipeline through-
put, which allows 4210 times faster than real-time simulation
with 1 millisecond resolution). We believe that we can improve
some of these figures by low-level design optimization and a
cellular floor-planning similar to [32].

A single neuron and a whole network were also imple-
mented and tested with a XCS5VLXS50T chip on a Xilinx
ML505 development platform [35]. Through an informal
verification process, timings of the neuron output spikes
were checked against the simulation at the maximum clock
frequency of 160 MHz using random input pulses with the
same bio-plausible parameter settings use in simulation. The
hardware behaviour matched the simulated model.

V. EXPERIMENTS

To show the parametric flexibility of the new PLAQIF soma
model and to compare its behaviour and capabilities with
those of biological neurons and hardware neuron models, four
experiments were carried out. To explore a wide range of be-
haviours, arbitrary different parameter settings were selected.

In the first experiment we checked if the neuron model is
capable of showing both bistable and monostable behaviours
of biological neurons. For bistable behaviour the ;s Was
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Fig. 5. Internal architecture of the soma unit
set to 17000 and for monostable behavious U,eser = —16384. VI. RESULTS

The other parameters were set as follows:

27 0< =«
Pl(x):{ —27 ; r <0

25 0< =z
PQ(”):{fzk" oz <0

In the second experiment, to check the effect of changing
Ureset ON the the F-I curve (spiking frequency against input
current) of the neuron, the F-I curve was recorded using
different values of the parameter w,.s.;, keeping all other
parameters fixed as follows:

24 M <

23 0< z <2
Pl(x) :PQ(I) = _24 _214 < xr <0

—23 r < —2M

In the third experiment, the F-I curve was recorded chang-
ing the middle control point (in figure 4) keeping all other
parameters fixed (uyeset = —16384 and for two other control
points: P;(x) = 27 and Py(x) = 2% when |z| > 21%).

In the forth experiment, only t,¢se: Was fixed at -16384 and
the F-I curves for a few different symmetric settings of p; ;

and s; ; (where P;(z) = —P;(—x), i = 1,2) were recorded.
For comparison, a QIF model of the form:
I 2174
= 01u? + —— — —— 6
U= 00 5000 T 8000 ©

if w > 30 then u +— —1

was also simulated with the same resolution.

All experiments were carried out using VHDL simulation
of a single neuron with 16 synapses with their weights set to
20 91 ... 214 _915 Each frequency measurement was made
by first setting all the synaptic inputs to zero for 2 membrane
update cycles and then fixing the binary representation of the
input current on the synaptic inputs, waiting for the first spike
in the axon and counting the number of update cycles until the
second spike (V). The frequency was then calculated assuming
that each update cycle is equal to 1 ms of neuron simulation
time (F = 1909).

Figure 6 show traces of the input current, membrane voltage
and the axon output of the digital neuron in two different
settings of the first experiment. The PLAQIF model is clearly
capable of working in both bistable and monostable modes and
generating spikes with latencies. This is in contrast with the
popular LIF model that works only in the monostable mode
and cannot generate spikes with latencies.

Figure 7 shows the results of the second experiment that
demonstrates the effect of changing the parameter w,.s.; on
the F-I curve of the neuron. The F-I curve clearly shows that
the digital neuron is class 1 excitable [29] for u,cser < 0. The
PLAQIF model F-I curve apears as a class 2 excitability [29]
for 0 < Upeser < 16384. This is also an advantage over LIF
model. Moreover, changing w,.s.: affects the general slope
and curvature of the neuron F-I curve. For positive values of
Ureset, the minimum spiking frequency and current change as
Ureset Changes.

Figure 8 shows the results of the third experiment. A class
1 excitability is more clear in this figure. It also shows how
the slope and curvature of the F-I curve can be fine-tuned by
changing the middle control point (in figure 4) parameters. The
bold lines show the F-I curve when the middle control point
is higher than zero (W shaped function instead of V-shaped
or quadratic function for u(w)). These exotic non-linearities in
4(u) that do not match contemporary biological neurons can
be exploited during evolution.

Results of the last experiment, shown in figure 9, demon-
strates diversity of neuron characteristics using different pa-
rameter settings without changing w,.set- The F-I curve of the
QIF model of 6 is shown in bold, which is close to the F-I
curve of the PLAQIF model with the parameter settings:

27

0< =«
Pl(""):{—f oz <0
23 0< =«
PQ(QC):{ —23 oz <0

It is an acceptable approximation, however the PLAQIF curve
does not exactly match the QIF curve due to the piecewise-
linear approximation.
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Fig. 6. Traces of the input current, membrane potential, and the axon output
of the digital neuron in the first experiment: A) Bistable behaviour (uyeset =
17000). B) Monostable behaviour (uyeset = —16384).
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Fig. 7. F-I curve of the digital neuron using different values of Ureset
showing class 1 and 2 excitability.

The step-wise shape of the curves (particularly in higher
frequencies) is due to the 1-millisecond simulation resolution
and calculating the frequency based on the number of 1-
millisecond update cycles between two successive spikes.

VII. CONCLUSIONS

A digital spiking neuron model with a new architecture and
a novel soma model based on piecewise-linear approximation
of QIF neuron model was proposed and its suitability for
evolution and development of heterogeneous neural networks
in FPGAs was shown in terms of parametric flexibility of the
soma units, adaptability of the dendrite structures, and model
simulation speed. It was also shown how a local learning
unit can be added to each synapse to improve parallelism.
Although the replication of the synapse control units increases
the hardware area, it brings about the adaptability of the
dendrite structures and may also adds to the fault-tolerance
of the network. Compared to existing hardware-based models
(e.g. [30], [36], [25], [26]), the new digital neuron model has
many advantages:

1) Due to the non-linearity of the new PLAQIF soma model
(based on QIF model) it:

« can generate bio-plausible spikes with latencies;
e can behave in both monostable and bistable modes;
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Fig. 8. The effect of moving the middle control point (of figure 4) on the
F-I curve of the digital neuron. The bold lines are results of the middle point
higher than zero.
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Fig. 9. F-I curve of the digital neuron using different parameter settings for
pi,; and s; ; keeping ureset = —16384 along with the F-I curve of the QIF
model of eq. 6 superimposed in bold.

« can show both class 1 and class 2 neuron excitabil-
ity;
¢ has dynamic resting and threshold potentials.

2) With a wider set of parameters (4 time constants and
a reset voltage), it has more useful flexibility to be
exploited by evolution. It is possible to generate exotic
non-linearities with PLAQIF that even QIF model can
not produce.

3) It can form unlimited number of synapses and flexible
dendrite branches without any connectivity or placement
constraint or need for global control signals to be routed
allowing online development and dendrite growth.

4) It allows unsupervised learning mechanisms to be im-
plemented (or, in future designs, even evolved) locally
in each synapse. While this is a bio-plausible approach
to learning, it also creates low-level parallelism in the
learning process leading to higher speeds.

Compared to [30], this model is 43% faster (having 10
synapses per neuron), but needs more hardware resources. This

242



speed advantage is reduced for higher number of synapses per
neuron as the update cycle of this architecture is of order

O(n

) compared to O(log, n) in [30]. However, it is not very

useful to compare these two designs due to differences in
technologies and priorities of the design objectives (flexibility
and adaptability instead of speed and hardware minimization).
Clearly, using the new daisy-chain architecture and the repli-
cation of the synapse control units increased the hardware
resources and slightly reduced the speed but also contributed to
the adaptability of the dendrite structure and the real possibility
of introducing meaningful development into the process.

In the next step of this study, it is intended to design a versa-
tile cellular architecture for development and dendrite growth
of digital neurons of this type on Virtex-5 FPGA. Adding a
parametric evolvable learning (synaptic plasticity) block to the
synapse unit and evolving heterogeneous neural networks on
Virtex-5 FPGA using dynamic partial reconfiguration is also
planned for future.
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