Informal DEVS Conventions Motivated by Practical Considerations

Rhys Goldstein, Simon Breslav, Azam Khan
Autodesk Research
210 King Street East, Toronto, ON, Canada
{firstname.lastname @autodesk.com}

Keywords: simulation tools, convenience, efficiency, repro-
ducibility, encapsulation

Abstract

The formalism known as the Discrete Event System Specifi-
cation (DEVS) provides a set of mathematical elements for
modeling time-varying systems. When DEVS is applied in
the form of an executable representation, however, some de-
viation from the formalism is unavoidable. By proposing a set
of informal DEVS conventions, we show how certain changes
to the formalism, some previously adopted, others less ex-
plored, may help simulation tools appeal to users who stand
to benefit from DEVS theory but are more cognizant of prac-
tical issues. Our conventions use parameters and statistics to
encapsulate the state of an atomic model and the composi-
tion of a coupled model. They also include changes both to
transition functions and the ordering of simultaneous events
to promote convenience, efficiency, and reproducibility.

1. INTRODUCTION

Developers of general-purpose simulation software must
choose modeling conventions that allow users to implement,
integrate, and test models for a wide range of domains in-
cluding physics, chemistry, biology, economics, social sci-
ence, engineering, and architecture. The Discrete Event Sys-
tem Specification (DEVS) has to a large extent addressed this
challenge by providing a way to represent essentially any
time-varying system as an indivisible atomic model, or as
a coupled model defining a network of components that are
themselves described by atomic or coupled models (Zeigler
et al., 2000).

DEVS can be applied in either of two forms: as a for-
malism for specifying models using mathematical nota-
tion, or as an executable representation for implementing
models using a programming language. When the formal-
ism is used, atomic model specifications with the elements
(X,Y,8,80x, Oins, A ta) and coupled model specifications with
the elements (X,Y,D,{M, : d € D} ,EIC,EOC,IC,Select)
can be analyzed using the mathematical laws that constitute
DEVS theory. When an executable representation is used,
atomic and coupled models can be interpreted by DEVS-
based tools to direct computer simulations. Most executable
representations are tool-specific, though efforts are underway
to define a common standard (Wainer et al., 2010).

All executable DEVS representations differ in various
ways from the underlying formalism. Some of these differ-
ences are a matter of necessity. For example, atomic model
specifications include three purely mathematical sets that can-
not be represented in a typical programming language. Most
changes, however, are made for the sake of convenience, ef-
ficiency, reproducibility, or some other practical benefit. Ex-
amples include the merging of two atomic model functions
to improve efficiency, or the simplification of an inconve-
nient coupled model function that orders simultaneous events.
These deviations from the formalism, and the practical con-
siderations that motivate them, are the focus of this paper.

Our primary purpose is to provide a set of informal DEVS
conventions for atomic and coupled models to aid in the de-
velopment of simulation tools intended for a particular type
of user. The user we consider is one who is an expert in his
or her domain, but has little familiarity with DEVS or any
other modeling formalism. If such users perceive, rightly or
wrongly, that any aspect of DEVS has unnecessarily incon-
venienced them, led to inefficient code, or rendered their re-
sults irreproducible, they are unlikely to regard consistency
with DEVS theory as adequate compensation. Nevertheless,
it is our belief that these domain experts have the most to gain
from adopting DEVS. We strive for conventions that are suffi-
ciently consistent with the formalism that its main advantage,
a more scalable and collaborative approach to simulation, can
be realized. However, we deviate from the formalism where
necessary to provide at least one solution to each of the dozen
or so practical issues we identify herein.

The proposed conventions are partly influenced by changes
to the formalism found in existing DEVS-based tools; this
paper collects a selection of these changes for the benefit
of future tool developers. The conventions also reflect sev-
eral ideas that emerged through the development of our own
DEVS-based software. In presenting them, we compare the
proposed elements of atomic and coupled models to those de-
fined in the formalism. Particular attention is given to the in-
corporation of parameters and statistics, modifications to the
transition functions, and the ordering of simultaneous events.

2. ATOMIC MODEL CONVENTIONS

Table 1 lists the elements of atomic models as defined by
the DEVS formalism. The atomic model elements we propose
are listed in Table 2.

Table 1. Atomic Model Formalism Elements

Element Description

Input Set (X) Set of all possible inputs
Output Set (Y) Set of all possible outputs
State Set (S) Set of all possible states

Function that...

...takes the current state
...results in the time delay
Function that...

...takes the current state
...takes the elapsed time
...takes an input value
...results in the new state
Function that...

...takes the current state
...results in an output value
Function that...

...takes the current state
...results in the new state

Time Advance
(ta:S— Ry U{ec})*

External Transition
(Oexr : O X X — S)**

Output
A:S—=YU{o}

Internal Transition
Oins : S = 8)

*]Rg is the set of non-negative real numbers
*Q={(s,AL,) € Sx (Rj U{oo}) : AL, <ta(s)}

Starting from the top of Table 2, the Model Description el-
ement serves as a reminder that users of DEVS-based tools
should be able to incorporate documentation into their mod-
els. Note that because our conventions do not constitute an
executable representation, the form of each element is left
open to interpretation. For DEVS implementations similar
to PythonDEVS (Bolduc and Vangheluwe, 2002), which is
a library of DEVS-related classes one imports into a Python
program, the Model Description could take the form of
commented-out lines in source code. For tools such as Pow-
erDEVS (Bergero and Kofman, 2011), which provides graph-
ical user interfaces for model development, it could take the
form of a text field, or perhaps a combination of marked-up
text and images.

The Input Set (X) and Output Set (Y) have been replaced
with Input and Output Port Lists, which is common prac-
tice since purely mathematical sets are not easily exploited in
typical programming languages. PythonDEVS, for example,
provides addInPort and addOutPort methods to construct
these lists. It is important to note that port lists address only a
part of X and Y, the other part being the set of values permit-
ted on each port. Here there is an entire spectrum of possible
approaches. One can simply ignore the issue and permit any
value on any port. One can also assign each port an informal
description, or a predicate indicating whether an encountered
value is acceptable. Although we include port lists in our con-
ventions, we offer no recommendation on how to restrict the
associated values. The reason is that many solutions are only
appropriate for certain programming languages. With C++,
for instance, one may use templates to associate each model

Table 2. Atomic Model Proposed Elements

Element Description

Model Description User-supplied documentation
Input Port List List of input port names
Output Port List List of output port names

Parameter List
Statistic List

Constant List

State Variable List
Constant Initialization

List of parameter names

List of statistic names

List of constant names

List of state variable names
Function that...

...reads parameter values
...Initializes constants
...acquires computer resources
Function that...

...reads constants

...Initializes state variables
Function that...

...reads constants

...reads state variables
...provides the time delay
Function that...

...reads constants
...reads/modifies state variables
...reads the elapsed time
...reads an input

Function that...

...reads constants
...reads/modifies state variables
...reads the elapsed time
...provides an output list
Function that...

...reads constants
...reads/modifies state variables
...reads the elapsed time
...provides statistic values
...releases computer resources

State Initialization

Time Advance

External Transition

Internal Transition

Finalization

with a datatype for its inputs and outputs (Nutaro, 2011).

The newly added Parameter List, Statistic List, Constant
List, the two Initialization functions, and the Finalization
function are described in Section 2.1.

The State Set (S) has been replaced by a State Variable List,
which is also common practice. This list may take form of
variable declarations in a statically typed language such as
C, C++, or Java. Alternatively, the list may be implicit in the
variable assignment statements of a dynamic programming
language such as Python or Lua.

The transition functions have undergone several modifica-
tions, an example being the absorption of the Output function
into the Internal Transition function. These changes are ex-
plained in Section 2.2.

We have not proposed any significant change to the Time
Advance function (ta). However, we have assumed that mod-
ifications to the state variables can be prevented in this func-
tion, and that the resulting time delay can be assigned an infi-
nite value. If this is not the case, DEVS-based tool developers
should consider absorbing the Time Advance function into
the State Initialization function and both External and Inter-
nal Transition functions. This is done, for example, in CD++
(Wainer, 2009).

2.1. Atomic Model Parameters and Statistics

Given the popularity of object-oriented programming, do-
main experts are likely to understand encapsulation even if
they are unfamiliar with DEVS-specific principles. The Input
and Output Port Lists encapsulate the state variables of an
atomic model during a simulation; from outside of the model,
its state can be only be influenced or accessed indirectly via
inputs and outputs. Several of the proposed elements are use-
ful, however, to ensure the state variables are also encapsu-
lated at the beginning and end of a simulation.

At the beginning of a simulation, the user can supply values
for the parameters declared in the Parameter List. The model
receives these parameter values, and uses them to calculate
the initial values of the state variables. By allowing the ini-
tial state of an atomic model to be configured indirectly via
parameters, the state variables remain encapsulated. This con-
vention is by no means original. Most object-oriented DEVS
libraries feature initialization methods or class constructors
that read parameter values.

Parameters not only control the initial state of an atomic
model, they also customize its subsequent behavior by in-
fluencing the model’s functions. Having all functions read
parameter values directly could be inefficient, however, as
the same parameter-dependent calculations might be required
in multiple functions or in repeated invocations of the same
function. Thus it is for the sake of efficiency that we propose
a Constant List and the use of two initialization functions in-
stead of one. The Constant Initialization function is invoked
first. It is the only function in which parameter values can be
accessed and constants can be initialized and modified. The
ability to modify constants in this function is important for
populating arrays and data structures that will later be im-
mutable. The State Initialization function is separated from
the first initialization function so that modifications to the
constants can be disallowed before the state variables acquire
their initial values. Note that if a modeler desires direct access
to the parameter values in every atomic model function, they
need only define a one-to-one mapping between parameters
and constants.

At the end of a simulation, we propose that a Finalization
function be invoked to supply a value for each statistic de-
clared in the Statistic List. This is preferable to directly ex-

posing the final values of the state variables, which would
violate the principle of encapsulation. It should be noted that
the Finalization function, which may also be used to release
computer resources acquired during initialization, is not an
original concept. The Exit function in PowerDEVS, for in-
stance, is similar. However, because statistics are usually de-
rived from a model’s outputs, our suggestion to incorporate
them into the model is a departure from common practice.

To understand the rationale for calculating statistics within
a model, consider a hypothetical simulation designed to inte-
grate a differential equation between predefined start and end
times. The purpose of the simulation is to report on statistics
that depend on the result of this integration. The integration
is performed by a model that outputs its progress at every
internal transition. A problem arises if the simulation ends
between two internal transitions, as there will be no event to
calculate and deliver the final segment of the integration re-
sults. In this case, the Finalization function provides a place
to complete the integration. To fulfill this task, the function
must have access to the time elapsed since the previous tran-
sition. Also, in order to reuse numerical integration code, the
function must be able to modify the state variables. Finally,
since there is no output to deliver the result of the integration,
the model itself must provide the required information in the
form of statistics.

There are many cases where simulation results should be
fully derived from models outputs; in those cases, modelers
can leave the Statistic List empty and the Finalization func-
tion blank. Nevertheless, we believe these elements should be
included in DEVS-based software to give users an additional
option for scenarios such as the one described above.

2.2. Transition Functions

As mentioned earlier, our conventions involve absorbing
the Output function (A) into the Internal Transition function
(8ins). In other words, the Output function is omitted, while
the Internal Transition function acquires the option of pro-
ducing an output. This is essentially the convention adopted
by DEVS++ (Hwang, 2009). The motivation for merging the
two functions is the observation that A and §;,, often involve
same intermediate calculations. If the functions are kept sep-
arate, as they are in most existing DEVS-based tools, these
calculations must be performed twice instead of once. Alter-
natively, the software can allow the Output function to make
state changes, but this also contradicts DEVS theory and may
confuse users who realize that they can move code between
the two functions without changing their results.

There is some theoretical justification for merging A and
Oinr- Let 8y : S — S X Y be the resulting function. Given any
atomic model specification, we can derive 9, using (1).

Sint(5) = (Bim (s), M(s)) (D

Also, although we do not recommend using our conven-
tions for specification purposes, (2) demonstrates that there is
a mapping from 0;,; back to A and ;.
= §inl (S) (2)
= Sint(s)

Finally, since A may take on the form shown in (3), the
DEVS formalism does permit the output to depend on the
post-transition state instead of the pre-transition state.

A(s) = f (Bint(s))

Despite these justifications, the decision to merge A and ;s
should not be made lightly. One drawback is that it compli-
cates efforts to prove that an atomic model is formally legit-
imate. Legitimacy means that in the absence of inputs, simu-
lated time necessarily advances towards co without stopping
or converging (Zeigler et al., 2000). Note that the formula for
legitimacy, shown below, depends on ;,; but not A.

Sin(s) =s" where (s',y)
As)=y where (5,)

for any function f 3)

oo

Zta(si) =oc forallsye S
i=0
where fori > 0, s; = 8 (si-1)

By merging A and J;,,, it is nearly certain that some or all of
the Stochastic DEVS (STDEVS) theory described in Castro
et al. (2008) will be rendered inapplicable. The reason is sim-
ply that (1), (2), and (3) all assume atomic model functions
are deterministic. One may, of course, still sample a random
number generator in our proposed Internal Transition func-
tion, so it is unclear whether inconsistency with STDEVS will
impact domain experts. We expect such users to be more con-
cerned about the loss of efficiency associated with keeping
the functions separate.

A third drawback to merging A and §;,, is that it is not
an option for Parallel DEVS, a variant of DEVS that ex-
ploits parallel computing technology by dispensing with the
ordering of simultaneous events (Chow and Zeigler, 1994).
In general, the solutions we propose are applicable to Classic
DEVS, not its variants, though one could argue that an ideal
set of conventions would take numerous variants into account.
In Parallel DEVS, an invocation of A is only sometimes fol-
lowed by 8;,;, so combining the functions is complicated at
best. The problem of avoiding redundant calculations still ex-
ists, however, and is worthy of attention.

Instead of producing one optional output, as done by
A, our Internal Transition function produces a list. This
list of outputs, motivated by convenience, is compara-
ble to the bag of outputs found in software implement-
ing Parallel DEVS. In DEVSJava (Zeigler and Sarjoughian,
2005), for example, a model may use repeated calls of the
form makeContent (port, value) to produce simultane-
ous outputs. The difference in our case is that the outputs are

propagated not simultaneously, but in the order they are listed.
We will discuss this further in the context of coupled models.

If our Internal Transition function is to provide a list of out-
puts instead of one optional output, it seems intuitive that the
External Transition function (,.;) take a list of inputs instead
of a single input. But other than symmetry, we do not see any
practical benefit to altering 8., in this way. In most cases, re-
ceiving inputs one at a time conveniently alleviates the need
to iterate over a list. In cases where a list of inputs is neces-
sary, it is not difficult to have J,,; queue incoming values for
subsequent processing.

Observe in Tables 1 and 2 that, instead of “taking the cur-
rent state” and “resulting in the new state”, our transition
functions “read/modify the state variables”. The difference
in phrasing becomes important if a model’s state requires a
considerable amount of memory. If the current state is im-
mutable, as is the case with the SC-DEVS tool (Madlener
et al., 2009), then extra memory will need to be allocated for
the new state, and a significant amount of data is likely to be
copied at every transition. Most DEVS-based tools allow the
state variables to be modified, which we recommend for the
sake of efficiency.

Finally, observe in Table 2 that the elapsed time is to be
made available in the Internal Transition function as well
as the External Transition function. This is consistent with
the formalism in the sense that, although the elapsed time is
not an argument of &;,, it can be obtained via the expres-
sion fa(s). In a DEVS-based tool, it may not be practical to
invoke the Time Advance function inside the Internal Tran-
sition function, so we recommend making the elapsed time
available by another mechanism.

3. COUPLED MODEL CONVENTIONS

The elements of coupled models, as defined by the formal-
ism, are listed in Table 3. The elements we propose are listed
in Table 4.

Observe that the first two elements in Table 3 are iden-
tical to those previously encountered in Table 1. These ele-
ments constitute the interface to any DEVS model according
to the formalism. Likewise, the first five elements of Table 4
are identical to those in Table 2, as these elements constitute
the proposed model interface. The main difference is that the
proposed interface accounts for parameters and statistics. Al-
though the sixth element, the Constant List, is also found in
both atomic and coupled models, it is part of the implemen-
tation of a model. The parameters, statistics, and constants of
coupled models, as well as their Initialization and Finaliza-
tion functions, are discussed in Section 3.1.

The proposed elements that represent the composition of a
model, the Component List, the Component Models, and the
Coupling, are similar to the corresponding elements of the
formalism (D, {M,},EIC,EOC,IC). The one notable differ-

Table 3. Coupled Model Formalism Elements

Table 4. Coupled Model Proposed Elements

Element Description Element Description

Input Set (X) Set of all possible inputs Model Description | User-supplied documentation
Output Set (Y) Set of all possible outputs Input Port List List of input port names
Component Set (D) | Set of component names Output Port List List of output port names
Component Models | Atomic and/or coupled models Parameter List List of parameter names
({M, :d € D}) (one model per component) Statistic List List of statistic names

External Input
Coupling (EIC)

Set of links connecting...
...input ports to components

Constant List

List of constant names

Component List

List of component names

External Output Set of links connecting...
Coupling (EOC) ...components to output ports
Internal Coupling Set of links connecting ...

o) ...components to components

Component Models

Mapping that...

...takes any component name
...identifies the model that
describes the component

Tie-Breaking Function that...
(Select : 2P — D) ...takes a set of component names
...results in a selected name

ence is that, if a proposed element is described as a [list in-
stead of a set, the user is to have control over the order of its
items. Again, we emphasize that the form of each proposed
element is open to interpretation. The Component List need
not be presented to the user as a list of names. For our own
software, we adopted the well-established approach of repre-
senting components as labeled nodes in an editable diagram.
The nodes are numbered to indicate the order of the com-
ponents. For the majority of the proposed list elements, the
fact that the items are ordered allows them to be presented in
a consistent fashion. Some of these orderings also affect the
execution of simultaneous events, as explained in Section 3.2.

3.1. Coupled Model Parameters and Statistics

A simple way to define the Parameter Lists of coupled
models is to always concatenate the Parameter Lists of their
components. Unfortunately, this violates the principle of en-
capsulation by exposing the composition of a coupled model
through its interface. It can also be impractical, as a simple
example illustrates. Consider a coupled model with five com-
ponents. Each component has a parameter named color, and
the coupled model is valid only if all five components are ini-
tialized with the same value for this parameter. If the parame-
ter lists are concatenated, the coupled model ends up with five
separate color parameters that require the same value, which
is both inconvenient and error-prone.

Our conventions require a coupled model’s parameters to
be listed independently of those of its components. At the be-
ginning of a simulation, the Initialization function reads the
coupled model’s parameter values and computes a separate
list of parameter values for each component. Next, the Initial-
ization function of each component is invoked with the appro-
priate one of these computed lists. Note that if the component
is described by an atomic model, it is the Constant Initializa-

Coupling Set of links connecting...

...input ports to components

...components to output ports

...components to components

Function that...

...reads parameter values

...Initializes constants

...provides parameter values to
components

...acquires computer resources

Function that...

...reads constants

...reads the elapsed time

...reads the total elapsed time

...reads the remaining time

...reads statistic values from
components

...provides statistic values

...releases computer resources

Initialization

Finalization

tion function that is invoked here, not the State Initialization
function. This overall approach minimizes the number of pa-
rameters required by a coupled model, and allows the model
to automatically enforce any necessary constraints involving
the parameters of its components.

A similar argument can be made against routinely con-
catenating the Statistic Lists of the components of a coupled
model. We require a coupled model’s statistics to be listed in-
dependently. At the end of a simulation run, the Finalization
function of each component computes a list of statistic values.
Next, the coupled model’s Finalization function is invoked to
read all of these computed lists and produce its own statis-
tic values. The Finalization function of a coupled model may
read parameter-dependent constants populated in the Initial-
ization function. It may also read the time elapsed since the
previous component-level event, the total time elapsed since
the beginning of the simulation, and the time remaining until
the next component-level internal transition.

3.2. Simultaneous Events

When performing simulations that are neither parallelized
nor interactive, domain experts may justifiably expect their
results to be reproducible. To meet this expectation, conven-
tions must be chosen to deterministically order simultaneous
events that arise in four different situations.

The first situation occurs when multiple components
are scheduled to undergo internal transitions at the same
time. According to the formalism, the Tie-Breaking function
(Select) is invoked to choose one of these components. Be-
cause Select is inconvenient to define in its general form,
which accounts for all subsets of a coupled model’s compo-
nents, our conventions omit it. The ordering required by the
Component List is used lieu of Select to determine the next
internal transition. CD++ (Wainer, 2009) is an example of an
existing DEVS-based tool that uses this convention.

The second situation results from allowing a single internal
transition to produce a list of outputs. Each output triggers a
separate external transition, so these transitions must be or-
dered. Since the outputs are themselves ordered, the same or-
dering can be applied to the external transitions.

The third situation arises when a single output is received
by more that one component. In theory, the order of the ex-
ternal transitions triggered by this output has no effect on any
subsequent output, so the order is left unspecified. In prac-
tice, because multiple components may draw samples from
the same pseudorandom number generator, changing the or-
der of these external transitions can alter simulation results.
Suppose that such orderings are determined by the sequence
in which links between ports are drawn in a graphical edi-
tor. In that case, two modelers can create models that appear
identical, yet produce different results when simulated under
exactly the same conditions. To promote reproducibility when
it is expected, we recommend that simultaneous external tran-
sitions involving multiple components be ordered in the same
manner as internal transitions: using the Component List.

The fourth situation pertains to a single output received by
a component on multiple ports. In this case, the order of the
resulting external transitions can affect subsequent outputs
even in the absence of pseudorandom numbers or other side
effects. To address the same reproducibility issue described
above, the ordering required by the Input Port List of the re-
ceiving component can be applied to its external transitions.

4. FUTURE WORK

This work could be extended to provide informal con-
ventions for DEVS-based experiments, including uncertainty,
sensitivity, and parameter optimization analyses requiring
multiple simulation runs. By allowing coupled models to en-
force relationships between component parameters, and by
providing statistics that can be used to implement cost func-
tions, the conventions proposed here support such efforts.

We encourage others to propose analogous conventions for
Parallel DEVS and other DEVS variants. Although our so-
lutions do not apply to these variants, many of the practical
issues remain relevant. Addressing them will make DEVS-
based tools compelling to a broader range of potential users.

REFERENCES

Bergero, F. and E. Kofman (2011). PowerDEVS: A Tool for
Hybrid System Modeling and Real-Time Simulation. Sim-
ulation 87(1-2), 113-132.

Bolduc, J.-S. and H. Vangheluwe (2002). A Modeling and
Simulation Package for Classic Hierarchical DEVS. Tech-
nical report, School of Computer Science, McGill Univer-
sity.

Castro, R., E. Kofman, and G. Wainer (2008). A Formal
Framework for Stochastic DEVS Modeling and Simula-
tion. In Proceedings of the Spring Simulation Conference.

Chow, A. C. H. and B. P. Zeigler (1994). Parallel DEVS: A
Parallel, Hierarchical, Modular Modeling Formalism. In
Proceedings of the Winter Simulation Conference.

Hwang, M. H. (2009). DEVS++: C++ Open Source Library
of DEVS Formalism (v.1.4.2 ed.).

Madlener, F., H. G. Molter, and H. Sorin A (2009). SC-
DEVS: An efficient SystemC Extension for the DEVS
Model of Computation. In Proceedings of the Design, Au-
tomation, and Test in Europe Conference.

Nutaro, J. J. (2011). Building Software for Simulation: The-
ory and Algorithms with Applications in C++. Hoboken,
NJ, USA: John Wiley & Sons.

Wainer, G. A. (2009). Discrete-Event Modeling and Simula-
tion: A Practitioner’s Approach. Boca Raton, FL, USA:
CRC Press.

Wainer, G. A., K. Al-Zoubi, D. R. C. Hill, S. Mittal, J. L. R.
Martin, H. Sarjoughian, L. Touraille, M. K. Traoré, and
B. P. Zeigler (2010). An Introduction to DEVS Stan-
dardization. In G. A. Wainer and P. J. Mosterman (Eds.),
Discrete-Event Modeling and Simulation: Theory and Ap-
plications, Boca Raton, FL, USA: CRC Press, pp. 393—
425.

Zeigler, B. P, H. Prachofer, and T. G. Kim (2000). Theory of
Modeling and Simulation (2nd ed.). San Diego, CA, USA:
Academic Press.

Zeigler, B. P. and H. S. Sarjoughian (2005). Introduction to
DEVS Modeling and Simulation with JAVA: Developing
Component-Based Simulation Models. Technical report,
Arizona Center for Integrative Modeling and Simulation,
University of Arizona.

