
ISSUES IN COMBINING MARKING AND DIRECT MANIPULATION TECHNIQUES

Gordon Kurtenbach and William Buxton

Computer Systems Research Institute,

University of Toronto,

Toronto, Canada

ABSTRACT

The direct manipulation paradigm has been effective in
helping designers create easy to use mouse and keyboard
based interfaces. The development of flat display surfaces
and transparent tablets are now making possible interfaces
where a user can write directly on the screen using a special
stylus. The intention of these types of interfaces is to
exploit user’s existing handwriting, mark-up and drawing
skills while also providing the benefits of direct
manipulation. This paper reports on a test bed program
which we are using for exploring hand-marking types of
interactions and their integration with direct manipulation
interactions.

Keywords: markings, gestures, stylus, pen-based
interfaces, direct manipulation

1. INTRODUCTION

A popular vision of the future is a portable computer
which allows one to write directly on the screen (Carr,
1991; Leitch, 1990; Normile & Johnson, 1990; Rebello,
1990). One can envision an interface where a stylus serves
as the main input device supplying text commands and
positioning information. A user interacts with the system
as if it were pencil and paper. However, because real paper
is not an active computational device, the pencil and paper
metaphor is not sufficient by itself. In computer-based

systems, handwriting may magically turn into formatted
text, markings may cause an object to change state and
objects may be pointed to and dragged. There are therefore
many design issues which affect the ease of use and
efficiency of these interfaces that need to be addressed.
What do users expect? How do they know what to write
and when? When and how do they use direct manipulation?

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

o 1991 ACM 0-89791 -451 -1191/0010/ 0137... $1.50

We use the term “’marking interactions” to describe
interactions where the pointing device leaves an “ink trail”
on the display similar to writing with a pen. An example
of an interface that uses marking intemctions is a prototype
spread-sheet described in Wolf, Rhyne & Ellozy (1989).
Motivating our work is the view that marking interactions
can be combined with direct manipulation inte~aces
(Shnciderman, 1982; Hutchins, Holhtn & Norman, 1986)
to produce easier to use and expressive interfaces. This
view has also been expressed by Wolf and Rhyne (1987).
The advantages of marking interfaces can be used to
support the weaknesses of direct manipulation and vice
versa. The PenPoint system by the Go Corporation is an
example of a system which supports both marking
interactions and direct manipulation (Cam, 199 1).

1.1 GEdit

In order to explore this hybrid markingklirect manipulation
design space we have created a program called GEdit.

GEditl is a prototype graphical editor that permits a user to
create and manipulate three types of objects (squares, circles
and triangles) using shorthand and proof-reader style
markings. Using hand-drawn symbols, a user can add,
delete, move and copy these objects. Objects can be
manipulated either individually or in groups. Groups are
specified with hand-drawn circling symbols.

This particular toy world was chosen because it is simple
enough to be tractable, yet complex enough to be
applicable to a set of real-world problems (such as one
might encounter in a CAD or graphical layout program).
The hope is that it will also provide a useful educational
tool for those interested in character and gesture

lGEdit builds upon two earlier studies that investigated the
use of similar markings and objects (Buxton, 1982;
Buxton, Fiume, Hill, Lee & Woo, 1983). An earlier
version of GEdit is described in Kurtenbach & Buxton

(1990). The current version of GEdit differs from these
earlier systems in that complete commands can be
accomplished with single contiguous markings, smooth
transitions from marking to direct manipulation are
provided and a unique interactive way of helping users learn
and remember the shorthand marks used to create objects.

November 11-13, 1991 UIST’91 137



recognition, and in integrating interaction techniques. 2 We

have been using GEdit to explore various design issues and
to demonstrate a number of unique interaction techniques.
GEdit demonstrates the following:

. The use of proof-reader and shorthand markings to invoke
commands;

9 That different aspects of a mark can be used to control
different command parameters (e.g, location, shape, size of
the mark);

● That commands that require more than one argument can
sometimes be effectively expressed in a single contiguous
marking, For example, a typical proof-reader’s “move”
mark embeds three different pieces of information: the
command (move), what is to be moved (direct object), and
where it is to be moved to (indirect object). GEdit
accomplishes the expression of complex commands in a
similar fashion;

9 That markings can eliminate the need for some kinds of
modes (such as the need to select one tool at a time from a
pallete). Thus many of the problems associated with
modes can be avoided (such as mode errors, see Sellen,
Kurtenbach, and Buxton, 1990);

● That by combining markings and direct manipulation,
variations on a command invoked by an action can be
achieved by varying some minor aspect of the action. This
can be accomplished in a simple and consistent manner.
(We will later illustrate this concept in the discussion of
the “move” and “copy” commands.)

● That marking and direct manipulation techniques can be
combined in a single interaction.

GEdit demonstrates several innovative interaction
techniques and brings to light many issues relevant to the
design of pen-based interfaces. The next section describes
and discusses the techniques and issues in more detail.

2. GEDIT: INTERACTIONS AND DESIGN
ISSUES

One interacts with GEdit using a number of simple
markings. These are articulated using a pointing device,
such as a stylus or a mouse. Commands are entered by
moving the pointing device while maintaining downward
pressure on the stylus or holding down the mouse button.

Most commands leave an “ink trail” along the path of
motion.

2 GEdit runs on any Apple Macintosh computer. A version
for the Sun (Suntools and X11) also exists. The program
is available from the authors as shareware.

2.1 Creating Objects

Objects are created using a form of shorthand notation.
Three objects can be defined: a square, circle and triangle.
Shorthand symbols are used to define which type of object
is to be created, and where it is to be placed (see Figure 1).
Object type is defined by the shape and direetion of the
shorthand symbol. The new object is centered on the
starting point of the defining symbol.

Qp’/A
Figure 1. Shorthand symbols for adding objects. The
objects (in bold) are created by the corresponding marks

(thin lines with arrowheads).

This method of creating objects has several advantages over
traditional direct manipulation techniques for creating
objects. Typically in a direct manipulation system a user
operates on an graphical object such as an icon which
represents a file or directory. User actions affect the object
only when the pointing device is within the area of the
object, or when the object is selected (by clicking on it for
example), There are several problems with this approach:

c How does one operate on objects not on the screen (the
What You See is All You Get syndrome)?

. Most of the time one wants to create am.i place an object.
Often, direct manipulation interfaces require two sets of
actions to accomplish this.

● How does one create an object? If it does not exist, what
object does one operate on to create it?

Generally a “creator object” can be manipulated to generate
a new object. For example, consider creating a circle in
MacDraw. First one must identify the “create circle tool”
within the pallete, select it, place the circle and finally
discard the tool or get a new one. This interface costs both
in terms of screen real-estate and user action, More
specifically, menu or pallete-based tool selection of this
kind is highly moded. The overhead is both the time and

actions required to switch modes, and the potential for
mode errors to occur.

In GEdit there is no notion of “current tool” thus avoiding
the problem of switching modes. A user tells the system
what to create by using short-hand symbols rather than by
using a special creator tool. Other advantagw include the
fact that no screen real-estate is consumed by “creator
objects” and the creation command is combined with the
placcmcnt command (drawing the symbol for the object

138 UIST’91 Hilton Head, South Carolina



also determines where it is placed). When using GEdit it is
apparent that objea creatiordlayout is extremely efficient.

However, this technique has some tradeoffs. First, how
does one know what mark to make to create an objector
how does one find out? The problem is that markings are
not self-revealing. When the system itself supplies
information on what commands are available and how to
invoke them through the mechanism used to invoke
commands, we refer to this as being self-revealing. Menus
and buttons, for example, are self-revealing the set of
available commands is readily visible as a by-product of the
way commands are invoked. In contrast, markings are not
intrinsically self-revealing.

2.2 Combining Menus and Markings

GEdit provides a technique which makes the short-hand
marks for adding objects self-revealing. If a user is unsure
of what markings can be made, the user presses down on
the stylus and waits for a short interval of time. When the
system detects that no mark is being made it prompts Ihe
user with a subdivided circular menu or “pie menu”
(Callahan et al., 1988) of the three objects, appearing

directly under the cursor. 1 The user may then select an
object from the pie menu by keeping the stylus tip
depressed and making a stroke through the desired sector or
slice of the pie (Figure 2a), The slice is highlighted and
the seleetion is confirmed when the pressure on the stylus
is released. The objeet is then created and placed centered at
the point where the stylus was first pressed down. A user
can also indicate “no selection” by moving the stylus tip
back to the center of the menu before releasing, or change
selection by moving the tip to highlight another slice
before releasing.

@

m..44”

Ao
Prompted Selection

(a)
Blind Seleclion

(b)

lWait time is the cue to tell the system that no mark is

about to be made. The menu is not popped up immediately
for a number of reasons, including the fact that it can be
distracting, can obliterate part of the screen, and takes time.
Thus, especially for expert users, not requiring the menu to
pop up supports the concept of a marking interface with none
of the negative side effeets of the presence of the menu. We
have found in practice 1/3 second wait was not annoying for a
novice and was long enough for an expert to avoid accidental
menu pop-up.

Figure 2, The transition from novice to expert reflected in
different ways of invoking commands.

The first important point to note is that the physical
movement involved in selecling an object is identical to
the physical movement required to make the mark
corresponding to [hat object. For example, the square
which requires an up and to the right movement for
selection from the pie menu, also requires an up and to the
right marking to create it.

The second point to note is that supporting markings with
pie menus in this way helps users make a smooth
transition from novice to expert. Novices in effect perform
“menu selection”. We have observed in the laboratory that
users almost always wait for the pop-up menu and then
select the desired object (Figure 2a) when they first
encounter a new menu. However, waiting for the menu
takes time, and thus as users begin to memorize the layout
(as they become expert), they begin to “mark ahead to
create objects instead (Figure 2b). We have also observed
an intermediate stage where users may begin to make a
mark, and then wait for the menu tQ pop-up in order to
verify their choice of object.

The concept of marking ahead is similar to the concept of
accelerator keys in many of today’s applications. A user is
reminded of the keystrokes associated with particular menu
items every time a menu is displayed since the name of the
corresponding keys may appear next to the commands. The
difference is that with our markin~pie menu mechanism,
the user is not only reminded, but actually rehearses the
physical movement involved in making the mark every
time a selection from the menu is made. We believe that
this further enhances the association between mark and
command.

Another advantage of this mechanism is that it could be
valuable for supporting fast performance on keyboardless
computers. Many “pointer and keyboard interfaces make
extensive use of accelerator keys to speed menu selections.
However, without a keyboard, an expert user is limited to
making pointer-driven menu selections. If a pointing
device like a stylus is used, our marking mechanism could
replace the role of accelerator keys. A small set of short,
straight marks could be associated with the most frequently
used commands that do not otherwise have any obvious
mnemonic marks to associate with them.

There are three advantages in associating short, straight
marks for frequently used commands. First, the frequent use
of the mark/menu will reinforce the association between
mark and command some marks can be remembered
because they are mnemonic but short straight marks only
can be remembered if they are used often. Second, reducing
the articulation time of frequently used commands will
produce more overall time savings than reducing the
articulation time of rarely used commands, Third, computer
recognition of straight marks can be very reliable and fast.

November 11-13, 1991 UIST’91 139



Clearly there are several limitations to this technique.
Fkst, the marks made self-revealing by this technique are
only those that are derived from the selection paths in a pie
menu: straight strokes at various angles. Second, there are
limits on the number of items that can be selected using
this technique. An experiment has already been performed
to reveal where performance begins to break down
(Kurtenbach, Scllen & Buxton, 1991). We measured
selection time and errors for menus containing from 4 to
12 slices, and also examined the effects of hiding the
menus and requiring subjects to “mark ahead” rather than to
select [mm visible menus. We found that subjects very
quickly made the associations between marks and menu
items. Further, for menus containing up to 5 slices, time
to select and frequency of error using markings was
equivalent to selection from visible pie menus. In
addition, an odd number of menu items produced slower and
more error-prone performance than an even number of
items. But given that an even number of slices is used, as
many as 12 slices per menu was shown to produce
acceptable performance — a result we find most
encouraging. These results indicate that by careful design
of menu this technique can be used for selection of up to
12 items.

2.3 Operating on Individual Objects

Moving, copying, and deleting individual objects is also
supported in GEdit.

Moving an individual object. Single objects are
moved in GEdit by dragging. The technique used is similar
to moving an icon in most direct manipulation systems:
one points at the object to be moved, depresses the stylus
or mouse button, drags the object to the desired position,
then anchors it in that position by releasing.

Copyhg an hdlvidual object. There is no
mechanism for copying individual objects. The rationale
for this is that in this toy application, it is easier to create
a new object than it is to copy an existing one.

Deleting an object. Another shorthand symbol can be
used to delete individual objects. This is done by drawing
through the object with a single horizontal stroke, as
illustrated in Figure 3. The direction of the stroke does not
matter,

Figure 3. Deleting an individual object

Using a marking for deletion has similar advantages to
those described for adding objects: Unlike direct

manipulation there is no need for a delete mode or deletion
tool. Also the deletion operation and object to delete can be
expressed in the same action. However, there is no
mechanism for making this mark self-revealing.

2.4 Operating on Groups of Objects

GEdit permits operations to be performed upon objects
individually or in groups. The process of specifying the
object(s) to be operated upon is known as specifying the
“scope” of the operator. When the scope is a single
object, we refer to it as “immediate” scope. All of the
examples thus far have been immediate scope.

When the scope includes more than one object, we refer to
it as “collective” scope. In GEdit, the mechanism for
specifying collective scope is circling. Scoping
mechanisms have a large impact on the effectiveness of a
system (Buxton, Patel, Reeves & Baecker, 1981). GEdit
provides an opportunity to explore some relatively
unexplored aspects of scope specification, illustrated in the
examples that follow.

Deleting a Group of Objects, A group of objects
can be deleted by circling them, and extending the
encircling line so that it terminates within the circle. This
is illustrated in Figure 4,

Figure 4. Deleting a group of objects

Moving a Group of Objects. The commonly used
marking for “move” is used to move a group of objects.
The objects to be moved are encircled, and the encircling
line extended to the point to which the objects are to be
moved ( Figure 5).

140 UIST’91 Hilton Head, South Carolina



Figure 5. Moving a group of objects

Copying a group of objects. The command for
copying groups of objects is similar to the move
command. To copy, one adds a small “C” symbol to the
end of the marking @igure 6).

(’22
❑

o

Figure 6. Copying a group of objects

The move command confronts us with two important
points:

(1) Conflict between symbols: Note that in certain cases,
there may be ambiguity between the move and the delete
symbols. For example, a conflict could occur when the
amount of movement is slight, resulting in the endpoint of
the marking falling within the circle. (The endpoint being
within the circle would be interpreted by the system as a
delete command.) The example illustrates the fact that
makings have impact on one another and must be
considered in the larger context of an application.

(2) Lack of dragging: Unlike moving individual objects
(immediate scope), groups of objects are not moved by
dragging. When one moves objects by dragging, it is
possible to view the placement of the objects before
committing to that placement (releasing the mouse
button). The inability to to preview the results of a group
move or copy mayor may not be a problem depending on
the task. When working with graphical objects, this is
may be a problem, since it hampers the precise placement
of objects. On the other hand, it is not a problem if
precise placement is not needed as in moving a group of
icons to the trash can. The same is true for moving
running text in a word processor. In this case, one doesn’t

want the indicated text to be moved until the insertion
point is indicated.

Dragging groups of ob~ects. The initial version of
GEdit did not permit dragging of groups of objects. In
order to support dragging, rather than introducing a new
command such as’’drag group of objezts”, we extended the
“circle and move” technique. This was accomplished by
combining marking and dragging in a single interaction. A
similar technique has been described in Rubine (199 1).

The collective move and copy commands are an extension
of what was described above after a user draws the circle
and pointing tail, if pressure is maintained on the stylus
and the pointer is kept still for a short period
(approximately 1 SW), the objects appear to “slide” down
the pointing tail and “lock onto the cursor. The user can
now fine tune the placement of the objects by dragging
them around. This allows the user to preview their final
position before releasing pressure on the stylus,
committing to the final position of the objects (Figure 7).
A move without a drag, as described earlier, can be done by
immediately releasing the stylus at the end of the pointing
ail. In this case the objects are immediately moved and
:oarsely placed.

t3-----
a)

0 ,..,\
,,,.’’’~”, ~,,..?-

(U g
“h-

) - .“”‘“ “’”’

o

d

\A
•1

Figure 7. Moving a group of objects and then fine tuning
their position by dragging, In a), the objects to be moved
are circled and their destination pointed to. In b), the user
waits with the stylus depressed and the objects “slide” to

the approximate location. In c), the objects are dragged to
an exact position by the user.

The same interaction can also be used for fine tuning the
position of objects as opposed to moving them a large
distance. One circles the objects to be positioned, and then
keeps the stylus depressed and still. The objects then

November 11-13, 1991 UIST’91 141



become attached to the cursor and can be precisely
positioned by dragging until the stylus is released. If the
stylus is immediately released after drawing the circle, a
collective scope group would be formed as described earlier.

The copy command has been extended similarly. If a user
waits with the stylus depressed at the end of the “C”,
copies of the objects move down the pointing tail and their
position can be fine tuned. If the user chooses not to wait,
the copies are immediately moved and coarsely placed.

The interesting points concerning this group/position
tuning technique arw

* We have used the event of keeping the stylus depressed
and still as a signal to the system that the user wants fine
control. This seems to work nicely as it is consistent with
the user’s need to focus attention on the task of precisely
placing the objects.

● Having the system “slide” the objects to the new location
provides essential visual feedback to indicate to the user
when one can begin dragging.

● These interactions, (as in all interactions in GEdit), have
been designed around the notion that a command and all its
parameters are expressed a single, short and continuous
moment — the stylus is depressed, then the command is
articulated and then the stylus is released. This approach is
based on Buxton’s (1986) notion of “chunking and
phrasing” where continuity of motion and physical tension
are used to shape the structure of the diaIogue in human-
computer interactions. There is evidence that this type of
design reduces user errors and increasesperformance
(Sellen, Kurtenbach & Buxton, 1990).

2.5 Scoping

Deferred operation. The move and copy symbols
share the property that the entire command (verb, direct
object and indirect object) can be articulated using a single
unintemupted mark. Sometimes, however, this is not
desirable. GEdit provides an alternative mechanism,
whereby the scope and operation can be specified in two
steps.

Scope can be specified without specifying an operator. The
scope is first specified using a circling gesture, as
illustrated in Figure 8. In this case, where no operator
accompanies the specification of the scope, feedback is
provided by way of a small box appearing at the end of the
encircling line. This box is like a “handle” on the scope.
Having thus speciticd the scope, one can then invoke the
delete, move or copy operator by drawing the command
part of the gesture, starting within this “handle.”

Figure 8. Specifying scope alone.

Scope with exceptions. One of the shortcomings of
many scope specification techniques, such as circling or
“drag through,” is that they are all-encompassing. How
does one handle caseswhere one doesn’t want to operate on
all of the encircled objects?

The main reason that GEdit includes independent
specification of scope is to provide a means whereby some
objects within the specified region can be excluded from
being operated upon. This is made possible by allowing
circles of exclusion as well as inclusion. This is illustrated
in Figure 9. The outermost circle always indicates
inclusion. Circles within circles toggle between exclusion
and inclusion. In the example sho;fi in Figure 9, all
objects are selected except for the triangles.

Figure 9. Specifying non-inclusive scope.

This technique is useful in cases where the objects to be
operated upon are close to each other, but where there are
other objects also in the same area. In the example
illustrated in Figure 9, the intention is to operate on all
objects except for the triangles. Deleting the intended
objects could, for example, be accomplished by drawing a
stroke starting from the outermost circle’s “handle” and
terminating anywhere within.

Once a mechanism is provided to specify scope
incrementally, a logical extension is to enable disjoint
objects to be selected. An example of this is illustrated in
Figure 10. In this example, all of the triangles are selected
through the use of two disjoint circles. Having come this
far, however, we are confronted with a design dilemma.

142 UIST’91 Hilton Head, South Carolina



We have established a convention that the square box at the
endpoint of the scope-defining line is a “handle” from
which any subsequent command must be initiated if it is to
affect the encircled objects. However, in this case, there are
two such “outer circle;. ”

o

00

0 c1A~tmo
00

Figure 10. Disjoint scope specification,

The dilemma is, if both are defined, should an operation
on one simultaneously affect the other? In GEdit, the
answer is no-there is no notion of a single current
selection set. Let us assume that the operation to be
performed is “move”. Using Figure 10 as an example, we
would first move the triangle(s) in one circle, and then the
other. While acting on one set of objects, the other set is
unaffected until acted upon.

The disadvantage of this approach is that it takes two steps
to do what might otherwise be done in one. It is also
difficult to preserve the spatial relationship among the two
sets of triangles during the move if this operation is done
in two steps.

However this approach also has an advantage. In direct
manipulation interfaces, typically there can only be one
current set of selected objects (although this is generally an
design choice not an inherent limitation of the direct
manipulation paradym). If a user selects another set of
objects the current selection of objeets is lost. Often the
user may not want to lose the original grouping of objects.
Since GEdit has no notion of current selection, groupings
of objects can be maintained while other objects are
selected.

3. CONCLUSIONS AND FUTURE RESEARCH

We have described GEdit, a program used as a test bed for
investigating features of markings and direct manipulation
types of interfaces. This simple program has been very
effective in exploring new interaction techniques. It has
also been a useful vehicle for revealing design issues and
has served as a tangible object for discussion.

This paper has demonstrated several ideas:

● Markings and direct manipulation techniques can
complement each other within the same interface, However
there are sometimes trade-offs between the two techniques.

s Markings and direct manipulation can be combined
together within the same interaction. We have designed an
interface which integrates marking and direct manipulation
techniques to create commands where multiple parameters
can be easily expressed within a single action.

● GEdit shows how one can exploit proof-reader and
shorthand markings in way in which we hope reduces
learning time (most people are somewhat familiar with
proof-reader’s marks). This technique also promises to be
more efficient since it requires fewer actions for most
commands and reduces the time it takes to execute these
actions (i.e., shorthand symbols can be performed very
quickly).

● GEdit has also shown how pie menus can be used in
making shorthand marks self-revealing, thereby
overcoming the problem of marks which are non-
mnemonic.

There are three issues we hope to pursue in future research:

First, it would be interesting to evaluate the effectiveness
of the self-revealing pie memdmarking technique in a real
application. We are developing an HyperCard XCMD and
Xl 1 versions of the pie menu/marking software so
application developers can use the teehnique. The software
will also log when and where users use marks instead of
waiting for menu pop-up. We hope this data will give us
further insight into the effectiveness of this technique.

Second, we would like to explore ways of making other
markings in GEdit self-revealing. One approach would be
to supply an on-line graphical catalog of markings.
However it is questionable how effective this would be in
conveying information on more complex interactions such
as the move/dragging mechanism. One approach we hope
to explore is the use of animation to convey this more
effectively.

Third, interactions which allow a user to make the
transition from markings to direct manipulation dragging
seem to be particularly powerful. It would be interesting to
explore other applications where this could effectively be
used.

Acknowledgements

The members of the Input Research Group at the
University of Toronto provided the forum for the design
and execution of this project. We especially thank Abigail
Sellen for comments and assistance on this paper. We also
gratefully acknowledge the financial support of the Natural
Sciences and Engineering Research Council of Canada,
Digital Equipment Corporation. Xerox PARC and Apple
Computers.

November 11-13, 1991 UIST’91 143



the Human Fatter Societp31st Annual Meeting,.
REFERENCES pp. 576-580

Wolf, C.G., Rhyne, J.R. & Ellozy, H.A. (1989). The

Buxton, W. (1982). An informal study of selection-
paper-like interface, In G. %lvendy & M.J. Smith
(Eds.), Designing and Using Human Computer

positioning tasks. Proceedings of Graphics Inte~ace
’82, 8th Conference of the Canadian Man-Computer

Inte@acesand Knowledge-Based Systems,Amsterdam:

Communications Society, Toronto, May, pp. 323-
Elsevier, pp. 494-501.

328.
Buxton, W. (1986). Chunking and phrasing and the design

of human-computer dialogues. In H. J. Kugler (Ed.)
Information Processing ’86, Proceedings of the IFIP
10th World Computer Congress , pp. 475-480,
Amsterdam: North Holland Publishers.

Buxton, W., Fiume, E., Hill, R., Lee, A. & Woo, C.
(1983). Continuous hand-gesture driven input.
Proceedings of Graphics Inte~ace ’83, pp. 191-195,
Edmonton, May.

Buxton, W., Patel, S., Reeves, W., & Baecker, R. (1981).
Scope in interactive score editors. Computer Music
Journal, 5 (3), pp. 50-56.

Carr, R.M, (1991). The point of the pen. Byte, Vol.
16(2), pp. 211-221.

Callahan, J., Hopkins, D., Weiser, M. & Shneidcrrnan, B.
(1988). An empirical comparison of pie vs. linear
menus. Proceedings of CHI ’88, pp. 95-100.

Hardock, G. (1991). Design issues for line driven text
editing/annotation systems. Proceedings of Graphics
Interface ’91, Calgary, June.

Hutchins, E., Hollan J. & Norman, D. (1986). Direct
manipulation interfaces. In D. Norman & S. Draper
(Eds.), User Centered System Design: New
Perspectives on Human-Computer Interaction, pp. 87-
124, Hillsdale, NJ: Erlbaum.

Kurtenbach, G. & Buxton, W. (1991). GEdi~ A test bed
for editing by contiguous gestures. SIGCHI Bulle~in.
pp. 22-26.

Kurtenbach, G., Sellen, A.J. & Buxton, (1991).
Markings and pie menus: making stylus-driven
interfaces self-revealing. submitted to The Journal of
Human-Computer Interaction for publication.

Leitch, C. (1990). High-tech pen: Big deal or bust.
Toronto Globe and Mail, Report on Business, pp. Cl
& Cll, Oct. 23.

Normile, D. & Johnson, J.T. (1990). Computers without
keys. Popular Science, August, pp. 66-69.

Rebello, K. (1990). New PCs can kiss keyboards
goodbye. USA Today, p. 6B,Feb. 22.

Rubine, D. H. (1990). The automatic recognition of
gestures. Unpublished doctoral thesis, Dept of
Computer Science, Carnegie Mellon University.

Sellen, A.J., Kurtenbach, G,P., and Buxton, W, (1990).
The role of visual and kinesthetic feedback in the
prevention of mode errors. Proceedings of the Third
IFIP Conference on Human-Computer Interaction,
(INTERACT), Cambridge, England.

Shneiderman, B. (1982). The future of interactive systems
and the emergence of direct manipulation. Behavior
and Information Technology, 1, 237-256.

Wolf, C.G. & Rhyne, J.R. (1987) A taxonomic approach
to understanding direct manipulation. Proceedings of

144 UIST’91 Hilton Head, South Carolina


