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Kinetic models
Synthetic biology is an engineering discipline that

builds on our mechanistic understanding of molecular

biology to program microbes to carry out new func-

tions. Such predictable manipulation of a cell requires

modeling and experimental techniques to work

together. The modeling component of synthetic biol-

ogy allows one to design biological circuits and analyze

its expected behavior. The experimental component

merges models with real systems by providing quanti-

tative data and sets of available biological ‘parts’ that

can be used to construct circuits. Sufficient progress

has been made in the combined use of modeling and

experimental methods, which reinforces the idea of

being able to use engineered microbes as a technolo-

gical platform.

Introduction

Through detailed understanding of cellular mechanisms and

improved experimental techniques for manipulating a cell’s

genotype, it has become possible to engineer a cell so that it

exhibits new programmed behavior. Synthetic biology com-

bines classical genetic engineering techniques with engineer-

ing concepts such as standardized parts, functional modules

and computer-aided design [1]. In this new field, a large

variety of functional genetic components such as promoters,

ribosome binding sites and protein sequences are character-

ized to generate a pool of biological ‘parts’. These parts can be

assembled to construct biological circuits, which can then be
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reused in different ways to form larger circuits, much like how

complex electronic circuits are constructed from smaller

modules. The ability to construct complex biological circuit

makes it possible to resolve health, environmental and

energy issues by using engineered microbes. In this review,

we discuss how mathematical modeling is valuable in syn-

thetic biology as a means of understanding and engineering

networks.

Modeling

Modeling can provide mechanistic understanding of a given

system. Models that are able to correctly predict the behavior

of a system allow engineers to program new cellular behavior

without having to perform large numbers of trial-and-error

experiments. One can consider graphical models, such as

cartoons of biochemical pathways, as simple examples of

qualitative models. Qualitative models have inherent limita-

tions because they rely on interpretations which are not

amenable to analysis by mathematics and computer algo-

rithms [2]. For this reason, quantitative models will be the

subject of interest in this article.

In synthetic biology, modeling serves as a tool for an

engineer to predict how a network will behave when it is

modified in certain ways. Because simpler models are gen-

erally easier to analyze and require fewer known parameters,

they are preferred over complex models as long as the ability

to reproduce the observed behavior of the system is not

compromised [3]. For this reason, many models use a variety
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of assumptions to simplify the model. When building models

of metabolic networks, signaling pathways or gene regulatory

networks, one of the most common assumptions is that the

molecular species are uniformly distributed inside the cell.

This assumption allows one to eliminate diffusion rates from

the model altogether because there are no concentration

gradients. It should be noted, however, that this assumption

may become invalid in some situations [4]. Models that

involve enzyme kinetics or transcriptional regulation often

make additional assumptions that some of the chemical

reactions are at equilibrium or steady state, and these assump-

tions can further simplify the model without significantly

affecting its ability to reproduce observed behavior. When

models fail to reproduce observed behaviors, some of the

assumptions must be revisited.

One of the most common ways to model a biological

system is to describe it as a dynamic system composed of

molecular species and reactions. Each reaction is character-

ized by the species that are consumed and produced and a

reaction rate, which is a function of the species concentra-

tions. Once all the reaction rates are defined, the dynamics of

the chemical reaction model can be observed through deter-

ministic or stochastic simulations.

A classical example of a chemical reaction model is an

enzyme-catalyzed reaction (Fig. 1). Suppose the system of

interest has four species: the substrate (S), the enzyme (E), the

product (P) and the enzyme–substrate complex (ES). There

are three reactions, or events, in this system: E + S! ES,

ES! E + S and ES! E + P. Each of the three reactions has a

corresponding rate equation. For example, the reaction rate

for the reaction, E + S! ES, is k � E � S, where E and S are the
Figure 1. Enzyme-catalyzed reaction. The enzyme, E, converts the

substrate, S, to the product, P. The enzyme and substrate form an

intermediate complex, ES, which can dissociate back to E and S or

form P and free the enzyme, E. This model treats the production of

P from the ES complex as an irreversible reaction because the

reversible reaction rate may be negligible.
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concentrations of species E and S, respectively, and k is the

rate constant.

Deterministic chemical reaction models

A mathematical model can be constructed once all the reac-

tions and species that comprise a network are identified.

Deterministic mathematical models do not include any ran-

dom fluctuations, whereas stochastic models do. Differential

equation models are one of the most common types of

deterministic models.

Differential equation models

Once the rate equations are formulated for each of the reac-

tions, then a deterministic model can be constructed by

defining the rate of change for each of the species in the

following way:

dX

dt
¼ production rate� consumption rate

In the above formula, X represents a particular species in the

system; the term ‘production rate’ represents the sum of the

rates for all the reactions where X is produced; the term

‘consumption rate’ is sum of the rates for all the reactions

where X is degraded or consumed as a substrate. For example,

the differential equation for the species S in Fig. 1 would be as

follows:

dS

dt
¼ ðk1 � ESÞ � ðk2 � E� SÞ

The expressions, k1 � ES and k2 � E � S, represent the rates for

the respective reactions: ES! E + S and E + S! ES (k1 and k2

are constants). The complete differential equation model

would consist of four such differential equations, one for

each of the four species.

Analyses of differential equation models

Being able to represent a system as a set of differential

equations allows for analysis by existing numerical methods

from the established field of nonlinear dynamics. Numerical

integration, or simulation, is used to generate time series

trajectories of the species concentrations. Often, a researcher

is interested in how the steady state values are affected due to

changes in a variable, in which case steady state analysis is

used. Steady state analysis can often identify sensitive points

where the system changes abruptly [5,6]. Some systems have

interesting qualitative behaviors, such as multiple stable

states or oscillations, in which case bifurcation analysis can

be a valuable tool [7]. Bifurcation analysis has been used to

examine the range of parameters in which a biological system

can exhibit particular behaviors such as oscillations [8]. Being

able to model a biological circuit as a system of differential

equations provides an engineer with various techniques such

as the ones mentioned above. These techniques give insight
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Figure 2. Gene regulation. The transcription factor, TF, binds to the

operator sequence and controls the production of the gene product,

P. This model is similar to the one shown in Fig. 1; TF takes the place of

E, the promoter takes the place of S, and the product, P, remains the

same.
on which features and parameters of the system should be

adjusted to achieve a particular behavior.

Stochastic chemical reaction models

A natural system consisting of molecular interactions will

have inherent noise due to random events. The amount of

noise is a property of the system itself, and it may or may

not cause significant deviation from the deterministic

model. Stochastic models take into account the random-

ness that exists in natural systems and can be used to

investigate whether or not the noise has significant con-

sequences.

One method that is commonly used in this category is the

stochastic simulation algorithm (SSA) [9]. In the SSA, the

system is perceived as a collection of randomly moving

molecular species that interact with one another. Owing

to the random motion, the number of interactions that

occur within a given time frame will follow a Poisson dis-

tribution. Thus, each reaction can be modeled as a Poisson

process with the rate parameter, l, being proportional to the

reaction rate. Because it is a Poisson process, SSA deals with

discrete values. The model is defined in terms of species and

probabilities for the occurrences of each reaction, which are

related to the reaction rate. Because SSA uses probabilities,

repeated simulations of the same system will produce

slightly different results. The average of many repeated

stochastic simulations can agree with a deterministic simu-

lation when the variance is not significant or is averaged out

[10]. However, there are cases when stochastic and determi-

nistic simulations may provide qualitatively different beha-

viors of the system. For example, in a system with multiple

possible steady states, a deterministic simulation may reach

one steady state and remain there indefinitely. By contrast,

stochastic simulation may leave one steady state due to

random fluctuations and move to another [11]. Therefore,

simulating a system stochastically can be used to confirm

whether stochastic variation in a system affects its expected

behavior significantly.

Matrix representation

Systems that are described by molecular species and reaction

rates can be represented using a stoichiometry matrix and

corresponding reaction rate equations. The stoichiometry

matrix, N, contains rows equal to the number of species in

the system and columns equal to the number of reactions in

the system. The matrix stores values indicating how much

each species has consumed or produced in each reaction. The

stoichiometry matrix is such that the matrix product, Nv, will

yield a vector with the rates of change for all the species,

where v is the vector containing the reaction rates. This

matrix representation permits analytical methods from linear

algebra to be used to analyze biological networks. One such

popular method is flux balance analysis [12].
Flux balance analysis

For many well-studied organisms, such as E. coli, the meta-

bolic reactions in the organism may be known, but the rates,

or flux, of the reactions are difficult to measure. Flux balance

analysis makes the assumption that the species concentration

in a system, such as a bacterial cell, is at steady state. This

assumption allows one to conclude that Nv = 0, where N and

v include the reactions within the system as well as reactions

where species are imported and exported from the system.

Solving for v provides one with the flux values at steady state

[13]. Owing to multiple solutions to this linear equation, an

optimization step is required to find the optimal v. Flux

balance analysis optimizes v for a particular objective, such

as maximizing protein or ATP production, under the con-

straint that Nv = 0, thus providing the steady state flux values

for all the reactions in that system. As a latter example will

briefly illustrate, flux balance analysis can be used in meta-

bolic engineering to examine the change in flux levels

because of a change in the reaction network.

Modeling gene regulatory networks

A vast majority of the current synthetic biology designs are

strictly gene regulatory networks (GRN) (Fig. 2). GRN models

make use of the fact that transcription factor binding and

unbinding are much faster than transcription and translation

of genes [14]. Owing to this difference in speed, one can

assume that the transcription factor binding and unbinding

reactions are always at equilibrium. Thus, the rate of produc-

tion of a protein becomes a function of the equilibrium

concentrations of bound and unbound transcription factors.

As an example, consider a situation where a single gene is

regulated by a transcription factor (Fig. 2). The following

formula captures the fraction of transcription factors that

are bound: u = TF/(Kd + TF), where TF is the monomeric tran-

scription factor and Kd is the dissociation constant. If TF is an

activator that increases the production of the protein, P, then
www.drugdiscoverytoday.com 301
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the rate of production of P will be proportional to u. If TF is a

repressor, then the rate will be proportional to (1 � u). When

there is cooperativity or multimerization of the transcription

factor, an additional parameter called the Hill coefficient, h, is

included in the equation [15]: u = TFh/Kd + TFh. Using this

formula, one can model the dynamics of a gene regulatory

network by formulating the rate of production and rate of

degradation or dilution for each protein in the network. A

typical equation for the rate of change of a protein, P, is as

follows: dp/dt = (k1(TFh/(Kd + TFh))) � (dp � P), where TF is the

transcription factor that positively regulates the production

of protein P and dp is the degradation rate for P. The equation

becomes more complex when multiple transcription factors

are involved in the regulation of the same gene [11]. One

needs to consider all the possible states and formulate an

equation for u as the ratio of active states and all states, where

the active states refer to the states where the gene is tran-

scribed [16].

Rate expressions such as the ones described above involve

multiple reactions. For example, a single rate expression may

represent the binding of transcription factors, the binding of

RNA polymerase, transcription, and translation. This simpli-

fication may have significant influence on a model’s beha-

vior. One issue is that there is a time delay from the start of

transcription to the protein production, which is not cap-

tured in the equations above. In some cases, this delay can

alter the behavior of the model [17,18]. Another issue is that

stochastic fluctuations of the intermediate steps are ignored

when using a simplified rate expression, which can affect

stochastic simulation results [19]. Nonetheless, in several

cases, models with equilibrium assumption have been suc-

cessful in capturing observed behaviors and predicting new

behaviors of GRNs [20–24].

Boolean models of gene regulatory networks

Boolean networks [25] are a frequent alternative to using

reactions and species to describe GRNs. In the Boolean frame-

work, each gene can have two states: ‘on’ or ‘off’. Boolean

logic is used to determine the state of each gene. For example,

the activity of gene X might be defined as Y AND NOT Z,

which means that the gene Y activates X but only when the

repressor Z is not expressed. Such models provide a higher

level view of the gene regulatory network without consider-

ing the smaller details. Variants of Boolean models some-

times replace the Boolean functions with sigmoid functions

or probabilistic functions [26].

Details versus simplicity in modeling

Protein production is a complex process involving tran-

scription initiation, elongation and translation. One can

argue that the modeling technique discussed in the earlier

section is too simple to describe the entire process. How-

ever, a model should not be penalized for being simple, or
302 www.drugdiscoverytoday.com
parsimonious, provided that it is able to correctly predict

experimental data. The type of experimental data therefore

determines the level of detail that is demanded from the

model. For example, Boolean models may be sufficient to

predict microarray data, where the data show whether or

not a gene is upregulated as a result of some stimulus, but

they may not be enough to show the continuous change in

the concentration of some protein. Differential equation

models using the equilibrium assumption about transcrip-

tion factor binding have been shown to predict experimen-

tal data generated at steady state [27]. However, when the

time course behavior is of interest the equilibrium assump-

tion can be an oversimplification. In addition time course

dynamics may also require additional features such as

explicitly modeling mRNA production and degradation

[18]. As measuring techniques improve, models will neces-

sarily need to become more complex to match the experi-

mental results [28].

Experimental methods to complement modeling

techniques

Experiments with quantitative results provide parameter

values and validation data to support models. Further, to

build a circuit that has been analyzed through mathematical

models, an engineer requires circuit building components, or

biological ‘parts’, that fit the requirements of the model.

Experimental techniques in synthetic biology try to charac-

terize and standardize biological parts so that they can be

reliably used to construct a design. Therefore, a discussion on

modeling is incomplete without a discussion on experimen-

tal techniques in synthetic biology.

Owing to the improvement in engineering techniques in

recent years, there are now many examples of synthetic

systems that match the qualitative behavior predicted by

computational models after some iterations of construction

and testing. These include the repressilator [20], a genetic

toggle switch [21], a pulse pattern forming device [22]; gene

regulation function at a single-cell level [23], a biological

concentration detector [24] and a transcriptional AND gate

[29]. In general, it is possible to design a genetic system based

on simple design principles, but then experimental trial and

error is needed to get the system to work properly. For

example, promoter and ribosome binding site (RBS)

sequences often have to be mutated to select for the desired

activity through directed evolution [30]. However, construc-

tion of genetic systems from parts that behave as a model

predicts has proven difficult for many reasons such as mis-

matched expression levels between system parts, unknown

interactions between the system and host strain, and toxicity

from expression of the system. Ideally the synthetic biology

community would like to have well-characterized parts with

well-defined parameters so that they can be reliably used in

models to design systems with confidence.
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Figure 3. Standard BioBrick Assembly. Parts A and B are ligated

together through a standard assembly protocol. The first plasmid is

digested with EcoRI (E) and SpeI (S), while the second plasmid is

digested with EcoRI (E) and XbaI (X). After ligation, a new plasmid is

formed with both parts in tandem with a ‘scar’ which does not contain

a restriction enzyme recognition site. The PstI site (P) is left unused in

this scheme, but could be used if the parts were assembled in reverse

order. (Figure adapted with permission from the MIT Registry of

Standard Biological Parts.)

Figure 4. Screenshot of TinkerCell. The screenshot shows two

models that are open. One (top left) is a feedback oscillator, and its

simulated output is plotted below. The other window (bottom right)

is a model consisting of a cell, membrane proteins, and gene

regulation. See http://www.tinkercell.com/ for more information.
Toward this goal, many synthetic biologists assemble sys-

tems together using standard biological parts. A standard

biological part is a genetically encoded object that performs

a biological function and that has been engineered to meet

specified design or performance requirements [31]. The first

working standard was the BioBrick assembly method for the

physical composition of biological parts [32], which allowed

synthetic biologists to easily assemble multiple parts on a

DNA strand (Fig. 3). Biological parts that use the BioBrick

standard have become common in the synthetic biology

community. The MIT Registry of Standard Biological Parts

[33] maintains over 3200 standard biological parts encoded

on plasmids that are available to researchers and used by

various groups.

While the standard assembly allows faster construction of

circuits, quantitative characterization of parts is still needed

for mathematical models. One recent example of such an

effort is the development of standard measurement kits for

characterizing BioBrick promoters and ribosome binding sites

[34]. Because experimental measurements vary greatly

between laboratories, these measurement kits allow for the

measurement of a promoter or RBS of interest relative to a

reference standard. The activity of a given promoter or RBS

can be reported in standard units. There are some limitations

to measurement kits that include context-dependence of
parts within a particular system, host strain and media.

However, the overall benefit for having well-characterized

parts is that a researcher can model the activity of a particular

part and decide whether or not to use it in their designed

system.

Modeling software for synthetic biology

Because synthetic biology encompasses different disciplines,

software can help bridge the gap between experts in different

areas, particularly computational and experimental. While

systems biology software [35–37] provide an array of compu-

tational analysis features as well as visual interfaces, synthetic

biology requires tools that utilize the notion of biological

parts, support parts database(s) and include data that char-

acterize the kinetic behavior of parts. The first application

that addressed these goals was BioJade developed by Goler

[38]. BioJade is a software tool that allows users to visually

build and simulate synthetic biology networks. The networks

resemble electrical engineering diagrams, BioJade uses the

MIT Registry of Parts [1] to obtain the list of biological parts.

Parts in BioJade have specific functions which are loaded

from the database; although such well-defined parts do not

exist in the database at this time, it is the hope that such

a detailed database will become available in the near future.

A recent application, Athena (http://www.codeplex.com/

athena), has been created with the same expectation. Athena

introduced an interface for constructing modules, or biologi-

cal circuits that can connect to one another to form larger

networks. Athena has been succeeded by TinkerCell (http://

www.tinkercell.com), which also makes use of modules.

The visual representations of the quantitative models in
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TinkerCell are similar to the cartoon diagrams of biological

networks (Fig. 4). TinkerCell models contain details about

each part, such as promoter or RBS strengths. It is anticipated

that such parameters will be obtained directly from data-

base(s) in the future.

Case studies

The next few sections will discuss selected synthetic biology

examples that will elucidate many of the concepts discussed

in the earlier sections, particularly the use of modeling to

design biological circuits.

Oscillators

The earliest example of using mathematical modeling to

design and build a synthetic system was the repressilator,

three transcriptional repressor systems engineered together

to make an oscillating system [20]. The repressilator consists

of three repressor genes connected in a feedback loop, such

that each gene represses the next gene in the loop, and is

repressed by the previous gene (Fig. 5). Green fluorescent

protein (GFP) is periodically activated as a readout of the

oscillating state in individual cells. The design of the repres-

silator started with a simple mathematical model of transcrip-

tional regulation in this oscillating system. Because not

enough was known about the molecular interactions inside

the cell to make a precise description of this system, the

authors instead identified possible classes of dynamic beha-

vior and determined which experimental parameters should

be adjusted to obtain sustained oscillations. To do this, the

values of several parameters were determined, including the

transcription and translation rate, degradation rates of mes-

senger RNA and protein and the number of proteins necessary

to half-maximally repress a promoter. The authors found
Figure 5. The repressilator constructed by Elowitz and Leibler [20].

Three genes produce repressor proteins. The cycle of repression

causes the network to oscillate.
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that stable oscillations were favored by strong promoters

coupled to efficient ribosome-binding sites, tight transcrip-

tional repression, cooperative repression characteristics and

roughly equivalent mRNA and protein degradation rates.

Several control experiments of this system showed that oscil-

lations occurred only when certain parameters values were

used, illustrating the importance of modeling complex syn-

thetic systems before their engineering and subsequent char-

acterization.

A second example of engineering a new biological func-

tion is the robust genetic oscillator using a combination of

positive and negative feedback loops (Fig. 6) in E. coli [18].

Having previously engineered oscillatory behavior in bacter-

ial cells [20], the work primarily focused on the design

principles that would ultimately lead to robust and tunable

oscillations. From computational simulations, it was discov-

ered that a full-scale model that accounted for intermediate

steps such as translation and proteins binding to DNA were

necessary for the model to accurately predict oscillatory

behavior. This revelation also highlighted the importance

of a time delay in the negative feedback loop of the circuit to

achieve sustainable oscillation, a well-known phenomenon

in control engineering. To confirm this phenomenon, an

oscillatory circuit was created using a single negative feed-

back, where the delay was provided by the transcription,

translation and protein folding. While negative feedback

with a delay was sufficient for producing oscillations, the

cycles were irregular, and the circuit was sensitive to para-

meter changes. Modeling the system revealed that adding

positive feedback loops to the design allowed the oscillations
Figure 6. The robust oscillator constructed by Stricker et al. [18].

The combination of the negative and positive feedback causes the

network to be robust to parameter changes. The strength of the

repression (by lac inhibitor) can be controlled by the lactose analog,

IPTG.
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to be more robust to changes in parameters. In this design

consisting of positive and negative feedback, the strengths of

the feedbacks controlled the period of the oscillations. Con-

struction and experimental observation of the proposed

circuit confirmed these predictions. It was shown that alter-

ing levels of each of the two inducers resulted in different

oscillatory periods, thus demonstrating the effect of the

feedback loops on tunability.

Incoherent feed-forward network

Feed-forward networks are small three member networks that

are found in abundance in natural genetic networks [39].

Different types of feed-forward networks have different prop-

erties when analyzed through differential equation models

using Hill equations [40]. An incoherent feed-forward net-

work (I-FFN) is the one where an inducer can directly activate

or indirectly repress the expression of a downstream protein.

Basu et al. [22] had demonstrated that the I-FFN using five

genes can behave as a biological concentration sensor, where

gene expression is minimal at very high and very low con-

centrations of an inducing molecule. In a later work, math-

ematical models of GRNs were used to predict that an I-FFN

with three-gene network can achieve the same behavior. The

synthetic construct used T7 RNA polymerase (RNAP), metJ

and GFP (Fig. 7) [24]. The steady state values of the gene

products in this synthetic network [24] are summarized by

the following equations:

met j/ T7RNAPh1

Kd þ T7RNAPh1
; GFP/ T7RNAPh1

Kd þ T7RNAPh1 þmet jh2

The above mathematical model of the incoherent feed-for-

ward network illustrates that it can behave as a concentration

sensor because GFP is upregulated only for an intermediate
Figure 7. The incoherent feed-forward network constructed by

Entus et al. [24]. The T7 RNA polymerase (RNAP) activates metJ and

GFP, but metJ represses GFP. Thus, T7 RNAP directly activates GFP

but indirectly repressed GFP, causing T7 RNAP to act as an activator

or a repressor depending on its concentration.
concentration of T7 RNAP; too low or too high levels of T7

RNAP result in the downregulation of GFP. Additionally,

these models showed that peak location and peak height

of gene expression, with respect to inducer concentration,

could be tuned by varying the affinity at the inhibitory

binding site. By introducing mutations to promoter sites in

an attempt to alter inhibitory strength, the ability to tune the

peak location and peak height were verified. Subsequent

assembly and transformation of three feed-forward loop var-

iants, each comprising unique biological components, in E.

coli allowed for further experimental validation of the pre-

dicted behavior of the network [24].

Antimalaria drug

While bacteria have been transformed with foreign genes to

use them as a factory for the production of a protein or

metabolite, the ambition of synthetic biology is to be able

to do the same for entire pathways. This ambition is exem-

plified by the genetically engineered Artemisinic acid produ-

cing yeast [2]. Artemisinic acid is the precursor to

Artemisinin, an effective medicine against malaria that is

produced by the plant Artemisia annua L. Extracting sufficient

amount of Artemisinin from the plant requires large farms

and a large amount of plant matter to extract sufficient

amounts of this chemical. The ideal alternative was to engi-

neer a microbe to produce the compound more effectively.

The primary task in this process was identifying the various

enzymes that are required in the production of Artemisinin.

E. coli was originally engineered to produce part artemisinic

acid from acetyl-CoA [41]. However, one of the necessary

enzymes was found to be of the cytochrome P450 family, a

Eukaryotic protein for which yeast was a more suitable host.

The engineered yeast is capable of producing 500-fold more

artemisinic acid than the plant from which it was derived

[42]. The precursor to artemisinic acid, amorphadiene, was

still obtained from E. coli. Flux balance analysis of the E. coli

central metabolism allowed reengineering the pathway to

increase the production of amorphadiene [43]. This was

achieved by building a large model composed of 238 reac-

tions and 184 metabolites. Sufficient amounts of data must be

obtained to define the parameters of such large models; for

this work, the data came from mass spectrometry performed

on 13 amino acids from cells that were grown in 13C glucose

solution. Using nonlinear optimization, different flux values

were obtained that can maximize the production of amor-

phadiene. Removal of two reactions from the set of solutions

increased amorphadiene production by 24% and 9% [43].

Modular antitumor bacteria

A successful demonstration of a modular synthetic system is

the engineered E. coli that is capable of invading tumor cells

[44]. The work is based on the observation that various

bacteria localize in areas around tumor growth for various
www.drugdiscoverytoday.com 305
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Figure 8. A simplified design process for synthetic biology that

would be possible in the future. Using computer-aided design (CAD)

and database(s) of parts, a synthetic biologist can create multiple

models that satisfy his or her idea. Using computational tools, the

models can be analyzed in detail and modified as needed. Using

efficient assembly procedures or DNA synthesis technology, the

models can be built. If the design is modular, then the working product

can be reused in another model.
reasons such as nutrients, lower immune system activity and

anaerobic environment. In addition, these bacteria have the

innate ability to detect their own cell density through a

quorum sensing system. Hence, the quorum sensing system

provides a means for detecting the areas of tumor growth

because those regions will have high cell density. The quorum

sensing system was used as an input to an antitumor module.

The antitumor module was composed of the invasin gene

that allowed the bacteria to invade various mammalian cells.

Future directions

The field of synthetic biology is heading in a direction that

will allow faster and more precise construction of biological

circtuits.

Standardized parts and computer-aided design

Efforts to quantitatively characterizing parts, such as mea-

suring promoter strengths, and building databases of parts

that conform to a standard are the first steps toward building

database(s) of standardized and well-characterized biological

parts. The characterization of these parts will allow the

construction of computational models that would correctly

represent the real system, and the standardization of the

parts, in addition to aiding the models, also allow the parts to

be assembled more efficiently. With computer-aided design

and analytical tools, models can be built and analyzed to test

whether they exhibit the desired behaviors. Standards also

play an important role in the representation of computa-

tional models. Standard formats for storing computational

models will allow efficient translation of information from

database(s) to mathematical models. Although standards

such as the Cell Markup Language [45] and Systems Biology

Markup Language [46] exist to describe the dynamics of the

model, it is not yet clear whether these file formats will

suffice for synthetic biology. An ideal file that describes a

synthetic biology model should store the dynamical descrip-

tion of the model as well as information required for the

construction of the model. There are on-going efforts to

establish a standard language for describing the physical

makeup of a synthetic part [47] as well as standard visual

representations [48]. Including dynamical properties of parts

along with standards that describe physical makeup may be a

more difficult task. Questions such as what parameters are

required to sufficiently model a promoter or what aspects of a

part is changed when it is used in different species have yet to

be answered [49]. Progress in fundamental science and engi-

neering techniques will affect the characterization of biolo-

gical parts.

DNA synthesis

One of the hopes of the synthetic biology community is to

shift from reliance on laborious classical genetic engineering

techniques to DNA synthesis [1]. With DNA synthesis, the
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process involving design and modeling can be easily

extended to construction because the software that generates

the models can also output the complete sequence encoding

the models (third step in Fig. 8). The sequence can be directly

synthesized and placed inside a candidate host cell, thus

greatly reducing the time and labor required for the construc-

tion of the actual biological circuit. Such rapid construction

procedure will allow engineers to build and test variants of

the same model and test which variant works best. Further,

numerous variants of a part, such as a promoter or RBS, can be

synthesized to test which mutant is most suitable for a

particular circuit; constructing such a large number of

mutants would be extremely time consuming without

DNA synthesis technology. The cost of DNA synthesis is

the major obstacle at present, although progress is being

made to make synthesis more affordable [50].

Modularity

Modularity is an integral concept in synthetic biology, as it is

in any engineering discipline. While a precise definition of a

‘module’ with respect to biology is still unclear, from the

engineering perspective, a module is something that retains

its function independent of where it is used [51,52]. A simple

example would be the incoherent feed-forward network dis-

cussed earlier in this article. The feed-forward network func-

tions as a concentration detector. If this network is modular,

then it can be used as an input to another system that needs a

concentration-dependent response; the additional connec-

tions with the other system should not affect the function of
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the feed-forward network. The advantage of such modularity

is that it allows complex networks to be built by connecting

existing networks with one another (last step in Fig. 8). It is

possible that the network will retain its function as long as the

demand, or impedance, by the system that it is connected to

is not substantial. Further experimentation is needed to

identify the requirements for a synthetic biological network

to be considered a ‘module’.

Synthetic protein networks

Although the vast majority of synthetic networks are gene

regulatory networks, that is not a limitation of synthetic

biology. Gene regulatory networks are common because of

the ease by which one gene can be placed under the control of

another by simply changing the cis-regulatory elements.

Building synthetic protein networks involves modifying pro-

tein–protein interactions. One elegant way to achieve this is

by using synthetic protein scaffolds that bind to the proteins

of interest. The scaffold will bring the proteins in the vicinity

of one another, increasing the rate at which they interact.

This concept has been demonstrated by modifying the MAPK

pathway in yeast [53].

Faster and more diverse reporters

Just as an electric engineer makes use of measuring devices

such as multimeters or visual outputs from light emitting

diodes, measuring devices are integral to synthetic biology.

Current measurement methods rely on fluorescent proteins

as reporters. Fluorescent proteins capable of producing dif-

ferent colors [54] allow a synthetic biologist to monitor

activities inside a cell. There are two inherent problems with

these reporters. One is that they can consume a significant

amount of the cell’s resources, which can disrupt the cell’s

behavior. The other is that there is a significant delay between

the start of transcription and visible fluorescence owing to the

time required for transcription, translation and maturation of

the fluorescent protein. This lag time is in the order of

minutes [55], which may be too slow to measure many of

the activities inside a cell. As an alternative, molecular events

can be reported using methods such fluorescence resonance

energy transfer [56] or RNA aptamers [57], which can be faster

and may not drain as many resources as protein synthesis.

Future methods for reporting molecular events or even quan-

tifying biological parts may depend on such methods rather

than expression of fluorescent proteins.

Networks robust to parameters

One of the issues when moving from a computation model

to the actual constructed network is that the parts used in

the network may have slightly different behavior depend-

ing on environmental conditions. Further, there may be

intrinsic noise in the system, which may also be dependent

on other variables. Taking every possible parameter into
account will generally be impractical; the more elegant

solution is to design the model such that it produces the

desired behavior for a wide range of parameter values and

different noise levels. It is possible to design such models;

an example of such a design is the oscillator utilizing

positive and negative feedback [18] that was discussed ear-

lier in this article.

Role of evolution in synthetic biology

Natural selection can be a beneficial or detrimental force in

the construction of synthetic biological circuits. Synthetic

circuits burden the engineered cells with additional load that

usually reduces their growth rate. Therefore, mutants that do

not have a functional circuit may have a growth advantage

and outcompete the functional cells. Therefore, natural selec-

tion works against the synthetic biologist. A situation where

natural selection can work in favor of the engineer is when

the engineer is using it as a method for optimizing a circuit

[30]. The two situations are described below.

One problem with engineered circuits or systems in syn-

thetic microbes is their evolutionary stability in the absence

of a selective environment due to mutation and natural

selection. A recent simulation study predicted that the time

it takes a nonfunctional mutant of a synthetic microbe to

become the majority of the population is a function of the

growth rate difference between the mutant and wild-type,

circuit size, circuit architecture and mutation rate [49]. It is

clear we need to have better design principles for engineering

evolutionary robust circuits and selective regimes for main-

taining synthetic circuits over evolutionary time. It may be

possible to measure the evolutionary stability of different

biological parts and use this evolutionary robustness para-

meter in a computer model so that a synthetic system can be

designed to maximize its evolutionary robustness.

By contrast, directed evolution can be used to optimize

genetic circuits and engineer proteins through mutation and

natural selection. Directed evolution has been common in

areas such as protein engineering, where novel proteins are

engineered by screening for the desired function from a

library of millions of random proteins [58]. The same concept

has been used to evolve a nonfunctional genetic circuit

containing improperly matched components into a func-

tional one [30]. Because synthetic circuits are made of parts

optimized in their natural context, the combination of math-

ematical modeling and directed evolution offers an approach

to identify mutational targets and selection for properly

functioning circuits [59].

Conclusion

Although in its infancy, the field of synthetic biology has

great potential. With the conjunction of well-characterized

biological parts, computer-aided design tools, mathematical

modeling and efficient methods for assembling or synthesiz-
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ing the sequence of parts, synthetic biology brings the cap-

ability for using cells as devices, much in the same manner in

which electronic or mechanical devices are used. This cap-

ability can bring novel ways of resolving problems ranging

from health issues to environmental issues; cells can be

engineered to combat cancer, produce drugs, detect pollu-

tants, catalyze reactions such as carbon fixation or detoxifica-

tion, or produce environmentally safer fuel.
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