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Chapter �

Introduction

The eye which is called the window of the soul� is the chief means
whereby the understanding may most fully and abundantly
appreciate the in�nite works of nature� Leonardo Da Vinci

We see nothing truly until we understand it� John Constable

��� Motivation

The appearance of natural phenomena has always intrigued humankind� This fascination is
evident from the vast array of depictions of natural phenomena created� ranging from early
cave paintings to impressionistic masterworks� With the advent of photography and �lm�
many aspects of natural phenomena can be depicted by a semiautomatic procedure� There
are� however� many reasons why such depictions are not always satisfying� Movies require
special e�ects not commonly found in nature or which occur only very rarely� Also� even
if the real phenomenon can be found� controlling it can be a di�cult and even dangerous
task� It is necessary� then� to arti�cially create phenomena such as explosions for entertain
ment� In response to the need to evoke and control nature� scientists have proposed many
descriptive physical models of natural phenomena� Although scientists share the same fas
cination of nature as artists� scientists need to command or predict the behaviour of certain
phenomena� Here� physical models can be used to simulate the phenomenon on a computer�
In fact� a visual simulation of the phenomenon is obtained when the data of a simulation
is mapped into a visual depiction� The simulation itself� however� is not necessarily based
on a physical model� In the context of this thesis� both a cartoon and a visualization of a
physical simulation are referred to as visual simulations�

The visual simulation of virtual environments has many practical applications� In ad
dition to art and entertainment these include �ight simulation and scienti�c visualization�
Natural phenomena such as smoke� clouds� grass and hair� are ubiquitous� It is therefore
important to design convincing visual simulations for them� For example� in �ight simula
tors� it is critical that clouds and terrain be carefully depicted because they serve as vital
visual cues to a pilot� However� this is not the only constraint imposed on a simulation� In
the entertainment industry� it is fundamental to be able to choreograph certain phenomena
in order to create a desired mood� The simulation of natural phenomena in the context
of computer graphics is therefore subjected to two constraints� visual consistency and user
control� Finding an optimal compromise between these two constraints for some classes of
natural phenomena is the goal of this thesis�
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��� Physical Simulations

The nearest a scientist can get to an apple is to measure its weight�
size� shape� location� taste� The nearest a percept can get to the
stimulus �apple� is to represent it through a speci�c pattern of such
general sensory qualities as roundness� heaviness� fruity taste�
greenness� Rudolf Arnheim

The science of anatomy� the sciences of projective geometry and of
optics were called in to hasten the experimentation towards
recognizable images� In the end� as we know� science overtook art in
this respect through the evolution of photography� the colour �lm
and the wide screen� E� H� Gombrich

The appearance and evolution of natural phenomena have been studied extensively in the
physical sciences� Physical properties of the phenomenon are quanti�ed and mathematical
equations are derived to describe their evolution� A particular method of solution of these
equations de�nes a physical simulation� Typically such a simulation then is run from an
initial state and subjected to boundary conditions� The e�ectiveness of such a simulation is
measured by comparing its results to empirical data� Physical simulations alone are usually
poor visual simulations for the following reasons�

� The behaviour of the simulation can only be controlled by the initial state and the
boundary conditions� The granularity of the behaviour imposed by these conditions is
very large� For example� how can we solve the initial angular velocity of the roll of a
die such that it lands on a given face�

� Practical physical simulations do not exist for most turbulent phenomena� This is due
both to the lack of models for turbulence and to current computational limitations�

� Physical simulations usually provide redundant data which have no impact on its visual
appearance� The prevailing problem in this case is to determine what portion of the
physical simulation �or what transformation� is su�cient for a visual simulation�

� It is di�cult to validate the results of a physical simulation in the context of virtual
environments� Typically� experimental data is de�cient or is irrelevant to the goal of
the simulation� Therefore� use of a physical model is often justi�ed only a priori�

Despite these drawbacks� physical models are crucial to a methodology for modelling natural
phenomena� It is arduous to achieve a convincing motion or behaviour by keyframing the
simulation� where the animator speci�es each step of the simulation exactly� On the other
hand� complex motions but poor control can be achieved �assuming enough computing power
is available� by a physical simulation� For example� turbulent trails of smoke are often evoked
in traditional animation by a single brushstroke� A close examination of a trail of smoke
will demonstrate many quite intricate patterns evolving in a turbulent fashion� Good visual
simulations should achieve these e�ects through an automatic process which does not require
a high degree of expertise of the user� Therefore� visual simulations usually are a trade o�
between control and complexity� and it is to be expected that such simulations borrow
techniques from both traditional nonphysical techniques and physical simulations�
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��� Realism and Accuracy

There are di	erent solutions to the problem of representing
three
dimensional objects in a two
dimensional plane� Each method
has its virtues and its drawbacks� and which is preferable depends
on the visual and philosophical requirements of a particular time
and place� Rudolf Arnheim

In a word� what scienti�c activity achieves is not real� but ideal�
Edmund Husserl

As suggested� the �success� of a visual simulation depends on many factors� One factor
which is often singled out in computer graphics is �realism�� Indeed� the �realism� of the
animation submitted with a paper to a computer graphics journal or a conference is often
an important factor in its acceptance or rejection� But� the notion of realism is highly sub
jective and varies wildly among individuals� Nevertheless� several possible solutions have
been proposed to this problem� One solution is to set up a Turing testlike experiment�
in which a sample of observers compare a visual simulation to a �real phenomenon�  ��!�
Because visual simulations are often viewed on colour monitors� it has been suggested that
the �real phenomenon� should actually be a photograph or a �lm of a phenomenon  ��!�
Some researchers already have provided such comparisons with their results  ��!� The ex
periment then measures how e�ective the visual simulation is at mimicking a depiction of
the phenomenon through video or �lm� In fact� the visual simulation should include an ac
curate model of the camera� In case the results of such an experiment show that there is no
statistical di�erence� then we can conclude that the visual simulation is indeed �realistic��
In practice� however� these conditions are too stringent and not always feasible� Indeed� in
many situations� a visual simulation might appear realistic to a large audience only when
seen in isolation� and not next to the �lmed version� As well� in some instances it is quite
impossible to obtain footage of the genuine phenomenon� Real action footage of dinosaurs
would have been impossible to obtain for Jurassic Park� for example� However� the �lm was
able to convince most of its audience that the dinosaurs were authentic� Additionally� hav
ing phenomena which behave unrealistically is sometimes a desired feature of an animation�
In this situation� there is no possibility of �nding an objective experiment to measure the
success of the simulation�

Another solution to the problem of determining the �realism� of a visual simulation has
been proposed mainly in the global illumination literature� It states that the exact solution
to a physical equation for the propagation of light for a particular scene is considered to be
the �real phenomenon�� This precise solution can either be computed for a simple case using
an analytical solution or it can be computed by a method which is known to be accurate�
The success of new methods is then measured through their e�ciency and the proximity
of their results to the exact solution� and hence to the �real phenomenon�� Although this
method has the advantage of allowing objective evaluation of submitted results� it has several
drawbacks� First� all physical equations are merely approximations of the phenomenon of the
propagation of light� The same can be said for all physical models� For instance� di�raction
e�ects cannot be modelled using the radiosity equations� Second� the accuracy is measured
by comparing absolute values of the intensity of light� It is well known that our visual
system mainly perceives di�erences in intensities rather than absolute values� To illustrate�
multiplying all the intensities obtained from a simulation by a constant value would� after
visual accommodation� look similar to an observer but would be inaccurate as compared
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to the exact solution� Indeed� the accuracy of a visual simulation is usually hard to model
as it depends on many factors� including the state of mind of the observer� Instead of
numerical accuracy as compared with a precise solution� it is often su�cient that the visual
data generated by the simulation be consistent� For instance� when calculating the intensity
of light caused by a moving light� it is more important that the distribution of light does not
vary wildly from frame to frame and that the simulation does not produce visible artifacts�
In the latter example� a solution which is e�cient and consistent but does not solve the
transport equation accurately is usually su�cient in practical applications� These methods
are usually referred to as �hacks�� but perceptually they may be as accurate as the physically
based methods�

Regardless of the �realism� of the results� an important aspect of a visual simulation is
the underlying model� A model which is only capable of producing convincing depictions
of a very restricted class of phenomena might be of little interest to computer graphics�
Conversely� a simple model which can be applied to a wide range of phenomena but has not
yet produced convincing results might be preferable� The model need not produce �realistic�
results only� A good example of the latter is the genetic texture algorithm of Sims  	�!�

We will not pursue these issues further in this thesis� The �success� of our visual simula
tions depends on the tractability of our algorithms� realtime response time during the design
process and �reasonable� computation time during the �nal rendering of the animation�� We
do not claim that the results are �realistic� in the sense that they are undistinguishable from
a photograph or �lm of the real phenomenon� However� the results obtained by the method
have received acceptance in the computer graphics community and beyond through publica
tion and technical slides� Furthermore� the algorithms have been implemented in a widely
used commercial computer graphics package�

��� Methodology

The success of any physical investigation depends upon the
judicious selection of what is to be observed as of primary
importance� James Maxwell

An important visual fact of most natural phenomena is that they appear and behave
di�erently at various scales� A river can be described globally by a curve which follows the
centre of the �ow when seen from far away� A closer look at the edge of the river� however�
reveals a complex �ow which is hard to describe� An animator can easily model the larger
scales but cannot model the turbulent scales easily� The turbulence is often evoked using
simple metaphors such as swirling lines� From the point of view of control� this separation
is therefore natural� The physical description of a phenomenon can vary from scale to scale�
At the microscopic level� a river can be modelled by the interaction of water molecules� This
description is rarely used in practice since the visible structures of water are several orders
of magnitudes larger than the size of a molecule� Liquids are then modelled by density�
velocity and temperature �elds� In theory� the equations governing the evolution of these
�elds can be solved for all scales of the �ow� However� for complicated �ows such as water�
this is computationally infeasible� For practical reasons� the smaller scales are modelled by

�What is considered unreasonable today may be considered reasonable tomorrow� In our case it means
being able to generate a �� second animation within at least a couple of days using the � Irises available in
the lab�
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a stochastic model� The idea of separating a phenomenon into di�erent scales of detail is
therefore important both in controlling and in modelling the phenomenon� Multiple scales
permit the separation of control from the physical simulation� In the river example� a
user can sketch the centre �ow of the river and provide turbulence qualitatively� From
this information� a physical simulation can be driven� Moreover� the decomposition of a
phenomenon into di�erent scales can be used to make certain algorithms more e�cient� For
instance� smaller scales can be discarded when a phenomenon is viewed from far away�

A natural mathematical framework for the modelling of complex natural phenomena is
the theory of random functions� In this theory a phenomenon is modelled as a function
whose exact form and evolution is unknown� The function is described by macroscopic
parameters which model aggregate properties of the phenomenon� This framework is both
important in the design and the physical simulation of natural phenomena� In the former�
an animator controls macroscopic parameters which can be mapped onto comprehensive
design concepts� For example� the complicated structure of terrain can be characterized by
a single �roughness� parameter� The exact detail is then generated through a stochastic
terrain synthesis procedure� In physical simulations� simple equations for the evolution of
the average values of the phenomenon can be developed� The turbulent smaller scales can
then be generated by a random function� alleviating the need of computationally expensive
direct simulations of these scales�

��� Contributions
A distant tree is not a �at and even piece of colour� but a more or
less globular mass of a downy or bloomy texture� partly passing into
a misty vagueness� I �nd� practically� this lovely softness of far
away
trees the most di�cult of all characters to reach��� John Ruskin

����� Insights

The basic approach outlined in the previous section has been successfully applied to the
visual simulation of a broad range of natural phenomena� Speci�cally� the idea of separating
a phenomenon into a smooth component and a small scale turbulent component has proven
to be e�ective in both animation and rendering� It was found that for many phenomena�
user control could be easily achieved through motion �elds� A user speci�es entirely the large
scale of �elds using a set of simple �elds� The use of such �elds include directional �elds�
point �elds and vortex �elds� These �elds can be e�ective in modelling a particular e�ect�
To achieve complex motions� the animator has control over a random motion �eld whose
parameters are derived from a physical model of turbulence� Once a particular �eld has been
designed� the evolution of various physical quantities subjected to this �eld can be simulated�
In most cases the physical model for the large scales can be described by an advection
di�usion type equation for which e�cient simulations can be devised� In particular� by
using the paradigms of particle systems� such an evolution can be displayed in real time
on workstations� which is crucial in the design process of a particular motion� Examples of
physical quantities which were simulated in this manner include� densities of gas particles�
temperature �elds of �ames� the intensity �eld of gaseous phenomena and hair �laments� An
e�cient approximate solution of the advectiondi�usion equation is achieved by representing
the �elds on an unordered set of points� rather than on a regular grid�
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Figure ���� Sketch of smoke coming out of a stack� The arrows indicate the di�erent type
of motion �elds�

The synthesis of turbulent motion �elds is one example of a more general procedure to
simulate certain phenomena directly from a stochastic model� Once quantities such as the
average value and the correlation function are known� a stochastic synthesis algorithm can
generate the phenomenon directly without the need of a physical simulation� An important
area of research is then to determine stochastic models for various phenomena� In many cases�
these models are related to other models through a transformation process� For instance�
a stochastic model for the motion of a pendulum subjected to a random forcing term can
be related to the statistics of the forcing term� These ideas were used to derive a stochastic
model describing the intensity �eld resulting from a random density distribution� In this
case there is a simple relationship between the mean value and correlation of the density �eld
and the corresponding mean value and correlation of the intensity �eld� The advantage of
this approach is that a realization of the intensity �eld is generated directly� without having
to calculate the propagation of light through the density �eld directly�

In general� the use of stochastic models for natural phenomena can improve e�ciency
at many stages of a simulation� The parameters of a stochastic model can be mapped
onto meaningful design paradigms� The physical simulation need only determine average
quantities of the model� The smaller scales� which are computationally expensive to compute�
are generated directly using a stochastic synthesis technique� Finally� the rendering of a
speci�c phenomenon can be sped up by using a stochastic model for the propagation of
light�

����� An Example

In order to make the methodology outlined more concrete� we give an example of a phe
nomenon which is modelled using these techniques� Assume an animator desires to depict
billowy smoke coming out of a smoke stack� The sketch depicted in Figure ��� is a very coarse
representation of what an animator could have in mind� The global motion of the smoke is
outlined by the thick arrows� The stack is placed on the left and the smoke travels to the
right through the e�ect of a directional wind �eld� In addition� the smoke rises due to the
heat coming from the stack� The turbulent motion of the smoke is evoked in the sketch by
small swirls indicating the scale of the perturbation� In the sketch we can identify two scales
of turbulence� One scale corresponds to the wavy motion of the trail of smoke� the second�
smaller scale� corresponds to the texture of the smoke� The thickness and transparency of
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Figure ���� Intercative modelling of the motion �elds�

the smoke at this stage is indicated by a simple outline and a single greylevel�
Once the animator has a clear picture of the phenomenon in mind he"she can start to

model it using our techniques� Using smooth motion �elds the animator speci�es both the
directional wind �eld and the heat �eld� The perturbation is added by using two precom
puted turbulent motion �elds stored in grids� The animator obtains the desired scale of the
turbulence by adjusting the spacing of these grids� Figure ��� shows an interactive display
of the wind �elds� Notice the two grided cubes which depict the scale of the turbulence�
Once the wind �elds are speci�ed� the animator can emit smoke at the tip of the stack� The
evolution of the smoke is then entirely determined by the motion �elds and the physical
properties of the gas� The animator can then adjusts these parameters� such as the rate of
di�usion� the rate of dissipation and the initial density� Figure ��� depicts the smoke with
di�erent settings of the parameters� In particular� the appearance of the smoke is coarsely
approximated by a superposition of blobs� When the animator is content with the general
�look� of the simulation� high quality renderings can be computed for each frame� The illu
mination is entirely calculated by a global illumination rendering algorithm which takes into
account the light sources� emitting"re�ecting nearby surfaces and volumetric light e�ects�
Renderings of various degrees of complexity can be achieved by enabling or disabling certain
interactions� For example� Figure ��� shows four di�erent renderings of the same smoke�
The top"left picture shows the smoke with a constant illumination� the top"right picture
includes selfshadowing caused by absorption and by out scatter by the gas� The picture on
the bottom left includes the e�ects of multiple scattering within the smoke� The �nal picture
includes the e�ects of the small scale turbulence and is obtained by warping the blobs� In
general� the choice of the level of rendering is a tradeo� between computational speed and
visual accuracy�

����� Results

The main results of this thesis include ��

� Algorithms to generate realizations of random functions with arbitrary dimensions
both for its domain and values ������ In particular� algorithms are given to generate
threedimensional motion �elds evolving over space and time ��������

�The section in which the result is described is given between parentheses
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Figure ���� Interactive modelling of the appearance of the smoke�

� A di�usion model from transport theory to model the e�ects of multiple scattering in
density �elds ��������

� A new rendering paradigm that we call stochastic rendering ������ This method gen
erates realizations of the intensity �eld directly from a stochastic model�

� A general multiscale representation of physical quantities on a set of arbitrarily located
points ������ This representation is used to solve steadystate di�usion equations �������
and advectiondi�usion equations �������� These techniques are used to solve for the
e�ects of multiplescattering modelled as a di�usion process ������� and to solve for
the evolution of gases� �re and hair within a motion �eld ������

� A rendering algorithm for density �elds represented as blobs� This includes fast and
consistent integration procedures ����� and a global illumination shooting algorithm
������

� A physically motivated model for the spread of �re ��������

� Visual simulations for gases �������� �re ������� and hair ������� are achieved by com
bining the motion �elds� blob simulation of the advectiondi�usion equation and the
rendering algorithms�

Following we brie�y outline the notational conventions used throughout this thesis�
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Figure ���� Four di�erent types of rendering of the smoke� From top to bottom and left to
right� �a� constant intensity� �b� selfshadowing� �c� shadowing and multiple scattering� �d�
shadowing� multiple scattering and warping�

��� Notational conventions

We will use boldface to distinguish vectors and matrices from their components� Vectors are
always denoted by lower case letters and are assumed to be in a column�

v �

�
BB�

v�
���
vn

�
CCA and vT � �v�
 � � � 
 vn�


where �T� denotes transposition� Upper case letters are reserved for matrices� M �
�Mij�i������n�j������p� Using the column convention for vectors� matrix multiplication is done
on the right side of the matrix� i�e��

Mv � �vTMT �T �

The n � n identity matrix will be denoted by In� and v � Inv� For complex vectors and
matrices� the ��� symbol denotes transposition and complex conjugation of each element�
The dot product between two vectors u and v is written using the transpose operator�

u � v � uTv �
nX
i�

uivi�

In particular the norm of a vector can be denoted by

jvj� � vTv�

	



The tensor product between a vector v of dimension n and a vector u of dimension p is a
n� p matrix denoted by

u vT � �uivj�i������n�j������p�

The trace �tr� of a square n� n matrix M is de�ned as the sum of its diagonal elements�

trM �
nX
i�

Mii�

Very often a collection of vectors v�
 � � � 
vN will be considered and should not be confused
with the components vi of the single vector v� A multidimensional function from Rd into
Rm will be denoted by

f�x� � �f��x�
 � � � 
 xd�
 � � � 
 fm�x�
 � � � 
 xd��T �
Uppercase letters will be reserved for functions that map Rd into the space of m�p matrices�

F�x� �

�
BB�
F���x�
 � � � 
 xd� � � � F�m�x�
 � � � 
 xd�

���
���

Fp��x�
 � � � 
 xd� � � � Fpm�x�
 � � � 
 xd�

�
CCA �

Similar notations are used when the set of real numbers R is replaced by the set of the
complex numbers C� The operator of di�erentiation r is treated as a vector of �scalar�
partial derivative operators

r �

�
�

�x�

 � � � 
 �

�xd

�T
�

Hence� the Laplacian� divergence and gradient of a function f are denoted respectively by�

r�f � rTrf 

dX
i�

�f�x�

�xi
� rT f and

�
�fi�x�

�xj

�
i������m�j������d

� rfT �

The divergence of a function will also be denoted using the �dot� notation� r� f � When the
gradient is taken only with respect to a subset of the arguments it will be denoted by the
partial notation� Let z � �x�
 � � � 
 xp� and z� � �xp # �
 � � � 
 xd�� The gradient with respect
to the �rst p arguments will be denoted by�

�f�x�

�z
�

�
f�x�

�x�

 � � � 
 f�x�

�xp

�
�

��� Overview of the Thesis

The thesis is roughly divided into two parts� In Chapters � and � the technical machin
ery required for our models is presented� This exposition is interspersed with pointers to
the actual simulations and with new material� These chapters are not essential in order to
evaluate the contributions of this thesis� It was found that most physical models required
for our simulations are instances of these general equations� For example� transport theory
describes both the motion of liquids and the propagation of photons� In Chapter � we discuss
various physical models of natural phenomena at di�erent scales of detail� For each scale we
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give the general equations governing the physical system and review methods of solution�
Speci�c examples of phenomena will be given� In Chapter � we review the theory of random
functions on which stochastic modelling is based� The setting will be very general �random
functions with multidimensional domain and values� but only relevant results will be men
tioned� In Chapter � we present a general method of solving equations on an unordered set
of points� The general methodology and existing techniques will be reviewed� In Chapter �
a novel general method of solution for the intensity �eld in the presence of a participating
medium is outlined� In Chapter � we describe various simulations of gaseous and related
phenomena using the techniques explained in the previous sections� In Chapter � results
and conclusions are stated�
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Chapter �

Particle Models For Natural

Phenomena

We claim that our di	erential equations are �true for every point� in
the domain of a solution� and yet we introduce into these equations
di	usion terms that treat of processes occuring at scales that are
anything but in�nitesimal
and this is especially so in the theory of
turbulence� And yet it all succeeds� in that almost all scientists and
engineers accept these concepts� Indeed� such acceptance nowadays
constitute an act of faith in the truth of modern science� so that
much matters come to appear as self
evident or self
revealed truths�
Michael Abbott

In this chapter we present physical models for both the propagation of light and for the
dynamics of gases and �uids� Instead of presenting each model separately� we will derive
them from a fundamental particulate description� Indeed� both light and gases are assumed
to be composed of tiny fundamental particles� Under reasonable assumptions� the equations
governing the motion of these particles are qualitatively the same� From the particulate
description various physical models can be obtained at a succession of scales� At each
approximation� some information about the full set of particles is discarded in exchange
for a reduction in the size of the set of equations� We have chosen to present the models
in this fashion to emphasize the existence of di�erent physical models at di�erent scales�
Since the separation of scales is indeed one of the main themes of this thesis� it is therefore
important to identify the physical model of a phenomenon relevant at a particular scale�
Water� for example� can be modelled as a dynamical particle system of water molecules at
the microscopic level� as a probability density of interacting elastic balls at the kinetic level
or by a density �eld� a velocity �eld and a temperature �eld at the hydrodynamic level� The
choice of a particular model depends on the scales which must be simulated� In computer
graphics the relevant scales are determined by the realm of human perception� In this chapter
we sketch how the various models are deduced from a particulate description using statistical
mechanical arguments� Note that the emphasis will be on the phenomenology rather than
on the technical derivation themselves� The latter can be found in the extensive literature
on the subject matter� see e�g��  �	!�
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��� Microscopic Level

����� Particle Systems

The most fundamental description of phenomena considered in this thesis is that of a particle
system� a set of physical properties de�ned for N particles� For example� water can be
modelled as a system of water molecules� The propagation of light can be approximated by
the path of tiny elastic particles� This representation is di�erent from the massless photon
particle model used in quantum mechanics for example� The number N is very large in
general� e�g�� under normal pressure and temperature a liter of air contains on the order of
N � �
�� molecules� For our purposes the properties of each particle �i� are position xi�
velocity vi and mass mi� with i � �
 � � � 
 N � In order to simplify the derivations we assume
that each particle has the same mass� mi � m� The state of the particle at a certain time t
is therefore de�ned by the following vector�

XN �t� � �x��t�
v��t�
 � � � 
xN�t�
vN�t�� � R�N �

It is clear that this description excludes many physical phenomena� For example� the e�ects
of polarization� di�raction and quantum e�ects are excluded from this description of the
propagation of light� Indeed� the particulate formulation ignores the �wavelike� properties
of light� The evolution over time of the particle system can then be given by the laws of
Newtonian mechanics�

dxi
dt

� vi�t�

dvi
dt

�
�

m
Fi i � �
 � � � 
 N� �����

supplemented with the initial conditions at t � 
�

XN �
� � �x��
�
v��
�
 � � � 
xN �
�
vN�
���

The force exerted on particle i is the sum of an external force Fext
i � a force due to the

boundary surfaces Fbnd
i and a term accounting for interparticle forces�

Fi � Fext
i # Fbnd

i #
NX
j�

Fij�

The interparticle force often is derived from a particle potential ��

Fij � �r��xi � xj��

In general this potential is repulsive for short distances and attractive for longer distances�
A simple potential which has these properties is the Lennard�Jones potential which solely
depends on distance  ��!�

�LJ�r� � ��

��
r�
r

���
� �

�
r�
r

��	



where r� is the radius beyond which the force becomes attractive and �� is the depth of the
potential at r�� The property of this potential is that the resulting force is symmetric around
each particle� In general� however� the forces are asymmetric� such as in the case of water
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Figure ���� The Liouville Equation� The probability density of the particle system evolves
in a manner similar to that of a �uid�

molecules� For some phenomena it is useful to decompose the velocity vi of each particle
into its direction si and its speed vi � jvij� This allows us to de�ne the energy Ei of each
particle in terms of its speed� For example� the kinetic energy of each particle i is

Ei �
�

�
mv�i �

Methods of Solution

The particle system can be simulated over time from a given initial state by integrating
the mechanical equations stated in Equation ���� The most expensive component of each
integration step is the calculation of the interparticle forces� By using a hierarchical data
structure to store the particles� these forces can be computed in time O�N logN�� More
e�cient algorithms running in time O�N� have been developed for Coulombic potentials in
two and three dimensions  ��!� For potentials with a small support� the interparticle forces
are calculated from nearby particles only� A linear time algorithm is obtained when the
particles are stored in a grid and forces are calculated only between particles in neighbouring
gridcells only� This method is known as the particle in cell �PIC� method  ��!�

In computer graphics� particle systems have been used to model a wide range of phe
nomena� This approach is particularly appealing because of its simplicity� Systems of non
interacting particles have been used to model water� �re and grass among others uses  ��� 	�!�
Interacting particle systems with a LennardJones potential have been used to model simple
viscous �uids  ��!� Further� a potential which varies with temperature can be used to model
phase transitions  	�!� The inherent problem with these models is that the physical model
is used at the wrong scale� A �particle� in these models is actually a blob of matter whose
motion is not necessarily consistent with the equations of motion of microscopic particles�
Furthermore� the LennardJones potential provides a poor approximation of the asymmetric
potential of water molecules� Hence� the resulting behaviour is itself an approximation to
the real phenomenon�

����� Statistical Mechanics

Although the particle system formulation is very simple� it is impractical due to the large
number N of particles needed for accurate simulations� Furthermore� the level of description
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is many orders of magnitude smaller than the scales of visual perception� When observing
a gas� for example� we do not discern each individual molecule but rather variations in the
density of gas molecules� Therefore we need to consider averages of the microscopic properties
of the molecules� The technical apparatus needed to calculate averages of particle systems is
given by statistical mechanics� Instead of deriving the equations for a single particle system�
the goal of statistical mechanics is to derive equations for an ensemble of particle systems
having the same probability density ��XN $ t�� In the language of probability theory� the
statistical mechanical description of a particle system is a onedimensional random function
with values in a �N dimensional space �see Section ������� The probabilistic description also
arises quite naturally for practical reasons because the initial conditions of a system are never
known exactly� Therefore an ensemble of particle systems starting in the same �volume of
uncertainty� of initial conditions has to be considered� The state of the system after some
time t is then only known approximately through its probability distribution� The evolution
of a probability density function from an uncertain initial state is illustrated in Figure ����
Notice how the appearance of the density resembles that of a liquid immersed in a �ow� In
fact the Liouville equation governing the evolution of the probability density is a continuity
equation similar to that found in �uid dynamics��

��

�t
� �

NX
i�

�
vi � �

�xi
#
Fi

m
� �

�vi

�
��

This equation is in fact equivalent to Equation ��� which governs the motion of a single
particle system� It is evident then that up to this point not much has been gained from
the probabilistic framework� A reduced description of the system is obtained by de�ning
marginal distributions of the probability density� The most elementary marginal distribution
is the oneparticle distribution given by�

���x
v$ t� � N
Z
R�

� � �
Z
R�
 �z �

N�� times

��XN $ t� dXN���

This distribution gives the expected number of particles traveling with a velocity v at a point
x� The oneparticle distribution can be used to de�ne the following two physical quantities
of the particles for example�

� The density of mass of the particles is de�ned as ��x
v$ t� � m���x
v$ t��

� The radiant intensity of light is de�ned with respect to the onephoton distribution as
I��x
v$ t� � �h��c���x
v$ t�� where � is the frequency� c is the speed of light and h
is Planck�s constant� The units of the intensity so de�ned are watts per unit area per
unit solid angle in accordance with the radiometric de�nition of radiance  	
!�

An equation for the oneparticle distribution is obtained by integrating the Liouville equation
over the remaining ��N � �� variables  ��!�

���

�t
# v� � ���

�x�
#

�

m
�Fext

� # Fbnd
� � � ���

�v�
� �

Z
R�

Z
R�

Fcol
��

m
� ���

�v�
dx� dv�� �����

����xi � �����x��i� ����x��i� ����x��i�	 similarly for ���vi�
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no interaction strong interaction

Figure ���� Two di�erent types of collisions� particles streaming through a background
medium versus particles interacting amongst themselves�

Although this equation looks complicated and cumbersome at �rst� it actually has a clear
phenomenological interpretation� It states that the variation of the oneparticle distribution
over time along a given direction is due both to external forces and to interactions with
all other particles� The collision term on the right hand side of the equation involves the
distribution �� which gives the expected product of the number of particles located at x and
x� simultaneously and having velocities v and v� respectively�

���x
v
x
�
v�$ t� � N�N � ��

Z
R�

� � �
Z
R�
 �z �

N�� times

�N �XN $ t� dXN���

An equation similar to Equation ��� can be obtained for this distribution by integrating
the Liouville equation over ��N � �� variables� The resulting equation will involve the
threeparticle distribution ��� Likewise� an equation for �� will involve a fourpoint particle
distribution� and so on� The goal of kinetic theory is to introduce approximations into the
theory in order to close this chain of equations�

��� Kinetic Theory

An understanding of the attitude of physicists towards
thermodynamics and kinetic theory� is I think� to be sought only in
the realm of psychology� L� Bridgeman

The equation for the oneparticle distribution �Equation ���� cannot be solved directly
since it involves the twoparticle distribution which is a priori unknown� This term is there
fore approximated in order to obtain a single equation for the oneparticle distribution� As
pointed out in the previous section� the term on the right hand side of Equation ��� char
acterizes the collisions between particles� It is therefore highly dependent on the type of
phenomenon� In Figure ��� two extreme situations are illustrated� In the �rst case� the
particles interact only with a participating medium but not amongst themselves� A good
example of this is light particles streaming through a cloud� In the second case� the colli
sion term is dominated by interparticle collisions� e�g�� water molecules interacting with each
other� Following� we consider the �rst case�
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outφ inφ= xKS

Figure ���� The boundary condition for the transport equation is given by the re�ection
probability distribution at the surfaces of the environment�

����� Transport Theory

In our derivation we make assumptions which are mostly relevant to the propagation of light�
Firstly� we assume that the speed of each particle is constant and equal to v� The particle
distribution is therefore a function of the position and direction of propagation only�

	�x
 s
 t� �
Z �

�
���x
 rs
 t� dr�

Furthermore we assume that the particles do not modify the properties of the medium� Given
these assumptions� the participating medium then changes the oneparticle distribution by
the following three �collision� events� a particle is absorbed� a particle is scattered into
another direction or new particles are generated� Following the phenomenology of Equation
���� the variation of the oneparticle distribution in a particular direction is equal then to a
gain in particles due to inscatter and emission minus a loss due to outscatter and absorption�
In particular� the collision term in this case is linear and equal to

��vKs�x�
 �z �
outscatter

# vKa�x�
 �z �
absorption

�	�x
 s
 t� # vKs�x�
Z

��s
 s��	�x
 s�
 t� ds�
 �z �
inscatter

# vQ�x
 s
 t�
 �z �
emission

�

The functions vKa and vKs describe the rate of absorption and the rate of scattering of the
medium� respectively� Their sum vKt � vKa#vKs is the rate at which particles collide with
the medium� The scattering kernel � gives the probability that the direction of a particle is
changed from s� into s at a scatter event� The creation of new particles by the participating
medium is entirely characterized by an emission distribution Q� Equation ��� with this
collisional term becomes a linear equation�

�

v

�	

�t
# s � �	

�x
#

�

v

Fext

m
� �	
�s

# Kt	 � Ks

Z
��s
 s��	�s�� ds� # Q� �����

This equation is known as the one�speed transport equation� and is the fundamental equation
for the propagation of light considered in this thesis  ��!� In Chapter � we discuss the proper
ties of the participating medium in more detail� presenting algorithms to solve this equation�
To complete the mathematical description of the scattering equation� initial conditions and
boundary conditions have to be speci�ed� Initial conditions are speci�ed by the distribution
of particles at some initial time�

	��x
 s� � 	�x
 s
 
��
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The boundary conditions are in general more complicated and depend on the problem at
hand� Let S denote a boundary surface of the medium and n denote its normal function on
this surface� For each point on the surface the boundary conditions can in general then be
expressed as

	out�x
 s
 t� �
Z

�S�x
 s
 s��	in�x
 s�
 t��s� � n�x�� ds�


where the integral is over all directions s� such that n � s� � 
 and �S gives the re�ection
probability distribution of the surface� The distributions 	out and 	in denote the scattered
and incident particle probability density� respectively� This situation is depicted in Figure
����

Methods of Solution

Analytical solutions to the transport equation exist only for very restricted geometries�
Therefore many numerical techniques have been developed to solve the transport equation�
The most direct method is to discretize the domain of the particle probability density� A set
of systems of equations is then obtained and can be solved using relaxation methods� An
other method consists of expanding the particle probability density into some basis functions�
Equations are then derived for the coe�cients of the particle density� The PN equations are
obtained if the basis functions dependence on direction are the spherical harmonics up to an
order N � When local basis functions are used� a �nite element approximation is obtained�
These two methods are very memory intensive and can be used only for simple geometries or
by making simplifying assumptions� such as� by assuming that the particle density is inde
pendent of the direction of the velocity� For arbitrary geometries� MonteCarlo simulations
are often used� In these simulations� the paths of sample particles are simulated through
the environment according to the probability distribution given by the properties of the
participating medium� From these samples an estimate of the particle density is obtained�

In computer graphics these algorithms have been applied to resolve the propagation
of light in arbitrary environments� Discretizations have been used extensively to simulate
di�use environments with a constant participating medium  ��!� An e�cient relaxation
scheme called �shooting� has been developed where the interaction from only one sample
is considered at each iteration  ��!� Angular dependence of the intensity �eld has been
modelled by discretizing the direction �eld  �	! or by adding a MonteCarlo style pass to
account for specular re�ections  �

� 	�!� Discretizations in the presence of a participating
medium have been considered for isotropic media  ��! and arbitrary media� by discretizing
the angles  ��� ��!� Spherical harmonics expansions have been used separately for constant
medium environments  	�!� and for gas densities with free boundary conditions  ��!� The use
of �nite element solutions for environments with a constant media has been studied lately
 �
�� 	�!� MonteCarlo simulations of the light transport have been explored� but these
methods are of high computational cost  �� �	� �
!�

����� Interacting Particle Systems

In interacting particle systems such as �uids� the collision term is usually nonlinear and
becomes more complicated� One of the most elementary formulations in this case is given by
the Boltzmann equation which is obtained by considering only pair wise elastic collisions of
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Figure ���� Collision between two particles� The collision depends only on the di�erence in
velocities of the particles�

particles and by assuming that the probability of �nding two particles at the same location
x with di�erent velocities v and v� is simply the product of the oneparticle densities�

���x
v
x
v
�� � ���x
v
 t����x
v

�
 t��

The latter is known as the molecular chaos assumption� Consider the collision at a location
x of two particles having velocities v and v�� respectively� After they collide the particles
will have di�erent velocities v� and v�� as illustrated in Figure ���� Because the collisions are
assumed to be elastic� they are entirely described by a collision kernel ��g
g�� which depends
only on the di�erences g � v � v� and g� � v� � v��� The rate of loss of particles along a
direction v due to collisions is then given by�

jgj���x
v
 t����x
v�
 t���g
g�� dv� dg��

A similar expression is obtained for the gain in particles along direction v due to collisions
of the type g� � g� By integrating the gain term minus the loss term over all incoming
directions v� and collision angles g� we get the total change due to collisions�Z Z

����x
v
�
�
 t����x
v

�
 t�� ���x
v�
 t����x
v
 t�� jgj��g
g�� dv� dg�� �����

Boundary conditions are similar to those given for the transport equation�

Methods of Solution

The Boltzmann equation is rarely used to simulate real �ows� However� it is used to calculate
parameters� such as the viscosity� that appear in hydrodynamic descriptions of a �uid �see
next section�� We mention that there exists a large body of literature which deals with solving
the motion of a �uid by considering the interactions of particles on a discrete lattice� These
techniques are broadly known as Lattice Gas Automata  �!� and correspond to a discretization
of the the Boltzmann equation� No applications of the Boltzmann equation in the �eld of
computer graphics are known�

��� Macroscopic Level

Although kinetic equations can be used to model a wide range of phenomena� their solution
becomes excessively complicated when collision events abound� In this case the velocity
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Figure ���� In the case of many collisions the distribution of the directions of the particles
is nearly uniform�

of each particle changes very rapidly over time� When observing a small volume in space�
we will �nd particles travelling in arbitrary directions �see Figure ����� The distribution of
the direction of the velocities therefore becomes nearly uniform in systems dominated by
collisions� Hence� the physical properties of the particle system become almost independent
of velocity direction� The description of the particle system can be reduced further by
removing the dependence on direction through integration� Indeed� let A be any property
of the system depending on the velocity� then its macroscopic average over all directions is
de�ned by�

hAidir�x
 v
 t� �
Z
A�x
 vs
 t� ds


where v is the magnitude of the velocity� This averaging� for example� can be applied to
both the linear transport equation and the nonlinear Boltzmann equation� In the �rst case a
di�usion equation is obtained and in the second case hydrodynamic equations are obtained�
In both cases� the macroscopic averaging transforms the integral collision operator into a
di�erential one� In other words when collision events dominate� the global description of the
phenomenon collapses into a local one�

����� Di�usion Equations

From the oneparticle distribution 	� the �rst two moments with respect to the velocity can
be de�ned by the macroscopic averaging�

U�x
 t� � h	idir and J�x
 t� � h	 sidir�
These two moments are known as the average density and the average �ux of particles�
respectively� Since the oneparticle distribution in the case of many collision events has a
smooth dependence on directions� we can assume that it is a function of these two moments
only�

	�x
 s
 t� � �

��
U�x
 t� #

�

��
J�x
 t� � s�

This expansion is actually a truncated Taylor series in s� An equation for the average density
of particles can be obtained by �rst inserting this expansion into the transport equation
�Equation ����� Taking the two �rst moments of this equation gives us two equations in U
and J which can be combined to yield a single equation for the average particle density  ��!�
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Figure ���� Di�erent levels in the multigrid method and a �v�cycle�

This is the general form of an advection�di�usion equation� Such equations lie at the heart of
most of the simulations considered in this thesis� The equation states that the evolution of U
over time is characterized by di�usion at a rate �� advection by an external force �eld Fext�
absorption at a rate � and creation by sources S� This is a common transport mechanism
which is often encountered in practice� Consider the evolution of a drop of milk in co�ee�
The milk is advected by the action of stirring� eventually di�using with the co�ee until a
homogeneous mixture is obtained� We will use this equation to model the evolution of both
the density and the temperature �elds of a gas subjected to an external wind �eld� The
equation will be used also to model the e�ects of multiple scattering in dense participating
media� For this particular case we also give a more detailed derivation of the di�usion
equation from the transport equation of light �see Section �������

Method of Solutions

Advectiondi�usion equations can be solved either by the �nite di�erence or �nite element
method� The former is e�ective when the domain is twodimensional or when the partici
pating medium is nearly constant� For more general media the �nite element method might
provide tractable solutions�

Finite Di
erences

In �nite di�erences� the average particle density is discretized into a set of discrete samples
Uh�t� � �U��t�
 � � � 
 UN�t�� de�ned on a regular grid of spacing h 	 N� �

d � where d � is the
dimension of the space� The source term is discretized similarly into a set of samples Sh�
The di�usion� advection and absorption terms can be grouped into a single linear operator

L � r � ��r�� �

v

Fext

m
� r� �

and can be discretized into a matrix Mh using central di�erences  ��!� One then obtains a
discrete equation for the evolution of the sampled average di�use intensity�

�

v

�Uh

�t
� MhUh # Sh�

The steady state solution of this equation is by iterating it from an initial value Uh�
� over
discrete intervals of time �t�

Uh�k� � Uh�k � �� # v�t �MhUh�k � �� # Sh� 
 k � �
 �
 �
 � � � �
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The above iteration scheme is known as the Jacobi method and converges when the matrix
Mh is diagonally dominant� Unfortunately� it converges slowly� A powerful technique to
speed up the convergence rate is to relax the system on grids with di�erent spacings h� This
method is known as the multi�grid method and is brie�y reviewed next �for more details see
for example  ��!�� The e�ciency of the multigrid method is due to both the fact that it
can produce a good initial estimate of the solution and the fact that it removes the high
frequencies from the error by relaxing on coarser grids� These are achieved by considering
a hierarchy of grids of spacings h � �p� p � pcoarse
 � � � 
 pfine� The equation �rst is relaxed
on the �nest grid for a �xed number of iterations and then projected onto the next coarsest
grid� This projection is likewise relaxed for a �xed number of iterations� These two steps
are repeated until the coarsest level has been reached� The whole process is then reversed�
each approximation is interpolated and relaxed on to the next �ner grid� This process is
repeated until the �nest grid is reached� The whole procedure just described corresponds
to a complete �vcycle� as illustrated in Figure ���� An approximation of the solution is
obtained by going through a �xed number of such vcycles until convergence� This results
in speedups of an order of magnitude faster than simple relaxation� However� this method
is very memory intensive for threedimensional domains� The method of �nite elements
described next attempts to resolve this problem�

Finite Elements

In �nite element methods the average particle density is discretized by an expansion into a
set of basis functions �elements� f�igNi��

U�x
 t� �
NX
i�

Ui�t��i�x��

The source intensity is expanded likewise� The functions are usually chosen such that they
are close to an orthogonal basis� in the sense that for each function �i the product

���i
 �j�� �
Z
�i�x��j�x� dx �����

is nonzero for only a few functions �j� A linear equation for these coe�cients Ui can be
obtained for the steady state solution �	U

	t
� 
 in Eq� ���� by many means� First the

expansions of the average di�use intensity and the source term are substituted into the
steady state di�usion equation�

NX
i�

UiL�i�x�� Si�i�x� � 
� �����

In a collocation method� N linear equations are obtained by requiring that this equation be
satis�ed at N distinct points x�
 � � � 
xN  ��!� The linear system can then by solved directly
by a matrix inversion which is stable when N is not too large and the points are equi
distributed over the domain of interest� In the Galerkin method a set of linear equations is
obtained by taking the product ���
 �j�� �see Equation ���� on both sides of Equation ����

NX
i�

Ui��L�i
 �j��� Si���i
 �j�� � 

 j � �
 � � � 
 N�
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In the event that the above products can be calculated� an approximation of the solution can
be calculated by direct matrix inversion� In both methods� the boundary conditions can be
satis�ed naturally if each basis function �i ful�lls them� For selfadjoint and positive de�nite
operators L� the two methods outlined above converge when the basis functions are complete�
any smooth function can be approximated arbitrarily closely by a linear combination of the
basis functions  ��!� For example� if the advecting force is null� then the linear operator
L � r�r� � and is selfadjoint and positive de�nite�

����� Hydrodynamic Equations

The Navier
Stokes equations are the most idealized statements
possible about a physically non
existent situation� Michael Abbott

Deriving equations for interacting particle systems using the macroscopic averaging scheme
hivel is considerably harder due to the nonlinearity of the Boltzmann collision term �recall
Equation ����� There is however a general procedure to obtain macroscopic equations in
terms of physical quantities that are conserved during a collision� For the case of interact
ing point particles these quantities are mass m� momentum mv and local kinetic energy
�
�
mjv � uj�� The resulting �elds corresponding to these conserved quantities are the den

sity �� velocity u and local temperature T of the particle system� respectively� Equations
for these �elds can be derived directly from the Boltzmann equation using the so called
Chapman�Enskog expansion  �	!� If only �rstorder terms are considered� the usual Navier�
Stokes Equations are obtained  ��!�
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where �� Cp and k are averages of functions which depend on the three collisional invari
ants� They have the following physical meaning� � models the viscosity of the �uid� Cp is
the speci�c heat of the �uid and k is the temperature conductance� The pressure p is an
independent variable which can be removed from the set of equations in case the �uid is
incompressible� i�e�� when the density of the �uid is constant� Equation ��� reduces to�

r � u � 
�

This condition is satis�ed approximately even for �uids having a nonconstant density when
the velocity of the �uid is considerably smaller than the speed of sound  ��!� In case the
velocity �eld and the density is known� Equation ���
 becomes a linear advectiondi�usion
type equation� We have used this approach to model the evolution of gaseous phenomena
such as �re and steam �see Chapter ���

Methods of Solution

As for the di�usion equation� approximate solutions for the hydrodynamic equations can be
obtained by discretizing the spatial and temporal domains� However� the application of these
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methods to the hydrodynamic equations is more di�cult because of the nonlinearities and
the large range of scales which have to be modelled� Simulations can be modelled for large
values of the viscosity which diminish the number of scales and therefore the resolution of the
computational grid� Smaller scales are modelled by a statistical model and are incorporated
into a high viscosity simulation� The latter simulations are known as Large Eddie Simulations
 ��!�

In computer graphics� many researchers have used the hydrodynamic equations to model
simple �uids� The evolution of ocean waves has been modelled using a linearized version of
these equations  ��!� This model was supplemented by an ad hoc model for the simulation of
wavebreaking  �	!� A similar linearization of the NavierStokes equation was used to model
viscous �uids responding to external forces  ��!�
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Chapter �

Stochastic Modelling

Everything is approximate� less than approximate� for when more
closely and sharply examined� the most perfect picture is a warty�
threadbare approximation� a dry porridge� a dismal mooncrater
landscape� What arrogance is concealed in perfection� Why
struggle for precision� purity� when they can never be attained�
The decay that begins immediately on completion of the work was
now welcome to me� Jean Arp

Most natural phenomena exhibit a high degree of complexity� In practice this irregularity
is di�cult to simulate using only physical models� For example� a hydrodynamic descrip
tion of a �uid gives rise to extremely complicated simulations of �ows when the viscosity
is su�ciently low� However� humans can e�ectively classify and describe highly irregular
phenomena� We can recognize a pine tree from a maple tree� for example� even though both
have complicated shapes� because both have very di�erent global appearances� Within a
particular class of tree such as pine trees� however� di�erentiation becomes more di�cult
and is achieved only by pointing to local detail dissimilarities� In short� although all trees
have unique complicated shapes� we are able to describe and di�erentiate them by their
global shape and texture� Stochastic modelling is a formalization of descriptions at this level
of detail� A stochastic model does not de�ne a particular shape but rather de�nes a class
of shapes which have the same global structure and texture� The precise shape will remain
unknown until a particular realization of the stochastic model is observed or computed�
Stochastic modelling therefore is a natural framework for the design of complicated shapes
and the animation of irregular phenomena because the complexity of a speci�c realization
can be generated by an automatic process�

The justi�cation for the use of stochastic models over deterministic models is entirely
practical� Even though the underlying physical principles are deterministic� we use stochastic
models in order to get tractable solutions�

This chapter describes both background material and new algorithms� The �rst section
is devoted to discussing the main concepts and results of the probability theory of ran
dom functions� The second section presents a general methodology to obtain new random
functions from existing ones using general transformations� In the third section we present
various new and existing algorithms to synthesize realizations of random functions� The last
section applies these results to the synthesis of turbulent wind �elds�
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��� Probability Theory of Random Functions

This section will present results and concepts from probability theory needed in order to
understand the new algorithms developed in this thesis� The presentation is not intended to
be a tutorial on the probability theory of random functions� since a comprehensive survey
of this vast subject would not �t in this thesis� Moreover� excellent text books exist on
the matter� ranging from purely mathematical to totally application oriented� The former
may appeal to the mathematician since each concept and result is translated into a rigorous
de�nition and theorem� The latter text books are intended for the engineer with a speci�c
application in mind� In particular the application oriented books spend alot of time giving
the reader an intuitive feel for the concepts and results� The presentation given in this
thesis is written with computer graphics applications in mind� Of course� attention has been
given to ensure equations and de�nitions are correct and sound� The �rst section of this
chapter is a condensed version from material gleaned from various sources� Some of these
sources are brie�y reviewed� The mathematical reference to the theory of random functions
are the three volumes by the Russian mathematicians Gikhman and Skohorod  ��!� All the
theorems cited in this thesis are proven in their work� An excellent text which interweaves
mathematical proofs with practical applications is the French book written by Kr%ee and Soize
 ��!� A very concise and pedagogical presentation of the fundamentals of the theory is given
in the �rst part of Panchev�s book on turbulence  ��!� Yaglom�s text book on the theory
of homogeneous random functions is probably the best text book for someone interested in
both the applications and the underlying mathematical proofs  �
�!� The latter are given in
the second volume� in note form� These texts generally begin by presenting the theory for
scalar valued random functions depending on time only and then move on to generalize all
the concepts to higher dimensions� In this thesis the presentation will be set in arbitrary
dimensions from the beginning� We will use a compact vector notation to keep the equations
more accessible�

����� Random Variables
No two days are alike� nor even two hours� and ever since the
creation of the world no two leaves on a tree are the same� John
Constable

Many events that occur around us have a behaviour which we cannot predict with abso
lute certainty� Two such events are winning the lottery� and dying within a hundred years�
Although both events are uncertain� we can be fairly con�dent that the former is almost
impossible� with the latter being almost certain� In fact� the chances of winning the lottery
can be explained more precisely using probability theory� Hence� we would like to assign a
number between 
 �impossible� and � �certain� to events that surround us� Of course not
everyone will agree on these numbers� It would be extremely di�cult for a mathematician
and an avid lottery player to agree on the chances of winning� for example� Probability
theory begins with an event space E and a probability measure P � The probability measure
is not de�ned over the event set but rather over a set B of subsets of events� This is because
we want to assign probabilities not only to single events but also to combinations of events�
such as �it rains and I forgot my umbrella�� The set of subsets of events cannot be arbitrary
and has to be �big enough� to be useful in probability theory� More precisely� it has to
satisfy the following conditions�
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Figure ���� The probability measure on Rn is obtained via the random variable f �

��� B contains the empty set and the whole event space�
��� B is invariant under complements� e�g�� if we know the probability of the event

�it will rain tomorrow� then automatically we know the probability that it
won�t rain tomorrow�

��� The union of a countable number of elements in B has to remain in B�

A set having these properties is called a � � algebra by mathematicians� Given these prop
erties we can de�ne a probability measure P from the space B into the unit interval  

 �!�
The only constraint on the probability measure is that the probability of a countable union
of disjoint events is equal to the sum of the probabilities of each single event� In short� if
we want to use the results of probability theory� we have to make sure that our space of
subspaces of events is a �algebra and that our probability measure has the property just
given� To package the whole description� the triplet �E
B
 P � is called a probability space�

Often when dealing with random events we would like to answer such quantitative ques
tions as �what is the most likely event�� or �how are the events spread around the most
likely event�� In order to answer such questions one usually has to perform operations and
computations on events� In order for this to be possible� we have to assign numerical val
ues to each event� A random variable f which maps the event space into the space Rn is
introduced into the theory for exactly these reasons�

f �

 E �� Rn

� 
�� f�

Each value f� of the random variable f� is called a realization� The probability measure P
induces both a probability measure Pf and a �algebra Bf on Rn via the random variable
�see Figure �����

B � Bf 
 if f���B� � B and
Pf �B� � P �f���B�� �

With this measure thus de�ned we can associate a distribution function Ff de�ned over the
space Rn� Indeed for each element z one can de�ne the set of all elements whose coordinate
values are smaller than z componentwise �see Figure ����� The value of the probability
distribution at a point z is given by the probability of this set�

Ff�z� � Pf �fz� � Rn j z�� � z� and z�� � z� and � � � and z�n � zng��
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Figure ���� De�nition of the probability distribution�

In the case when this distribution can be factored into

Ff�z� � Ff��z�� � � �Ffn�zn�


the components are said to be independent� The probability of any subset B of events in
Bf in terms of the distribution function F is then given by a Stieltjes integral� For a d
dimensional hyperbox R� the de�nition is�

Pf �R� �
Z
R
dFf �z� � lim

h��

X
l�Rh

dX
i�

Ff�zl�� Ff �zl�ei�
 �����

where the samples zl are de�ned on a regular discretization Rh of the hyperbox R with
spacing proportional to h and the ei are the unit vectors of Rd� The de�nition for an
arbitrary domain B follows from the fact that any domain can be approximated by a union
of hyperboxes� A Stieltjes integral is a generalization of the standard Riemann integral� To
see why this is so� suppose that the probability distribution is di�erentiable� This allows us
to de�ne a probability density function �f by�

dFf �z� � �f �z�dz�

Intuitively� the probability density gives the probability of a small set of events centred
at z� In this case the Stieltjes integral of Equation ��� is actually a Riemann integral�
However� for general probability distributions it is necessary to use a Stieltjes integral� Via
the random variable f we can thus forget about the original probability space and work
solely with the new probability space �Rn
Bf 
 Pf �� A stochastic model for a phenomenon is
the speci�cation of such a probability space� The determination of a stochastic model for a
particular phenomenon is called stochastic modelling  ��!� To relate the stochastic model of
a phenomenon to observations on it� the concept of averages is introduced� This is because
averages are usually more intuitive and easier to estimate from observed realizations of a real
phenomenon� For example� the average temperature at noon in downtown Toronto can be
estimated by measuring the noonday temperature for many consecutive days and taking the
arithmetic mean� In addition the average �uctuation around this mean can be calculated
by taking the arithmetic mean of squared di�erences between the measurements and the
estimated mean� More generally� it is useful to de�ne the average of an arbitrary function of
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the random variable� Let h be a function from Rn into some other space Rk� the average of
this function applied to the random variable f is de�ned by

hh�f�i �
Z
Rn

h�z� dFf �z�


and is an element of the vector space Rk� Intuitively� it is the sum of all possible realizations
of the random variable weighted by their respective probabilities �the intuition is exact
in the case where the probability space is discrete�� Because continuous functions can be
approximated arbitrarily closely by polynomials� an important class of averages of a random
variable are its moments� The moments of order p are de�ned as��

hfai �
Z
Rn

za dFf �z�
 a � Nn and jaj � p�

Indeed the class of random variables with �nite moments of order two have �nite energy and
form a Hilbert space with a scalar product given by the probability distribution�

f � g � hfTgi �
Z
Rn

Z
Rn

zTz� dFg�z�� dFf �z��

In particular this scalar product de�nes a norm� Hence one can give a meaning to the limit
f of a sequence of random variables f�
 f�
 � � � when

lim
k��

hjfk � f ji

exists� In other words the sequence converges to the limit in the mean or �most of the time��
The limit is also often denoted by l�i�mk��fk� where l�i�m stands for limit in the mean� In
addition� random variables with �nite energy have the property of having a �nite mean with
their correlation Cf being well de�ned�

Cf � hf fT i �
Z
Rn

zzT dFf �z��

This matrix in e�ect contains all moments of order � of the random variable� It quanti�es
the relatedness between each pair of components of the random variable f � In particular if
the correlation is zero the pair of components are uncorrelated� By de�nition the correlation
is symmetric and positive de�nite� Two random variables f and g are uncorrelated when
their respective components are uncorrelated�

hf gT i � ��

We now give two concrete examples of a probability distribution� The uniform distri�
bution U de�nes one of the simplest probability spaces� This distribution is constant on a
subdomain B of Rn and zero elsewhere�

dU�z� �


�

vol�B�dz
 if z � B



 elsewhere�

Both its mean and its correlation function depend on the domain B� Another important
distribution with which most people are familiar is the bell shaped Gaussian distribution�

�If a � �a�� � � � � an� �N
n	 then a vector za is de
ned as za�

�
za�
�

� � �zann and jaj � a� � a� � � � �� an�
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Figure ���� Probability theory proceeds conversely from the statistical theory�

Many phenomena �typically deviations� follow this distribution very closely� A generalization
of the onedimensional Gaussian bell distribution is given by

dG�z� �
�

����n
�
p

detC
exp

�
��

�
�z�m�TC���z�m�

�
dz
 �����

where m is an arbitrary vector and C is a positive de�nite symmetric matrix with a non
zero determinant detC� It can be proven that a random variable having this Gaussian
probability distribution has a mean of m and correlation of C� This implies that the mean
and the correlation are su�cient to determine a Gaussian distribution entirely� Generally�
this is not true for most distributions which are described by a larger �possibly in�nite� set
of moments� In fact a sum of uncorrelated random variables having the same distribution
tends towards a Gaussian distribution as the number of random variables increases� This
result is known as the central limit theorem�

We have� up to this point presented only the probability theory of random variables� that
from a de�nition of a probability space various concepts and constructs are derived� such as
the mean and the correlation� The statistical theory of random variables proceeds conversely
with respect to probability theory� From a given set of observables� estimates of the mean
values and moments are computed� from which a probability space is inferred� Usually a
given family of probability distributions is postulated whose parameters are then estimated
from the observables� Additional statistical tests can be applied to test the �goodness of �t��
In this thesis we follow the path of probability theory� since our goal is to derive stochastic
models and synthesize data� The di�erence between the two theories is illustrated in Figure
����

����� Random Functions
If you turn on the radio you will immediately know if you are
hearing classical music or the Beatles� And if you have the slightest
interest in classical music you can distinguish Bach from
sixteenth
century music� Beethoven from Bach� and Bartok from
Beethoven� You may not have heard the pieces before� but there is
something unique about the arrangement of sounds that allows
almost instant recognition� One can try to capture this �something
unique� by statistical studies� David Ruelle

Most natural phenomena are more conveniently modelled by a function rather than by a
single variable� Clouds� for example� can be modelled by a density function which varies in
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space and in time� The concept of a random variable therefore has to be extended to that
of a random function which maps an event space into a space of functions�

f �

 E �� C�d
m�
� 
�� f�

In this case each realization is an element of the space of continuous functions C�d
m�
mapping elements of Rd into Rm� The space Rd will be called the spatial domain of the
random function� To make the dependence on the dimension explicit� the random function is
referred to as a d�dimensional random function with values in an m�dimensional space� Next�
we give some examples of phenomena which can be modelled by a random function� Many
di�erent values for the dimensions d and m arise demonstrating the need for a presentation
of the theory of random functions set in arbitrary dimensions�

� Terrain� Natural terrain with no foldover structures can be modelled as a random
height function h�x
 y� assigning an elevation to each point �x
 y� of the plane� In this
case d � � and m � ��

� Ocean Waves� The temporal evolution of the surface of the ocean can be modelled
by adding a temporal dependence to the surface terrain model� s�x
 y
 t�� In this case
d � � and m � ��

� Clouds� The evolution of a density �eld of cloud water droplets in space can be
modelled by a fourdimensional random function ��x
 y
 z
 t�� In this case d � � and
m � ��

� Wind Fields� An evolving wind �eld can be modelled by a random function which
assigns a threedimensional vector to each point in spacetime� u�x
 t�� In this case
d � � and m � ��

� Mechanical Structures� The kinetics of a mechanical structure de�ned by the posi
tions of N point masses can be modelled by a random function f�t� � �x��t�
 � � � 
xN�t���
In this case d � � and m � �N �

� Particle Systems� The dynamics of a system of N particles having identical mass can
be modelled by a random function f�t� � �x��t�
v��t�$ � � � $xN�t�
vN�t��� In fact this
is the fundamental description used in Statistical Mechanics �see previous chapter�� In
this case d � � and m � �N �

Although the de�nition of a random function is analogous to that of a random variable�
the results outlined in the previous section cannot be applied directly to random functions�
The reason for this is that the space of all continuous functions is in�nite dimensional�
therefore such spaces require more sophisticated mathematical tools� In practice� however� a
random function can be reduced to a random variable by sampling it at N points x�
 � � � 
xN �
The sampled random function is then equivalent to a single random variable with values in
�Rm�N �  E �� Rm � � � � �Rm

� 
�� �f��x��
 � � � 
 f��xN��

��



Figure ���� Random functions with di�erent spatial structure� white noise �left�� slightly
correlated �middle� and highly correlated �right��

For each number N of samples we obtain a di�erent probability distribution FN called the N 
point probability distribution of the random function� These probability distributions depend
in general on the location of the samples and are therefore written as

FN �


�Rd�N � �Rm�N ��  

 �!
�x�
 � � � 
xN $ z�
 � � � 
 zN � 
�� FN�x�
 � � � 
xN $ z�
 � � � 
 zN �

An approximate description of a random function is therefore given by a �nite number of
probability distributions FN � These distributions permit us to calculate average values of
the random function� The onepoint probability distribution is used to de�ne the mean of
the random function�

�f�x� � hf�x�i �
Z
Rm

z dF��x$ z��

The mean is a deterministic function in the functional space C�d
m� and is obtained by
averaging over all possible realizations of the random function� This method of de�ning
averages is known as statistical averaging and should not be mistaken with spatial averaging�
In the latter the mean of the random function is calculated by averaging the values of a
particular realization f� of the random function over its domain�

hfi� � lim
k��

�

vol�Vk�

Z
Vk

f��x� dx
 Vk � Rd as k ���

Spatial averaging is peculiar to random functions and is often used to compute average
values from observed data� For example� the mean wind velocity at a point in space is
usually calculated by taking a time average of the measurements� In particular� spatial
averaging depends on the choice of the realization and is always equal to a constant� In
general di�erent constants are obtained for di�erent choices of the realization� The random
function is called ergodic when both averaging methods coincide� In particular� the mean �f
obtained by statistical averaging has to be constant and the spatial average hi� has to be
the same for each realization� Ergodicity is important in the statistical theory of random
functions as it relates spatial averages obtained from measurements to statistical averages�
In practice it is hard to determine whether a certain phenomenon can be modelled by an
ergodic random function� Very often the ergodic hypothesis is introduced as a matter of
convenience without further justi�cation� In this thesis we consider only statistical averages
and we consequently do not invoke the ergodic hypothesis�

The mean only characterizes the average value of the random function at di�erent points�
It does not tell us anything about the spatial structure of the random function� In Figure

��



��� we show three random functions having the same mean equal to ���� The two random
functions on the right of Figure ��� clearly have more structure than the random function on
the left� Spatial structure is characterized by probability distributions involving more than
one sample� The simplest of these is the two point probability distribution F� which permits
us to de�ne the amount of correlation between the values of the random function evaluated
at two di�erent points�

Cf �x
x
�� � hf�x�fT �x��i �

Z
Rm

Z
Rm

z�z
T
� dF��x
x

�$ z�
 z���

The correlation function is in fact a tensor product of the random function evaluated at
two di�erent points� Similarly� it is possible to de�ne higher order tensors using probability
distributions involving more than two samples� This is not necessary when both the one
point and two point probability distributions are Gaussian �see Equation ����� This implies
that the remaining N point probability distributions are entirely determined by the one and
two point probability distributions� In the remainder of this thesis we will be concerned only
with random functions having Gaussian N point probability distributions� This condition
does not always hold for natural phenomena� Indeed� probability distributions estimated
from experimental data were found to be nonGaussian  ��!� However� the theory for non
Gaussian random functions is considerably more complicated and does not lend itself easily
to analytical investigations� This assumption is usually invoked for purely practical reasons�
For our purposes� a stochastic model for a phenomenon is thus entirely speci�ed by the
mean and the correlation function only� The structure of a random function can be charac
terized by functions other than the correlation function� In fact a more intuitively appealing
characterization is given by the structure function�

Df �x
x
�� � h�f�x��� f�x���f�x��� f�x��T i

This function essentially measures the absolute di�erence between the values of the random
function at two di�erent points� In particular� for structured random functions� this function
is nearly zero when the two points are close to each other� The structure function is also
called the variogram in the Geostatistical literature  ��!� A simple calculation shows that
the structure function is related to the correlation function�

Df �x
x
�� � Cf �x
x� #Cf �x

�
x��� �Cf �x
x
��� �����

In the remainder of this section we will assume that the mean of the random function is
constant and equal to the zero vector �� This situation can always be achieved by considering
the deviation f � � f � �f instead�

����� Spectral Representation of Random Functions

Homogeneity is the simplest possible level of order because it is the
most elementary structural scheme that can be subjected to
ordering� Rudolf Arnheim

The spectral representation of a function obtained via the Fourier transform is important
in many applications� This representation characterizes the variations of a function and
allows many operations such as �ltering� to be performed or analyzed more e�ciently� It

��



is therefore natural to seek similar representations for the more general class of random
functions� It should be noted that the Fourier transform �involving a Stieltjes integral�
only exists for functions which are either periodic or which decay fast enough at in�nity�
Consequently we do not expect arbitrary random functions to have a spectral representation�
The class of random functions which are the superposition of N harmonics with random
amplitudes &fj

f�x� �
NX
j�

&fj e
ikT

j
x


clearly has a spectral representation� through superposition� which is given by the discrete
set of amplitudes� In the case when the amplitudes are independent and have zero mean�
the correlation function is given by  �
�!�

Cf �x
x
�� �

NX
j�

Sj e
ikT

j
�x��x�
 �����

where
Sj � hj&fjj�iIm�

In particular� the correlation function only depends on the di�erence r � x� � x and has
a discrete spectral representation given by the Sj� Unfortunately� most random functions
are not equal to a �nite sum of harmonics� These results� however� can be generalized to
the class of homogeneous random functions which share the property that their correlation
function depends only on the di�erence r � x� � x between two points�

Cf �x
x
�� �� Cf �r��

In particular� random functions which are the sum of a �nite number of harmonics are
homogeneous� The generalization is given by the Wiener�Khinchin theorem� This theorem
states that the correlation function of a homogeneous random function satisfyingZ

Rd
Cf �r� dr ��

has a spectral representation given by a spectral density function Sf �k��

Cf �r� �
Z
Rd
Sf �k� eik

T r dk�

Moreover� because the correlation is real valued� the spectral density satis�es

Sf ��k� � S�f �k��

In particular its diagonal elements are real values� The theorem also states that the diagonal
elements are positive and was �rst proved for homogeneous random functions by Khinchin in
�	��� However� in �	�
� Wiener proved the result for deterministic functions and their cor
relation functions de�ned using spatial averages� For the class of ergodic random functions�
Wiener�s proof is therefore applicable� hence the name of the theorem�� A consequence of
the theorem is that the trace of the spectral density

E��k� �
�

�
trSf �k�


�Apparently Einstein was already aware of the result and proved a special case in ��� ������ Therefore	
the theorem should actually be called the Einstein�Wiener�Khinchin theorem�

��



is a positive function which gives the contribution of each frequency k to the average total
energy of the random function�

hjf�x�j�i � trCf ��� �
Z
Rd

trSf�k� dk


The function E� is appropriately called the energy spectrum of the random function� An
important consequence of the WienerKhichine theorem is that any homogeneous random
function can be approximated arbitrarily closely �on average� by a �nite sum of random
harmonics� In the limit a spectral representation &f for the random function is obtained
 ��� �
�!�

f�x� �
Z
Rd

eik
Tx d&f �k�� �����

The random function &f is called the Fourier transform or the spectral representation of the
random function f � The spectral representation has the property that it is uncorrelated and
related to the spectral density�

hd&f �k�d&f��k��i � ��k� � k�Sf �k� dk
 �����

where � is the delta function� The integral of Equation ��� is written as a Stieltjes integral�
A Riemann integral in general does not exist since the spectral representation is nowhere
di�erentiable� This is a somewhat surprising result which follows from Equation ���� Indeed
for a small deviation �k it implies that

�&f�k�� � hj&f �k# �k�� &f �k�j�i 	 �k


hence the limit of �&f�k���k 	 ��
p

�k diverges for �k tending towards zero�
In some applications the assumption of homogeneity is too strong� Fluctuation of wind

�elds for example are homogeneous only over short periods of times� becoming strongly
inhomogeneous over longer periods� Compare the speed of the wind during the day to
that of the night for example� A less stringent condition is to assume that the structure
function depends only on the di�erence between two points� Random functions satisfying
this condition are called locally homogeneous� The condition depends on the di�erences
between values of the random function� not on the values themselves and is therefore weaker
than the condition of homogeneity� Indeed any homogeneous random function is also locally
homogeneous� This follows directly from the simple relation �see Equation �����

Df �r� � ��Cf ����Cf �r��� �����

The converse� however� is not true� A counter example is given by random fractals which
have been used extensively in computer graphics� A random fractal� by de�nition is a scalar
valued random function F having the following structure function�

DF �r� � jrj��d���Df�


where Df is the fractal dimension of the random fractal  �
!� The value of the fractal
dimension lies between d and d# � and characterizes the �roughness� of the random fractal�
A result similar to the WienerKhinchin theorem can be derived for locally homogeneous
random functions�

Df �r� � �
Z
Rd

�
� � eik�r

�
Sf �k� dk�

��



In fact this relation follows directly from Equation ��� when the random function is homo
geneous� The surprising fact is that it remains true for nonhomogeneous random functions�
For example� the spectral density of a random fractal can be calculated using this theorem
to be

SF �k� � jkj��

where � � �d � �Df # �  		!�

����� Isotropic Incompressible Random Functions

From the point of view of the topologist or analyst� for whom the
coninuum is a working reality� the existence of countable models
means that formal language limitations as a means of imitating
intuitive reasoning� ����� For the psychologist or philosopher�
perhaps the most interesting aspect of the situation is that any
mathematician can understand the viewpoint of another
mathematician �without having to agree to it�� This means that
what mathematician A says� although demonstratively incapable of
conveying unambiguous information about the continuum�
nevertheless is capable of bringing the brain of mathematician B to
a point where it forms an idea of the continuum which adequately
represents the ideas of A�s brain� Then B is still free to reject this
idea� Yu Manin

In the previous section we mentioned an important class of homogeneous random func
tions� A further simpli�cation is to assume that in addition� the correlation function is
invariant under arbitrary rotations and re�ections� These conditions constrain both the cor
relation function and the spectral density to a very particular form when the dimension d of
the domain of the random function is equal to the dimension m of its values� In particular
this is the case for two and three dimensional vector �elds� Since we use this particular form
to generate our turbulent motion �elds we give an outline of the proof in order to make the
result less mysterious� We give the derivation here in full vector notation� which clari�es the
steps in the proofs� Such a proof was not found in the texts on which it is based� The deriva
tion given here is based on the general theory of invariants and follows  �
!� The �rst step
in the derivation is to consider the bilinear form corresponding to the correlation function�

b�r$a
b� � aTCf �r�b
 �����

where a and b are arbitrary vectors� A nontrivial theorem from the theory of invariants of
the group of rotations and re�ections states that the bilinear form can be expressed only in
terms of the following fundamental invariants  �
�!�

aTb
 aT r
 rTb and rTr � r��

The only possible combination which yields a bilinear form is given by�

b�r$a
b� � c��r��a
Tb� # c��r��a

T r��rTb�


Where c� and c� are two arbitrary scalar functions depending on the distance r only� Com
paring with Equation ���� the correlation function is therefore given by

Cf �r� � c��r�Im # c��r�rr
T �

��



Similarly� the spectral density has to be of the form

Sf �k� � s��k�Im # s��k�kkT 
 ���	�

with k � jkj� These results imply that a stochastic model for an isotropic phenomenon is
entirely speci�ed by two onedimensional scalar functions� This is true in any dimensions
d � m� The assumption of isotropy when applicable is therefore very powerful�

The stochastic model can be reduced further if additional constraints are imposed on the
random function� One such condition is to impose that the random function is incompressible�

rT f�x� � 
 everywhere� ����
�

This condition arises in many physical problems� most notably in the hydrodynamic equa
tions of a �uid �see Section ������� We now show how this condition establishes a relation
between the functions s� and s�� To obtain an equation involving the spectral density we
multiply Equation ���
 by the random function evaluated at another location x # r and
average�

hf�x # r�rT f�x�i � rTCf �r� � ��

Di�erentiation in the spatial domain becomes a multiplication by a frequency in the spectral
domain� Therefore

�ik��Sf �k� � ��

We obtain an equation for the functions s� and s� by inserting Equation ��	 into this relation�

�ik��s��k�Im # s��k��ik��kkT � �s��k� # k�s��k���ik�� � ��

Because the frequency k is arbitrary we have s��k� � �s��k�k��� Therefore� the spectral
density depends only on a single one dimensional scalar function s�� We now give a physical
meaning to this function by relating it to the energy spectrum of the random function� For
isotropic random functions the energy spectrum E� is constant for all frequencies having
the same length k� The consequent energy spectrum is thus a function of this length only�
The contributions of all frequencies of length k to the total energy of the random function
is given by the isotropic energy spectrum E�k��

E�k� �
Z
jkjk

E��k� dk �
��

m
�

��m���
km��E��k�
 where jkj � k� ������

In other words E�k� is equal to the energy spectrum E� multiplied by the surface area of
the mdimensional unit sphere�� Taking the trace of the expression for the spectral density
given in Equation ��	 we obtain�

E��k� �
�

�
trSf �k� �

�

�
s��k�

�
trIm � tr�kkT �

k�

�
�

�

�
s��k��m� ��� ������

From Equations ��	� ���� and ���� we obtain an expression for the spectral density in terms
of the energy spectrum only�

Sf �k� �

�
E�k���m���

�
m
� �m� ��km��

��
Im � kkT

k�

�
� ��

m�k�P�k�


�� denotes the gamma function	 see	 e�g�	 ���� for its de
nition

�	



where

�m�k� �

�
E�k���m���

�
m
� �m� ��km��

� �

�

�

The function P has the properties of a projector� First� it is idempotent�

P��k� �

�
Im � kkT

k�

��
� Im � �

kkT

k�
#
k�kTk�kT

k�k�
� P�k��

In fact this operator projects a vector onto the plane normal to the frequency k� Second� we
have that PT �k� � P�k� and therefore the spectral density can be rewritten as�

Sf �k� � ��m�k�P�k�� ��m�k�P�k��T � ������

This is an important property of the spectral density and will be used in Section ����� to
synthesize turbulent wind �elds� In particular for m � �� which corresponds to a random
threedimensional vector �eld� the spectral density is

Sf �k� �
E�k�

��k�

�
I� � kkT

k�

�
� ������

These equations remain true for the spectral density density of locally isotropic random
functions that have a structure function which is invariant under rotations and re�ections�
In particular� the structure function of a locally isotropic and incompressible random function
must be of the following form  ��!�

Df �r� �
�
Dlat�r� #

r

�
D�
lat�r�

�
Im � �

�r
D�
lat�r�r r

T 


where the lateral structure Dlat is related to the isotropic energy spectrum through the
following �transform��

Dlat�r� � �
Z �

�

�
�

�
� sin kr

�kr��
#

cos kr

�kr��

�
E�k� dk�

In Section ����� we will discuss di�erent models for the the isotropic energy spectrum
based on physical principles�

��� Transformations of Random Functions

����� Derivation of Stochastic Models

In many situations a phenomenon B is caused by another phenomenon A� For example� the
wind creates waves and ripples on the surface of the ocean� In the case where a stochastic
model is known for phenomenon A� a natural question to ask is whether one can derive a
stochastic model for the resulting phenomenon B� For example� a stochastic model for the
motions of ocean waves can be derived from a stochastic model of turbulent wind �elds and
the equations of hydrodynamics  ��!� The advantage of this method is that a direct simulation
to obtain a realization of B would not be necessary if it could be synthesized directly� This

�
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Figure ���� Derivation versus simulation�

di�erence is illustrated in Figure ���� More generally let g be a random function which
models a phenomenon A causing a particular phenomenon B� The problem then becomes of
�nding a stochastic model for the random function f representing the phenomenon B� The
relation can be formalized through a mapping F �

f � Fg�
A secondorder stochastic model for phenomenon B is then obtained by calculating the mean
and the correlation function of the random function f �

�f�x� � hFg�x�i

Cf �x
x

�� � hFg�x��Fg�x���T i� ������

For example we can calculate these functions for the linear operator of di�erentiation� The
derivative of a scalar valued homogeneous random function g is given by

f�x� � rg�x��

It can be shown that the correlation function of the derivative is given by  �
�!�

Cf �r� � �rrTCg�r��

In other words the correlation function of the derivative of a random function is given by
the second derivative of the correlation of the random function� In the spectral domain we
have�

Sf �k� � �ik��ik��Sg�k� � Sg�k�kkT �

The result can be extended to the derivative of an arbitrary random function g by applying
the above results to each of its components gi�

The same procedure directly using Equation ���� can be carried out for the linear operator
of integration applied to a onedimensional random function g�

f�x� �
Z x

�
g�y� dy�

In this case we get the following relation�

�f�x� �
Z x

�
�g�y� dy and Cf �x
 x

�� �
Z x

�

Z x�

�
Cg�y
 y�� dy dy�� ������

��



This result suggests an e�cient algorithm to compute realizations of the integral of a random
function� Instead of integrating realizations of the input random function� the realization of
the integral can be computed directly from its mean and correlation function� The integrals
of Equation ���� only have to be computed once� This idea of e�ciently computing integrals
of random functions is a key ingredient to the stochastic rendering of density �elds� which
will be presented in Section ���� Next we describe the application of Equation ���� to the
�ltering of random functions�

����� Quasi�Homogeneous Random Functions

A quasi�homogeneous random function f is de�ned as a position varying a�ne transformation
of a homogeneous random function g�

f�x� � H��x� #H��x�g�x�� ������

The two functions H� and H� are deterministic� The mean of the quasihomogeneous random
function is equal to H� and the correlation is equal to�

Cf �x
x
�� � H��x�Cg�x� � x�H��x

��T 


A realization of the random function can then be generated directly from a realization g� of
the homogeneous random function�

f��x� � H��x� #H��x�g��x��

We will use this characterization to model the intensity �eld due to a random density function
in Section ����

����� Filtering of Random Functions

Filtering is a powerful technique to construct random functions� The results that are pre
sented in this section will form the basis of the synthesis techniques of the next section� A
�lter linearly transforms an input random function g into an output random function f and
is speci�ed entirely by its �lter kernel H� More precisely

f�x� �
Z
Rd
H�x
y�g�y� dy� ������

The characteristics of the output random function are therefore determined completely by
the form of the �lter kernel and by a stochastic model of the input random function� This
is the fact which lies at the heart of most synthesis techniques� First a random function
g whose realizations can be computed e�ciently is chosen� A suitable �lter kernel is then
selected such that the �ltered random function has a desired stochastic model� Equation
���� for the linear �ltering operator becomes�

�f�x� �
Z
Rd
H�x
y��g�y� dy


Cf �x
x
�� �

Z
Rd

Z
Rd
H�x
y�Cg�y
y��HT �x�
y�� dy� dy� ����	�

��



In principle then� the �lter kernel H can be chosen such that a random function with a
desired correlation function Cf is obtained� The equation� however� is very hard to solve for
the kernel in general� A more tractable solution can be obtained for homogeneous random
functions under shiftinvariant �ltering� In this case�

f�x� �
Z
Rd
H�x� y�g�y� dy�

In particular the �lter kernel is less complicated when the dimension of its domain is halved�
By de�nition the output random function is also homogeneous� and consequently both the
input and the output random functions have a spectral representation� If we denote the
Fourier transform of the kernel by &H� then shift invariant �ltering becomes a simple multi
plication in the spectral domain�

d&f �k� � &H�k�d&g�k�� ����
�

This fact is of course crucial to signal theory� The relation between the spectral density of
the input and the spectral density of the resulting random function is given by�

Sf �k� � &H�k�Sg�k� &H��k�� ������

This relation in general is easy to solve for the transform of the �lter kernel� and it is the
key equation for our spectral synthesis technique described in Section ������

��� Synthesis Algorithms

In this section we present several synthesis algorithms to generate realizations of a random
function from its stochastic model� The synthesis techniques are presented at a high level
of generality and potentially could be applied to a wide range of problems� To our knowl
edge� these algorithms have never before appeared at this level of generality� In this way�
they constitute an important contribution of this thesis to the �eld� Later in this thesis
these techniques will be used to generate turbulent wind �elds �Section ������ and random
transparency �elds �Section ����� All synthesis methods presented in this section use only
the mean and the correlation function to generate samples of a random function� For homo
geneous random functions we describe an e�cient synthesis technique based on the spectral
density� One important random function is white noise from which many other random
functions can be generated� This random function is described next�

����� White Noise

A white noise random function is characterized by a total lack of coherence� representing
therefore a state of absolute chaos� More precisely a white noise w has a zero mean and a
correlation function equal to�

Cw�r� � ��r�Im


where � is the delta distribution� Strictly speaking white noise is not an ordinary random
function� because its correlation is a distribution� The theory of random functions� however�
can be extended to the more general class of distributions  ��!� For example� the spectral

��



density of a white noise can be calculated through the generalized WienerKhinchin theorem
and the sifting property of the � to be�

Sw�k� � Im�

The properties of a white noise are therefore entirely de�ned by its one point probability dis
tribution� In the case when this distribution is Gaussian one speaks of Gaussian white noise�
Before discussing algorithms to generate white noise� we discuss algorithms to synthesize a
realization of a random variable�

Synthesizing Random Variables

Let us assume that a random variable is scalar valued� Its stochastic model is therefore
entirely given by a single valued probability distribution� In the case that this distribution
is uniform on an interval  

 �!� realizations can be synthesized directly using a pseudo
random number generator� These generators are based on simple iterative schemes with
a high period� They can be found on most systems� e�g�� drand���� on UNIX platforms�
There are many techniques to generate realizations of random variables having an arbitrary
distribution function F �z� from a realization of the uniform distribution� The inversion
method permits realizations of random variables to be calculated from realizations of uniform
random variables� This method can be used only if the distribution function F is invertible�
The method is quite simple� �rst generate a realization X� of a uniformly distributed random
variable� then compute Y� � F���X��� However� the Gaussian distribution function cannot
be inverted easily and the inversion method cannot be applied� An algorithm to generate
a realization of a Gaussian random variable is based on the central limit theorem� First
generate N uncorrelated realizations of a uniformly distributed random variable X� The
sum S� � X���� # � � � # XN�� of these realizations is then approximately a realization of a
Gaussian random variable with mean N�� and variance N���� A Gaussian random variable
with zero mean and unit variance is obtained by centring and scaling the sum  �
�!�

S �� �
S� �N��q

N���
�

s
��

N

�
S� � �

�

�
�

Good results are obtained for values as small as N � �� We now discuss several algorithms
to approximate a white noise�

Spatial Methods

In spatial domain� a white noise can be approximated by a Poisson noise process� The Pois
son process is given by a sum of uncorrelated random variables vj distributed at uncorrelated
random locations xj  �
�!�

w��x� �
NX
j�

vj����x� xj���� ������

The realizations of the random variables vj are generated using either the uniform or the
Gaussian random number generators discussed in the previous subsection� An e�cient
scheme based on lookup tables is described in  ��!� Realizations for the random locations
can be generated by �rst subdividing the space into a grid� A �xed number of realizations

��



are then generated within each gridcell  �	!� A white noise can also be approximated by a
set of uncorrelated random variables vj de�ned at a �xed number of sample locations xj�
This is a special case of Poisson noise where the locations are deterministic� Values of the
white noise at any point are then approximated through an interpolant ��

w��x� �
NX
j�

vj����x� xj��

For samples de�ned on a regular grid many choices for the interpolant � are possible� in
cluding polynomial splines  ��!�

Spectral Methods

In the spectral domain an approximation of a realization of a white noise can be obtained
by assigning N independent uncorrelated complex random variables vj to a set of discrete
wave numbers kj� From the spectral representation �see Eq� ���� a realization for the white
noise is approximated by�

w��x� �
NX
j�

vj��e
ikTj��x
 ������

i�e�� by a �nite number of random �waves�� A realization for each of the components of the
random variables vj is computed by generating a Gaussian distributed amplitude A and a
uniformly distributed phase � and equating it to Aei���

����� Spectral Synthesis

We now describe a synthesis technique for homogeneous random functions� Any homoge
neous random function f can be represented as the convolution of a white noise with a kernel
H� From Equation ���� the kernel is de�ned by

Sf �k� � &H�k�Sw�k� &H��k� � &H�k� &H��k��

Because the spectral density is a positive de�nite symmetric matrix� the matrix &H is actually
real�

Sf �k� � &H�k� &HT �k�� ������

There is an in�nite set of kernels that have this property� the kernel H� � &HQ� with Q� an
orthonormal transformation also satis�es Eq� ����� A unique decomposition is obtained when
an additional m�m � ���� constraints are added� For example� there is a stable algorithm
called the Cholesky Decomposition which calculates &H from the spectral density such that
all its elements below the diagonal are zero� The complexity of this decomposition is O�m���
Using the approximation of a white noise given in Equation ���� and the relationship between
the random spectral representations given in Eq� ���
� it is possible to approximate a
realization of the random function f by�

f��x� �
NX
j�

&H�kj�vj�� e
ikTj x �

NX
j�

&fj e
ikTj x� ������
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Figure ���� Symmetry relation for the fast Fourier transform in one� two and three dimen
sions�

We now describe an algorithm based on the Fast Fourier Transform �FFT� when the fre
quencies are sampled on a regular grid of dimension N � Md� We label these frequencies
using a multiindex a � f

 � � � 
M � �gd� i�e�� kj � ka� In order for the realization of the
random functions to be real valued� the sampled frequencies have to satisfy the following
symmetries  ��!�

&fa � &f�a��a������ad� � &f��M�a��M�a������M�ad� � &f�M��a a � f

 � � � 
M � �gd

where � � ��
 �
 � � � 
 �� and the indices are taken modulo M such that M �
 � 
� In Figure

��� we illustrate the geometric meaning of these symmetries for the cases d � �
 �
 �� In
particular� the symmetry conditions imply that elements whose index satis�es a � M� � a

have a zero imaginary part� These are exactly the multiindices whose elements are either 

or M��� The symmetry conditions imply that only half of the terms have to be computed�
The following algorithm generates all coe�cients with the desired properties�

for b � f

 � � � 
M � �gd�� do
for k � f

 � � � 
M��g do

a � �b
 k�

solve Equation ���� for the kernel &H�ka�
synthesize a realization va��
compute &fa � &H�ka�va��
&fM��a � &f�a

end for
end for
for a � f

M��gd do

set the imaginary part of &fa to zero
end for

An approximation of a realization of the random function is then obtained by taking m
inverse FFTs� one for each component�

f� � FFT��� &f��
 � � � 
 fm � FFT��� &fm��

The above algorithm can be generalized somewhat by having di�erent numbersMk of samples
for each of the dimensions and the multiindex a then takes values in the space f

 � � � 
M��

��



�g � � � � � f

 � � � 
Md � �g� For example� for random functions evolving over time� a higher
sampling rate for the time dimension might be necessary to remove periodic artifacts� The
complexity of this algorithm is therefore the sum of the complexity of the initialization pass
and the complexity of the m FFT�s� and is therefore O�m�N # mN logN�� The resulting
�eld is de�ned in the spatial domain on a discrete set of samples xa� The amount of storage
required is therefore O�mN�� The property of the set is that the random function is periodic
on it� This can be either an advantage or a disadvantage� depending on the application�
An advantage is that even a small set of samples de�nes a �eld which is de�ned everywhere
in space� When the random function is directly observable� however� the periodicity might
appear arti�cial which is a decided disadvantage� This method is not suited to problems
in which the function is evaluated only at sparsely located points in space� because all the
spatial samples have to be computed at once�

A similar algorithm was proposed by Shinozuka  ��� ��!� As in our algorithm the a
realization of a random function with prescribed spectral density is generated by �ltering
a white noise in the frequency domain� However� they did not implement the algorithm
using the fast Fourier transform� but expressed the realization as a sum of weighted cosine
functions�

In computer graphics� this synthesis technique was used by Voss to create fractal moun
tains and clouds  		!� by Mastin et al� to generate random ocean waves  ��! and by Sakas to
generate random density distribution for gaseous phenomena  ��!� These techniques were�
however� restricted to scalar valued random functions� We have presented a generalization
of these methods to arbitrary dimensions�

����� Spatial Synthesis

For many applications the spectral synthesis technique is not appropriate� Its main disad
vantages are that the whole set of spatial samples has to be generated at once and that for
some applications the periodicity is undesirable� It is also limited to locally homogeneous
random functions� In this section we present some synthesis techniques which operate in the
spatial domain� We start with a technique that works for random functions with arbitrary
correlation functions and then give some alternatives to the spectral synthesis algorithms for
homogeneous random functions�

Realizations of a nonhomogeneous random function with arbitrary correlation Cf �x
x
��

can be generated by �ltering white noise in the spatial domain� The �lter in this case is
determined by using Equation ���	�

Cf �x
x
�� �

Z
Rn

H�x
y�HT�x�
y� dy�

In general� this equation cannot be solved analytically for the �lter kernel� By discretizing
the domain of the correlation function into N discrete points xi an approximation Hjk �
H�xj
xk� can be obtained by numerically solving the linear system�

C�xj 
xk� �
NX
l�

HjlH
T
lk� i
 j � �
 � � � 
 N�

Because the correlation function is positive de�nite and symmetric� this system of mN
equations can be solved by a Cholesky decomposition with time complexity O��mN����
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Once a solution is obtained for the discrete kernel Hjk� a realization of the random function
can be obtained on the discretization �see Eq� ������

f��xj� �
NX
k�

Hjkvk��


where the vk are independent random variables synthesized using any one of the techniques
described in Section ������ An approximation of a realization of the function can then be
obtained in time O��mN���� This method is therefore signi�cantly more expensive than the
spectral synthesis algorithm� However� this spatial synthesis algorithm is more general since
it is not restricted to the class of homogeneous random functions�

We now present some techniques to generate homogeneous random functions in the spatial
domain� The �lter kernel is obtained as the inverse Fourier transform of the kernel &H
obtained by solving Equation ���� analytically� In some instances the kernel is H is known
in advance� A realization of the random function can be computed by �ltering a Poisson
noise approximation of a white noise� Inserting the Poisson noise de�ned by Equation ����
into Equation ���� we get the following approximation�

f��x� �
NX
j�

H�x� xj���vj���

Lewis called this method sparse convolution and used it to synthesize scalar valued random
functions  �	!� For arbitrary �lter kernels� the complexity of this algorithm is O�m�Nne��
where ne is the number of points at which the realization is evaluated� In cases where the
�lter kernel has a small support� the sum in the approximation becomes independent of N
and the complexity therefore is dominated by the number of evaluations� O�m�ne�� The
storage requirements are also signi�cantly lower� O�m��� This technique is therefore an
improvement over the spectral synthesis technique when periodicity is not desired or when
the random function has to be evaluated on a small sparse set of samples�

��� Turbulent Wind Fields

We now turn to an important application of the theory of random function� In this section
we present a new stochastic model for evolving threedimensional turbulent wind �elds� This
model is a key component in almost all of our simulations� Without a turbulent wind �eld�
the animations would lack the chaotic look so characteristic of most natural phenomena� We
�rst show how a turbulent wind �eld is a special case of a random function� Thereafter we give
several models for the energy spectrum which entirely characterize isotropic incompressible
turbulent wind �elds� Finally we specialize the general spectral synthesis technique to the
case of turbulent wind �elds�
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����� Stochastic Model

A turbulent wind �eld is a random function whose realizations are threedimensional vector
�elds de�ned over space and time�

u�x
 t� �

�
B� u��x�
 x�
 x�
 t�
u��x�
 x�
 x�
 t�
u��x�
 x�
 x�
 t�

�
CA �

We will assume that the turbulent wind �eld is homogeneous and locally isotropic in its
spatial variable x� This situation is highly idealized and is rarely encountered in reality� In
fact only wind �elds de�ned in a domain without boundaries can be exactly isotropic� Any
boundary� such as a wall will introduce anisotropies into the wind �eld� The assumption of
local isotropy implies that isotropy holds approximately only for the small structures of the
wind �eld� Close approximations to locally isotropic wind �elds are obtained in laboratory
experiments by blowing air through a �ne grid� However� in practice many real �ows have
spectral densities which are very close to the ones predicted by the isotropic theory� The
results presented in this thesis are valid only for locally isotropic turbulent wind �elds� Since
we assume that the wind �eld is locally isotropic only in its spatial variable� it is convenient
to separate each frequency into a wave number k and a temporal frequency �� Hence� the
formulas derived for locally isotropic random functions apply to the spatial variable only� In
particular the energy spectrum� of the wind �eld can be written in terms of the temporal
variable t or in terms of the spatial frequency �� In the latter we will denote the energy
spectrum by E�� For turbulent wind �elds� the energy spectrum now has a clear physical
meaning since it gives the contribution of all wave numbers of length k to the average kinetic
energy of the wind �eld at time t�Z �

�
E�k
 t� dk �

�

�
hju�x
 t�j�i�

Following the derivations of Section ������ and in particular Equation ����� the spectral
density is a function of the spectral density E only�

Sf �k
 t� �
E�k
 t�

��k�

�
k�I� � kkT

�
�

The goal of the statistical theory of locally isotropic turbulence is to develop models for the
energy spectrum from various physical arguments� Some of the methodology and some of
the models are presented in the next section�

����� The Energy Spectrum

The �rst step in characterizing locally isotropic turbulence is to derive an equation for the
energy spectrum from the equations of NavierStokes� Such an equation can indeed be
obtained by the following procedure  ��!� Let NS�u�x
 t�� � 
 denote the NavierStokes
equation for the wind �eld� Then another equation can be constructed from it as follows�

hu�x# r
 t�NS�u�x
 t��T # NS�u�x# r
 t��uT �x
 t�i � 
�

�We drop the �isotropic� quali
er since only locally isotropic random functions are considered in this
section�

�	
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Figure ���� Energy spectrum versus kinetic energy transfer and corresponding eddies�

This equation establishes a relation between the correlation tensor and a tensor of order
three� This relation is known as the Karman�Howarth equations� In the frequency domain
this equation yields the following equation for the energy spectrum��

�

�t
# ��k�

�
E�k
 t� � T �k
 t�
 ������

where � is the viscosity of the wind �eld� The function T corresponds to the triple velocity
correlations coming from the nonlinear interactions of the NavierStokes equations  ��!�
Since neither of the terms on the left hand side of the equation are responsible for the energy
transfer between the di�erent wave numbers� this function must be� Therefore it is called the
kinetic energy transfer and can be interpreted as the transfer of kinetic energy through eddies
of size k��� An �eddie� is loosely speaking� a visible structure of a certain size in the �uid�
In fact an eddie is not localized in any way but rather refers to the set of structures having
a given size� We now present the famous Kolmogorov energy spectrum following Chorin�s
derivation  ��!� In the case where the the viscosity � of the wind is very low� the �ow is
extremely turbulent and approaches a steady state� i�e��

�E�k
 t�

�t
� 
 and E�k
 t� � E�k��

From Equation ���� it then follows that the kinetic energy transfer is equal to

T �k� � ��k�E�k��

In particular� the support of the energy spectrum and the kinetic energy transfer are disjoint
as illustrated in Figure ��� because of the multiplication by k�� The energy spectrum peaks
at an eddie of size L and corresponds to the scales where the energy is injected into the
wind �eld �by waving your hand or blowing for example�� The kinetic energy transfer� on
the other hand� peaks at smaller eddies of size l� near the dissipation range of the wind �eld�
The eddies between these extremes are the inertial range in which the transfer from the
larger eddies to the smaller eddies occurs� Kolmogorov postulated that the energy spectrum
in the inertial range depends only on the length of the wave number and on the rate of
dissipation of kinetic energy�

� �
�hu�i
�t

�

�




The sole combination of these quantities which has the units of energy is

EK�k� � CK�
�
�k��
� for ��L � k � ��l�


where CK is a dimensionless constant which can be determined experimentally and is usually
on the order of ���  ��!� The intuitive picture behind the Kolmogorov spectrum is that of
an energy cascade from the larger eddies towards the smaller eddies �again see Figure �����
We will not present other energy spectra E�k� for the steady state� These can be found for
example in  ��!� We will now present a simple method of including the time dependence into
the energy spectrum�

A possible method of including a time dependence is to assume that the turbulence
�travels� at a mean velocity v � �v�
 v�
 v���

u�x
 t� � u�x� � t�v�
 x� � t�v�
 x� � t�v�
 
��

This is known as the Taylor Hypothesis in the statistical �uid dynamics literature� This
assumption has been used by Shinya and Fournier to simulate twodimensional turbulent
wind �elds  �	!� In this thesis we model the temporal frequency dependence of the energy
spectrum E��k
 �� by multiplying the Kolmogorov energy spectrum EK�k� by a temporal
spread function Gk����

E��k
 �� � EK�k�Gk���� ������

The temporal spread function is subject to�Z
R
E ��k
 �� d� � EK�k�

Z
R
Gk��� d� � EK�k��

This guarantees conservation of kinetic energy� Furthermore� we want the small eddies to be
less correlated in time than the large eddies� Spatially� this means that small eddies spin�
ebb and �ow more quickly than large eddies$ this behaviour can be observed when watching
currents in a water stream or smoke rising from a cigarette� We can achieve this behaviour
by setting Gk to a Gaussian with a standard deviation proportional to k�

Gk��� �
�p

�� k�
exp

�
� ��

�k���

�
� ������

Indeed� for large eddies �as k � 
�� Gk is a spike at the origin� corresponding to the spectral
distribution of a highlycorrelated signal$ for small eddies �as k � �� the spectral density
becomes constant� denoting an uncorrelated signal�

����� Synthesis of Turbulent Wind Fields

To synthesize realizations of turbulent wind �elds� we will use the spectral synthesis algorithm
described in Section ������ The properties of the resulting �eld are particularly nice in the
case of turbulent wind �elds� The periodicity of the wind �eld on the grid allows us to have
a �eld de�ned for all locations of space and all times� Even a small �eld� such as M � ���
has a structure which is rich enough to generate complicated motion� The periodicity is
not noticeable because instead of observing the wind �eld directly we observe the e�ect of
the wind �eld on other systems� The temporal evolution is very important in this context�
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The e�ects of a periodic wind �eld in a steady state� i�e�� frozen in time� become visible�
Furthermore� because the values of the wind �eld are precomputed on a regular grid� it
can be computed at all other locations very e�ciently through interpolation� This is very
important in the design process� because an animator can view the e�ect of the wind �eld
in real time� For these reasons we have chosen the spectral synthesis technique to generate
realizations of a turbulent wind �eld� This technique from Section ����� is repeated here for
the special case of turbulent wind �elds because of certain peculiarities�

We proved in Section ����� that the spectral density of an isotropic random function can
be decomposed into a product of a projector and an energy spectrum �see Equation ������
The �lter kernel producing such a spectral density from a white noise is then given by�

&H�k
 �� � ���k
 ��P�k�


where

���k
 �� �

�
EK�k�Gk���

��k�

� �

�

�

We assume that the the wind �eld is sampled on a regular grid of size M��Mt� i�e�� that the
spatial resolution is given by M and that the temporal resolution is given by Mt� A realization
for each sample &ui�j�k�l is then obtained by �rst generating three uncorrelated realizations of
a complex Gaussian random variable and then multiplying them by the transform of the
�lter kernel�

Compute &ui�j�k�l�
generate three Gaussian random variables A�� A� and A� and � uniformly distributed

random variables ��� �� and ���
v� � A�e

i���� v� � A�e
i��� and v� � A�e

i���

k� � �i�M � k� � �j�M � k� � �k�M and � � �l�Mt

k �
q
k�� # k�� # k��

�&ui�j�k�l�� � ���k
 ��
��

�� k�
�

k�

�
v� � k�k�

k�
v� � k�k�

k�
v�
�

�&ui�j�k�l�� � ���k
 ��
�
�k�k�

k�
v� #

�
� � k�

�

k�

�
v� � k�k�

k�
v�
�

�&ui�j�k�l�� � ���k
 ��
�
�k�k�

k�
v� � k�k�

k�
v� #

�
�� k�

�

k�

�
v�
�

Given this de�nition all samples are initialized by the following algorithm which is a particu
lar case of the initialization step given in Section ������ We assume that the spatial resolution
is given by M and that the temporal resolution is given by Mt�

Initialize�
for i
 j
 k � f

 � � � 
M � �g do

for l � 

 � � � 
Mt�� do
Compute &ui�j�k�l
&uM�i�M�j�M�k�Mt�l � &u�i�j�k�l

end for
end for
for i
 j
 k � f

M��g do

Set imaginary part of &ui�j�k�� and &ui�j�k�Mt
� to zero
end for
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After the initialization step we perform three inverse FFT�s to obtain a realization of the
turbulent wind �eld� In Chapter � we show how this wind �eld is used in the depiction
of smoke� steam and �re� To conclude this chapter we mention several other techniques to
synthesize turbulent wind �elds�

����� Other Synthesis Techniques

Random Frequencies

Several techniques have been developed which are based on models in which the spatial
and temporal frequencies are chosen randomly� In this case the turbulent wind �eld is
approximated by�

u�x
 t� �
NX
j�

P�kj�vje
ikT

j
x��j t


where the frequencies and the real amplitudes vj are mutually independent random variables�
If the random frequencies have an isotropic probability density function given by

��jkj
 �� �
E ��jkj
 ��

hjuj�i 


then the wind �eld has the required energy spectral density  �
!� A synthesis algorithm is
then obtained by �rst generating N independent frequencies� Each frequency is generated
by the following algorithm�

Generate a sample �k�
 ��� from the distribution ��

Generate a uniformly distributed unit random vector &k��

return k�&k�

The amplitudes are generated from a Gaussian distribution� This synthesis technique is
preferable if only a few random frequencies are su�cient�

Sparse Convolution

We can synthesize turbulent wind �elds directly in the spatial domain using the sparse
convolution technique presented in Section ������ For this method we need the convolution
�lter in the spatial domain� This can be achieved by taking the inverse Fourier transform of
the �lter kernel�

&H�k
 �� � ���k
 ��P�k� � ���k
 ��

�
I� � kkT

k�

�
�

Once the Fourier transform has been calculated the �eld can be evaluated anywhere in space
by generating a set of N independent realizations of random spacetime locations �xj
 tj� and
a set of N realizations of a random vector vj� A realization of the wind �eld in the spatial
domain is then given by�

u��x
 t� �
NX
j�

H�x� xj��
 t� tj���vj���
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In particular this method can be used to generate nonhomogeneous turbulent random func
tions by modifying the �lter kernel locally� For example this can be achieved by multiplying
the the smoothing kernel by a function f which depends on location and on time�

H�x� xj��
 t� tj��� �� f�x
 t�H�x� xj��
 t� tj����

Such extensions have not been explored in this thesis but are a promising direction of future
research�
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Chapter �

Solution of Equations on Unordered

Data

The physical models used in this thesis for the propagation of light and the evolution of gases
are partial di�erential equations �PDEs� de�ned in a threedimensional space �see Chapter
��� The approximate solution of PDEs on threedimensional grids is generally intractable�
Indeed� let us assume that we want to sample a physical quantity having spatial structures
with sizes ranging from a small distance l to the the size of the system L� In this case we
need approximately N � �L�l�� samples on a regular grid� For example� a simulation of the
dynamics of clouds involves spatial structures ranging from a couple of centimeters �l � 
�
��
to a couple of kilometers �L � �


�� Such simulations therefore require that the physical
properties of the cloud be stored at

��


�
�
��� � ��

 


�� � �
��

grid points� Assuming that each property can be stored using only a couple of bytes� we
would need a storage capacity of �
� megabytes' This result remains true even for simple
advectiondi�usion equations� Clearly then� in order to obtain tractable solutions� we have
to develop ad hoc numerical methods for the particular system of equations under study�
In this chapter we present a general method of solution for PDEs on an unordered set of
samples� In particular an advection term in the PDE can be resolved by moving the samples
along the advecting force� The data points in this case can thus be interpreted as �particles��
However� these particles should not be mistaken for the elementary particles from which we
have derived our physical models� The moving samples are actually blobs of matter and the
equations governing their evolution are di�erent from the mechanical equations governing
elementary particle systems� In the remainder of this thesis therefore we will refer to these
samples as blobs�

��� Smoothing Kernels

The color sensations which give the e	ect of light are abstractions
which do not permit me to cover my canvas or to continue the
delimitation of the objects when the points of contact are tenuous
and delicate� Paul C�ezanne
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In most numerical methods the solution of an equation is obtained by sampling the
physical quantities at a given scale� In many cases� such as in the �nite di�erence method�
the quantities are sampled on a grid� In this case the method can only resolve scales which
are bigger than the grid spacing� Let f�x
 t� be a function modelling the physical properties of
a given phenomenon� Most numerical methods compute a solution for the smoothed version
f��x
 t� of the function� Such a smoothing can be represented in general as a convolution
with a shift invariant smoothing kernel W �r
 ��� where � is the smallest scale resolved by the
numerical method�

f��x
 t� �
Z
R�

W �x� x�
 ��f�x�
 t� dx�� �����

The smoothing kernel W �r
 �� is normalized usually so that its integral over the whole space
is unity� and tends towards a delta distribution for the scale � tending to zero� The latter
condition is required for the original function f to be recovered�

f��x
 t� � f�x
 t�
 as �� 
�

An important example of a kernel having these properties is the Gaussian smoothing kernel
de�ned by�

G��r� �
�

�����
���
exp

�
�jrj

�

���

�
� �����

If the smoothing kernel only depends on the magnitude of its argument and is su�ciently
di�erentiable� as is the case for the Gaussian kernel� then the smooth approximation is
accurate up to O����� In general� if a spherically symmetric kernel has zero moments up to
an order p� i�e�� when Z �

�
rqW �r
 �� dr � 

 
 � q � p


then the approximation is of order p # �� This follows directly from a Taylor expansion of
the function f in its spatial variable�

f��x
 t� �
Z �

�

Z
jsjr

W �r
 ��

�
f�x
 t� # rf ��x
 t� #

r�

�
f ���x
 t� # � � �

�
ds dr

� f�x
 t� # ��
f �p����x
 t�

�p # ��'

Z �

�
W �r
 ��rp�� dr � f�x
 t� # O��p����

The last equality follows directly when the smoothing kernel is a properly scaled version of
a smoothing kernel W� of width ��

W �r
 �� �
�

��
W�

�
r

�

�
�

The Gaussian smoothing kernel� for example� is obtained in this fashion� The integral
involved in the �p # ��th term is then calculated using the change in variable u � r���

Z �

�
W �r
 ��rp�� dr �

Z �

�

�

��
W��u��p��up�� �du � �p��

Z �

�
W��u�up�� du�

Since the last integral is �nite� the term is of order p # � in ��

��



Figure ���� The triangle function �left�� its �rst derivative �middle� and its second derivative
�right��

Consequently� for even smoothing kernels �of order ��� f�x
 t� can always be replaced by
its smoothed equivalent to within the order of accuracy of the smoothing process itself� For
example� this implies that

�f�x
 t�g�x
 t��� � f��x
 t�g��x
 t� # O����� �����

The same is true for operations such as di�erentiation�

�rf�x
 t��� � rf��x
 t� # O����� �����

Consider the �nite di�erence method on the real line� The values of the function f are
reconstructed usually by linear interpolation of neighbouring points of the subdivision� This
interpolation corresponds to a smoothing with a triangular kernel�

WT �r
 �� �


� � jrj��
 jrj � �

 otherwise

Let xi denote the points of the �nite di�erence subdivision on which the �eld is sampled�
The integral of Equation ��� then reduces to a sum�

f��x
 t� � ��
NX
i�

f�xi
 t�WT �x� xi
 ��� �����

The usual �nite di�erence approximations for the gradient and the Laplacian naturally
follow from this formulation� For example� the second derivative of the smoothed �eld at a
sample xj becomes a central di�erence�

��

�x�
f��xj
 t� �

NX
i�

f�xi
 t�
��

�x�
WT �xj � xi
 �� �

��f�xj� # f�xj��� # f�xj���

��
�

This follows directly from the fact that the �secondderivative� of a triangle function is
equal to three delta impulses at the discontinuities �see Figure ����� Thus we see that we can
de�ne di�erential operators on a set of samples by applying them to the smoothing kernel�
Interestingly� this procedure is used in the theory of distributions  �
�! which generalizes the
concepts and results of calculus to distributions� Distributions are de�ned on a space of test
functions rather than on the reals� The delta distribution� for example� maps each function
to its value at the origin� The derivative of a distribution is then de�ned as the distribution

��



evaluated at the derivative of the test function� Consequently the derivative of the delta
distribution is equal to the derivative of the test function evaluated at the origin�

d�

dx
ffg�x� � �


df

dx

�
�

df

dx
�
��

These ideas are generalized to physical quantities sampled using more general smoothing
kernels in the next section�

��� The Blob Representation

����� Basic Model

Let x��t�
 � � � 
xN�t� be N arbitrarily located samples varying over time� To each sample we
can associate a mass of matter mi�t� and consequently� we de�ne a sample mass density by

��x
 t� �
NX
i�

mi�t���x� xi�t��� �����

The smoothed version at a scale � of this density is then given by�

���x
 t� �
NX
i�

mi�t�W �x� xi�t�
 ��� �����

In other words� the smoothing has the e�ect of smearing out the mass of each sample in
space� To each sample we can thus associate a blob density of mass�

Bi�x
 t
 �� � mi�t�W �x� xi�t�
 ���

In particular� the scaled blob Bi�M � where M�t� is the total mass� can be interpreted as
the probability distribution of �nding a particle belonging to the blob at location x and
time t� The smoothing length in this case gives the uncertainty we have about the blob�
In general we can assume that this uncertainty is speci�c to each blob and hence � � �i�
Representations similar to that of the density given in Equation ��� can be obtained for any
other physical property described by a function f using Equation ��� again�

��f���x
 t� �
Z
f�x�
 t���x�
 t�W �x� x�
 �� dx� �

NX
i�

mi�t�fi�t�W �x� xi�t�
 ��


where fi�t� � f�xi�t�
 t�� The sum on the right hand side can be interpreted as a MonteCarlo
estimate of the integral and the error is therefore O���

p
N �� In practice� when the particles

are nearly equidistributed� the error is more like O��logN���N�  �	!� Using Equation ����
we obtain an expression for the smoothed function f �

f��x
 t� �
�

���x
 t�

NX
i�

mi�t�fi�t�W �x� xi�t�
 ��� �����

Derivation of another expression can be obtained if we consider that � is approximately equal
to its smoothed version and therefore use Equation ����

f��x
 t� � �f�������x
 t� �
NX
i�

mi�t�

�i�t�
fi�t�W �x� xi�t�
 ��
 ���	�

where �i�t� � ��xi�t�
 t��

��



����� Multi�Scale Blob Models
If we start from the bottom of a tree
covered slope and gradually
move away from it� it will undergo a continuous change in aspect�
Beyond a certain distance we discover that the change is not merely
in size but in sharpness and hue� It is di�cult� however� to
determine just where the visual transformation took place� We can
retrace our steps and repeat the process� but this is likely only to
add to our confusion� T� Higuchi

In this section we describe how a hierarchical model of blobs at di�erent scales can be
constructed from the basic blob representation� In many applications we need a description
of a phenomenon at various scales of detail� From the initial representation� we build a
binary tree data structure� At each level of detail� half as many blobs are considered� and
the tree is therefore of depth dlogNe� The algorithm is straightforward� At each larger scale�
adjacent blobs are grouped together into a new blob� The new smoothing scale at each level
is application dependent but is usually bigger than the scale of the �ner level� The following
algorithm uses two routines called �GetNearest�b�L�� and �GroupBlobs�b�b���� The former
returns the blob nearest to the blob b in the set L� The function GroupBlobs groups two
blobs b and b� together into a �bigger� blob that is returned by the function� The following
algorithm then computes the treelike hierarchical data structure�

For i � f�
 � � � 
 Ng do
bi �left� bi �right� 


end for
L � fb�
 � � � 
 bNg
Do

L� � �
while L �� � do

b � �rst element of the set L
L � L� fbg
b� � GetNearest�b
 L�
L � L� fb�g
b�� � GroupBlobs�b
 b��
b�� �left� b
b�� �right� b�

L� � L� � fb��g
end while
L � L�

until jLj � �

Let f�K� with K � jLj denote the complexity of the function �GetNearest�� In order to
simplify the following analysis� we assume that N � �d� The complexity of the algorithm is
then given by

T �N� � f�N� # f�N � �� # f�N � �� # � � �# f��� #

f�N��� # f�N�� � �� # � � �# f��� #
���

f��� # f��� #

�	



Figure ���� Multiscale blob representation of a Bon�re� From top to bottom and left to
right� �a� rendered version of the �re� �b� � blobs� �c� �� blobs and �d� ��� blobs�

f���

�
dX

k�

�k��X
l�

f��l�

When straightforward exhaustive nearest neighbour search is used� the complexity of �Get
Nearest� is f�K� � K and the complexity of the algorithm is�

T �N� �
dX

k�

�k����k�� # �� �
dX

k�

�k�� #
dX

k�

�k�� �
N�

�
# N � �

�
� O�N���

In general� this is prohibitively expensive� A more e�cient algorithm is obtained by storing
the blobs in a grid at each level and by considering blobs in neighbouring cells only� When
the blobs are distributed uniformly� we can assume that the number of blobs in each grid
cell is independent of the number of blobs� In this situation� the complexity of the nearest
neighbour search is equal to a constant f�� Consequently� the complexity of the algorithm

�




is�

T �N� �
dX

k�

��k�� � ��f� � ��d � � � d�f� � �N � � � logN�f� � O�N��

We have implemented both algorithms and have found that in most practical situations� the
second method is an order of magnitude faster than the �rst method� This is good evidence
for our analysis� One problem with the second approach� however� is that it requires a
threedimensional grid� In practice� we �rst attempt to allocate enough memory for a grid
of spacing �� If this fails� we must then build the tree using the more expensive approach�
Figure ��� depicts di�erent levels of the multiscale representation of a bon�re modelled using
��� blobs�

��� Numerical Blob Methods

We now apply the blob representation to the approximate solution of di�usion and advection
di�usion equations� The algorithms we present have not appeared before and are another
contribution of this thesis� Although the accuracy of the algorithms may not be high enough
for applications in other disciplines� their e�ectiveness in many areas of computer graphics is
demonstrated in this thesis� In the last subsection of this chapter we mention similar work
done in computational �uid dynamics� These algorithms can therefore be applied to the
animation of water�

����� Steady State Di�usion Equations

In many situations we are interested in the steady state of the di�usion equation� i�e�� 	U
	t

� 

in Equation ��� and therefore U�x
 t� � U�x�� This is the case� for example in the di�usion
approximation of the propagation of light through a participating medium� The steadystate
of Equation ��� �with Fext � �� corresponds to

r � ���x�rU�x��� ��x�U�x� # S�x� � 
� ����
�

We can solve this equation by interpreting the set of blobs fBi�x
 �i�g as a �nite element
basis �see Section ������� Note that we have also allowed for di�erent smoothing scales� First
we observe that the di�usion operator is actually given by

r � ���x�rU�x�� � r��x� � rU�x� # ��x�r�U�x��

Then� by using a blob representation for both the function U�x� and the source term S�x��

U��x� �
�

���x�

NX
i�

UiBi�x
 �i�

S��x� �
�

���x�

NX
i�

SiBi�x
 �i�


and substituting them back into Equation ���
 we get that

NX
i�

Ui

�
r��x� � rBi�x
 �i� # ��x�r�Bi�x
 �i�� ��x�Bi�x
 �i�

�
# SiBi�x
 �i� � 
� ������
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where we have used Equations ��� and ��� when applicable� A system of N linear equations
is obtained by either evaluating Equation ���� at the centre of the blobs xj �collocation� or
by multiplying the equation by a blob Bj and integrating it over the entire space �Galerkin
method�� The former gives us a set of N linear equations which can be solved directly� if
N is not too large� using an LU decomposition like  ��!� This method� however� becomes
unstable if the centres xj are very proximate�

In the Galerkin method� the integrals of the product of two basis functions have to be
calculated� When the smoothing kernel is Gaussian �Equation ����� these integrals can be
computed exactly�

G�i��j �
Z
R�

G�i�x� xi�G�j �x� xj� dx

� G�i�x� �G�j �x� �xj � xi��

� Gp
��i��j

�
�xj � xi��

The Galerkin method also requires the evaluation of the integral of a basis function multiplied
by the gradient and the Laplacian of another basis function� respectively� Again for the case
of a Gaussian smoothing kernel� these integrals can be computed�

rG���i �
Z
R�

rG�i�x� xi�G�j �x� xj� dx � rGp
��
i
���

j

�xj � xi�


r�G�i��j �
Z
R�

r�G�i�x� xi�G�j �x� xj� dx � r�Gp
��i��

�
j
�xj � xi��

Hence� Equation ���� is given by the following N linear equations�

NX
i�

Uimi

�
r��x� � rGi�j # ��x�r�Gi�j � ��x�Gi�j

�
#SimiGi�j � 

 j � �
 � � � 
 N


where G�i
 j� � Gp
��i��

�
j

�xj � xi�� In this case the Galerkin method is actually equivalent

to a collocation method with bigger blobs� This method is therefore also prone to numerical
instabilities when it is solved by matrix inversion�

����� Advection�Di�usion Equations

We now turn to the problem of solving the more general advectiondi�usion equations� Let
us rewrite Equation ��� by assuming that the di�usion rate � is constant and� for notational
convenience� that v � � and m � ��

�U

�t
# Fext � rU � �r�U � �U # S� ������

Let x�t� denote the motion of a particle satisfying�

d

dt
x�t� � Fext�x�t�
 t�
 x�
� � x��

In other words the trajectory is a streamline of the force �eld Fext �this trajectory should not
be confused with dynamics of a point particle subjected to the force �eld�� The variation

��



of the physical quantity U on this particle becomes a function of time only and its time
derivative is equal to

d

dt
U�x�t�
 t� �

�

�t
U�x�t�
 t� #

d

dt
x�t� � rU�x�t�
 t� �

�

�t
U # Fext � rU�

Equation ���� can thus be rewritten for the evolution of the function U�t� on a particle as

d

dt
U � �r�U � �U # S�

This derivative is often called the total derivative of a function and is sometimes denoted by
D
Dt

� The source term is modelled by generating new blobs over time at locations according
to the probability density �S obtained from the source term�

�S�x
 t� � S�x
 t�
��Z

R�

S�x�
 t� dx�
�
�

Generally� the source term is constant on a given region and zero elsewhere so that we can
generate the locations directly from a uniform distribution� The rate of creation of new
blobs can be controlled either by �xing the initial value Ui�
� of the function or by �xing the
number N� of new blobs at each time step� For a given time step �t the two are related by�

N�Ui�
� � �t S�xi
 t��

In addition with each new blob we assign a �xed smoothing scale ��
� provided by the user�
Once the blobs are created their evolution is governed by the advection di�usion equation
without the source term� In particular� by using a blob representation for the function U�x
 t�
we can require that this equation has to be satis�ed by each blob�

d

dt
Bi � �r�Bi � �Bi
 i � �
 � � � 
 N�

The di�usion term can be satis�ed by a Gaussian blob moving along the force �eld by
increasing the smoothing scale � over time� Indeed� di�usion over a time t at a constant rate
� is equivalent to a convolution with a Gaussian having a standard deviation equal to

p
�t

 �
�!�
G��y � xi�t�� �Gp

�t�y� x� � Gp
����t�x� xi�t���

The di�usion term is therefore satis�ed� if the smoothing scale increases over time as

��t� �
q
��
�� # �t�

The loss equation for U at the center of each blob becomes�

d

dt

�
Ui�t�mi�t�

��xi�t�
 t�

�
�

d

dt
Ui�t�Vi�t� � ��Ui�t�Vi�t�


where Vi�t� � mi�t���i�xi�t�
 t� is the volume of the blob� For Gaussian blobs this is given
by Vi�t� � �����
���t��� The solution of the above equation is an exponential decay with
time�

Ui�t� � Ui�
�

�
��
�

��t�

��

e��t�

The advectiondi�usion equation is satis�ed then by the function U whose coe�cients are
updated over time using the following algorithm�

��



σ

σ+δΔt

t

Δt-   t

xx-1

Figure ���� Inverse warping of a blob� the density at each point is obtained by backtracing
it over time through the wind �eld and evaluating the smoothing kernel�

t � 

Fix number of new blobs created at each time step N�

and their initial spread ��
��
Do

for i � �
 � � � 
 N� do f generate new blobs g
Generate a point x� according to the probability density �S
Set initial value of the function� Ui � �tS�xi
 t��N�

also initialize Vi � ��

end for
N � N # N�

for i � �
 � � � 
 N do
xi � xi # �t Fext�xi
 t� f advect centre of blob g
��i � ��i # ��t f increase size of blob g
Ui � UiVi � ��t UiVi f update value of the function g
Vi � ��

Ui � Ui�Vi
if Ui � EPS then kill blob

end for
t � t # �t

Until Bored

The method is therefore of O�N� for each time step� The accuracy and speed of the algorithm
is controlled by the time step �t� the number of new blobs at each time step N� and the
initial smoothing scale ��
��

One problem with this method of solution is that as the blobs get bigger through the
action of di�usion� signi�cant resolution is lost� Indeed� the advection of a blob is actually a
complicated warped blob as shown in Figure ���� A possible solution to this problem would
be to advect a �xed number of samples associated with each blob and then to reconstruct
the blob from these samples� For example� when the blob size is bigger than a certain
threshold� we can split the blob into a �xed number of new blobs� Another approach is to
backtrace through the advecting �eld from the warped blob toward the initial Gaussian blob
�see Figure ����� Indeed� for each point x on the warped blob there corresponds a point x��

on the initial blob� This point is calculated by integrating along the force �eld backward in

��



time�

x�� � x�
Z ti

t
Fext�x�s�
 s� ds and x�t� � x� ������

where ti is the creation time of the blob� The density of the blob at a point x is then de�ned
as the initial blob evaluated at the point x���

G��x� xi� � G�

�
x�� � x��i

�
�

The cost of evaluating the integral in Equation ���� grows as the time interval  tk
 t! increases�
Therefore� this method is e�ective for modelling blobs which have a short lifetime only� i�e��
when the absorption rate � is high� This problem is addressed in  ��! by integrating only
for a �xed time� and then continuously fade out the blob and fade in an undistorted blob
which immediately begins distorting again� The warping method can also be used to slightly
modify the spherical shape of the Gaussian� In this case� we only backtrace each point for a
small time interval �t�

x�� � x�
Z t��t

t
Fext�x�s�
 s� ds�

This corresponds to an instantaneous warping by the �eld surrounding the blob� In par
ticular� when the integral in the above equation is computed using only one sample� the
transformation is given by evaluating the advecting �eld�

x�� � x� �tFext�x
 t��

In practice� the back warping operation is done by subdividing the warping interval into K
subintervals of size �s� For a given interval of time  a
 b!� the warping is performed by the
following algorithm�

WarpBack� a
 b!�x��
K � �b� a���s
y � x

s � b
for k � �
 � � � 
K do

y � y ��sFext�y
 s�
s � s # �s

end for
return y

The complexity of the algorithm O�K� is directly related to the precision �s desired and
the length of the interval b� a�

In order to evaluate the function U�x
 t� more e�ciently� the domains of the Gaussians
are truncated beyond a certain radius R� The radius can be related to a certain precision �
by inverting the Gaussian �see Equation �����

R� � ���� log
�p

����
�
�

When the blobs are distributed fairly uniformly� the sum of the blobs at a certain location
can be computed more e�ciently by storing the blobs in a grid� By setting the size of
each grid cell to that of a sphere of radius R� the sum can be evaluated up to a precision
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Figure ���� Spherical versus warped blobs� The steam on the left is rendered without warping
while the steam on the right is obtained by backtracing the points for �
 time steps through
the wind �eld�

� by considering blobs lying in neighbouring cells only� Therefore� the truncation induces a
bounding sphere for each Gaussian� A bounding sphere for the initial Gaussian blob de�nes
a larger bounding sphere for the warped blob as illustrated in Figure ���� The size of this
new bounding sphere can be estimated when the advecting �eld is a white noise �see Section
������� In this case the paths of the particles correspond to realizations of Brownian motion�
The standard deviation of the increments of Brownian motion is equal to  �
�!�

���t� � hjx�ti�� x�t�ji �
q
hjFextji�t� ti��

Hence by using Tchebyshev�s inequality

P �jx� �xj � a� � hjx� �xj�i
a�




the warped blob lies with probability �� a in the sphere centred at xi and of radius�

R � ���t�a��
��

For example� a 		( probable bounding sphere is given by an increase in the radius corre
sponding to �


p
t� ti� For certain deterministic �elds� the bounding radius can be computed

exactly� An algorithm to evaluate the function U is given next�

U � 

� � 

for i � �
 � � � 
 N do

if jx� xij � ��t� # ���t� next i�
x�� � WarpBack� ti
 t!�x�

B � mi�t�G��t�

�
x�� � x��i

�
� � � # B

��



U � U # Ui�t�B
end for
U � U��

The algorithm can be improved if intermediate results are stored in the warping procedure�
In particular� if all blobs were created at the same time� the warping calculation has to
be done only once and can therefore be taken out of the sum� The e�ects of the warping
are illustrated in Figure ���� The picture on the left depicts the use of unwarped blobs
which are allowed to expand uniformly in all directions� At right� we see a much more
convincing depiction in which the blobs are themselves warped due to advection� Only
K � �
 integration steps were used to backwarp in time�

����� Hydrodynamic Equations

�Water�� Always in motion� ever
�owing �whether at steam rate or
glacier speed�� rhythmic� dynamic� ubiquitous� changing and
working its changes� a mathematics turned wrong side out� a
philosophy in reverse� the ongoing odyssey of water is virtually
irresistable� Tom Robbins

Following� we brie�y mention similar work done in the area of �uid dynamics� In
Smoothed Particle Hydrodynamics �SPH� the blob representation given in Equation ��	 is
used to represent the the velocity �eld and the temperature �eld� The �rst SPH methods
were developed for the NavierStokes equations with zero viscosity� The continuity equation
for the density of the �uid�

d

dt
� �

�

�t
� # u � r� � 
�

is naturally satis�ed if the blobs are advected along the velocity �eld u�x
 t� of the �uid�
The velocity of the �uid is resolved in terms of the the pressure p�x
 t� using the following
relation�

�

�
rp � r

�
p

�

�
#

p

��
r��

Using Equation ���� the change in velocity on a blob advected by it is�

d

dt
ui � �

NX
j�

mj

�
pj
��j

#
pi
��i

�
rW �xi � xj
 ��� ������

A similar expression is obtained for the temperature of the �uid  �
!� The pressure is cal
culated through a state equation involving both the density and the temperature� Viscosity
is usually modelled by inserting an ad hoc term on the right hand side of Equation �����
This method has been applied mainly to the simulation of compressible �uids in astrophys
ical problems� In fact� it was �rst reported in an astrophysical journal  ��!� However� this
procedure can be applied to nearly incompressible �uids such as water� by slowing down
the simulation of a compressible �uid� It does� however� become more expensive as smaller
time steps are needed� Monaghan  ��! applied this method to the simulation of waves and
bursting dams in two dimensions� and there is the potential for this technique to be applied
to the simulation of water �ows in computer graphics�

For incompressible �uids� the hydrodynamic equation can be written in terms of the
vorticity � � r � u only� A procedure known as the blob vortex method approximates
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the vorticity �eld by a set of blobs  ��!� This method fundamentally is restricted to two
dimensional �ows� where each vortex is de�ned entirely by its location in the plane only� and
can therefore be approximated by a set of point blobs� In three dimensions� the vorticity is
de�ned by both its position and its direction� and the representation becomes considerably
more complicated�
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Chapter �

Rendering of Density Fields

Psychologically it does not make much sense to say that we �copy�
what we see in the visible world� What we see extends in depth�
while our painting surface is �at� The elements of what we see di	er
in colour� To invent a code of colour combinations distributed on a
plane for the variety of experience in the real world is� of course� the
achievement of naturalism� It is an achievement simply because the
real world does not look like a �at picture� though a �at picture can
be made to look like the real world� E� H� Gombrich

Gaseous phenomena such as steam� clouds and �re� are visible to us by modulating the
intensity of light� For example� through energy emission the shape and motion of a �re
are discernible� Clouds and steam� on the other hand� are observable by scattering light
from the sun or from a spotlight into the direction of our eyes� These scattering e�ects are
very complicated in general� Indeed� light coming from the sun may reach our eyes after an
arbitrary number of scattering events through a cloud� The computation of the interactions
of light with an arbitrary participating medium is� therefore� a complex task� For this reason�
we will use a general formulation based on a transport theoretic model for the propagation of
light� In order to get tractable solutions� we will introduce suitable approximations into the
theory� We will state these approximations� indicating the implied limitations� We do not
seek simulations which are physically accurate� but rather focus on visually convincing and
consistent depictions that are motivated by physical models� The results� therefore� will not
be compared with radiances obtained from actual measurements� The chapter is organized as
follows� In the �rst section� we present the transport theory of radiative transfer on which all
our algorithms are based� In the second section� we state the approximate representation of
the intensity used in our algorithms� In the third section� we introduce a general algorithm to
account for the interchange of intensities in an environment composed of di�use surfaces and
single scatterers� We discuss an approximate solution for the e�ects of multiple scattering
using a di�usion model in the Section ���� Then� in section ��� we present a new rendering
paradigm called stochastic rendering and apply it to the e�cient rendering of density �elds�
Finally� in the last section we present an algorithm to render hair modelled as a set of fuzzy
segments�
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��� Radiative Transfer

����� The Intensity Field and Domain of Applicability

In chapter �� we introduced a kinetic description of the intensity of light modelled as a set
of photon particles� The intensity of light is then de�ned from the oneparticle density as
�see Section �������

I��x
 s
 t� � �h��c���x
 s
 �
 t��

Here� the energy of the photon is replaced by its frequency� through the relation E � h��
Furthermore� by neglecting refraction e�ects� the velocity of each photon is equal to the
speed of light c� The units of the intensity �eld so de�ned are watts per unit area per unit
solid angle� in accordance with the radiometric de�nition of radiance� The intensity �eld is
therefore interpreted as an �energy angular �ux�� We assume that there is no interaction
between the frequencies of the intensity �eld� This implies that the intensity �eld can be
resolved for each frequency independently� The relevant equation describing the evolution of
the intensity �eld is then given by the onespeed linear transport equation �Equation �����
In general� this description is reasonable when quantum and di�raction e�ects� polarization
and interference are negligeable� In addition� it is assumed that the optical properties of the
participating medium are not modi�ed by the intensity �eld� Even under these restrictive
conditions� the transport theoretic description of light is rich enough to model a broad range
of visual e�ects� Indeed� it forms the basis of most rendering algorithms in computer graphics
 ��!� In the remainder of the presentation� we use the wavelength � instead of the frequency
to characterize the colour of the intensity �eld�

����� Radiative Properties of Participating Media

Against a dark background� smoke is illuminated by rays from the
sun falling on it obliquely from all directions except from behind�
these rays are scattered by the smoke in every direction and some of
the scattered rays enter our eyes and make the smoke visible� The
particles which make up the smoke scatter blue light much more
than red or yellow� therefore we see smoke as blue� On the other
hand� when the background is bright� we see the smoke by
transmitted light and it appears yellow because the blue in the
incident white light has been scattered in all directions� very little
can reach our eyes� and only the yellow and red remain to be
transmitted and give colour to the smoke� M� G� J� Minnaert

In general� the radiative properties of a participating medium are a function of its density
��x
 t� and temperature T �x
 t�� The evolution of these quantities for gaseous phenomena is
introduced in the next chapter� In this section� we relate these quantities to the radiative
properties of the medium� A participating medium modi�es the propagation of light through
three phenomena� emission� scattering and absorption� We review the modelling of these
phenomena in the context of transport theory next� First� we assume that the time evo
lution of the quantities characterizing the medium is of several orders of magnitude slower
than the speed of light� Therefore� the time dependence of these quantities will be ignored�
i�e�� ��x
 t� � ��x� and T �x
 t� � T �x�� The emission of light by a medium in local ther�
modynamic equilibrium �LTE� is entirely determined by its local temperature T �x� through
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blackbody radiation B��T �  ��!�

Q��x� � E�B��T �x�� � E�
�h

��c

�
exp

�
hc

�kT

�
� �

	��

 �����

where k is StefanBoltzmann�s constant� The blackbody radiation characterizes both the
magnitude and the spectrum of the emission� The multiplicative factor E� is a material
dependent function and characterizes the colour of the radiation� This factor� for example�
permits the modelling of �blue �ames� since pure blackbody radiation is stronger in the
redyellow frequencies� The black body emission over all wavelengths is given by

Z �

�
B��T � d� �

���k�

��h�c�
T � � �T ��

In other words� the total power emitted increases as the fourth power of the temperature�
Thick media in which scattering events abound can be assumed to be in LTE  ��!� In this
case the energy absorbed is in balance with the emitted energy� For many phenomena this
situation is not achieved and the LTE assumption is introduced as a matter of convenience�
The scattering properties of a medium are entirely described by its albedo �� and its phase
function p��s
 s��� The albedo gives the fraction of light that is scattered versus that which
is absorbed� The phase function models the spherical distribution of scattered light� For
example� scattering in clouds is predominantly in the forward direction� Usually� the phase
function is normalized such that its integral over all directions is ��� In most practical
applications the phase function depends only on the angle between the two directions�  �
s � s� �or in this case � the cosine og the angle�� A simple model which is often used in
computer graphics is the Henyey�Greenstein approximation  �� ��!�

p��� � �� ���
�� # ��� � �����
�


 �����

where �� � �
�

R��
��  p��� d is the �rst moment of the phase function� For negative ��

the phase function favours back scattering over forward scattering� The converse is true for
positive ��� The total amount of light which is scattered into a particular direction at any
moment is given by summing up all incoming light weighted by the phase function�

SfI�g�x
 s
 t� �
�

��

Z
��
p��s � s��I��x
 s�
 t� ds�� �����

The frequency of interactions of the intensity �eld with the medium is given by

cKt�x
 �� � c�t����x�


where � is the density of the medium and the extinction cross section �t is equal to the sum
of the scattering and absorption crosssections de�ned by

�s � ��t and �a � �� ����t


respectively� Therefore� these quantities are related to the absorption and scattering rates
de�ned in Section ������ Ka � �a� and Ks � �s��
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Given this description of the participating medium� we can now state the linear transport
equation for the propagation of light �Equation ��� without external forces��

�

c

�I�
�t

# s � rI� � ���t�� �I� � ��SfI�g � �� � ���Q�� � �����

We repeat the phenomenological interpretation of this equation� the change in intensity
along a certain direction is equal to a gain in intensity due to inscatter and emission minus
losses caused by outscatter and absorption� In computer graphics� only the steady state
solution is of interest since the viewing time �e�g�� shutter speed of the virtual camera� is
many orders of magnitude larger than the time it takes for the propagation of light to reach
a steady state� Hence

�

c

�I�
�t
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and consequently I��x
 s
 t� � I��x
 s�� Because there is no coupling between di�erent
wavelengths� the explicit dependence of all functions on the wavelength will be dropped in
the remainder of this chapter� The boundary conditions of this equation are given by the
geometry and the re�ectance properties of the surfaces in the environment� The re�ection
from a surface is characterized by its bidirectional re�ectance density function �brdf �BRDF�
giving the fraction of the incoming intensity Iin from a direction s� that is re�ected into
another direction s�

Iout�x
 s� ds � �brdf �x
 s
 s��Iin�x
 s���n � s�� ds�

where n is the normal to the surface at the point x� The total outgoing intensity re�ected
into a particular direction is then obtained by integrating over all incoming directions�

Iout�x
 s� �
Z
��
�brdf �x
 s
 s��Iin�x
 s���n � s�� ds��

This equation forms the basis of most global illumination algorithms in computer graphics�
In the particular case when the BRDF is constant� corresponding to a perfectly di�use
surface� this relation becomes�

Iout�x
 s
�� � �brdf

Z
��
Iin�x
 s��n � s�� ds��

����� Reduced Incident Intensity and Di�use Intensity

In practice� it is convenient to separate the intensity into the sum of two functions� the
reduced incident intensity Iri and the di�use intensity Id  ��!� The reduced incident intensity
is that part of the intensity entering the participating medium which is attenuated by both
scattering and absorption� The di�use intensity� on the other hand� is created entirely within
the medium through the phenomenon of scattering� Figure ��� illustrates the meaning of
these two terms� More precisely� consider the ray xu � x� � u s connecting a point xb on
one of the surfaces of the environment to a point x� within the medium �again see Fig� �����
The reduced incident intensity is then the fraction of the intensity I�xb
 s
 t� coming from
the surface which is not scattered away or absorbed by the participating medium along the
ray�

Iri�x�
 s� � Iout�xb
 s�� �xb
xa�� �����
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Figure ���� Integration of the transport equation along a viewing ray�

The transparency � between two points xb and x� connected by a ray xu is de�ned by�

� �xb
x�� � exp

�
��t

Z b

�
��xu� du

�
� �����

Sometimes the opacity � � �� � is used instead� From the de�nition of the reduced incident
intensity and the relation I � Iri # Id� it is possible to derive an equation for the di�use
intensity� In fact� this equation is identical to the transport equation �Eq� ����� with an
additional source term Jri due to the reduced incident intensity  ��!�

Jri�x
 s� �
�

��

Z
��
p�s � s��Iri�x
 s�� ds�� �����

The boundary condition for the di�use intensity is that at a surface� the di�use intensity
cannot enter the medium� Id�x
 s� � 
 if s points into the medium� Note that the di�use
intensity represents the component of the intensity �eld which is di�cult to compute� The
reduced incident intensity� conversely� can be computed using standard integration proce
dures�

����� Integral Representation of the Transport Equation

The light reaching an observer at a point x� from a direction s is given by integrating the
transport equation along the ray connecting the background point xb to the observer �see
Figure ����� The result of this integration is  ��!�

I�x�
 s� � Iri�x�
 s�# Id�x�
 s� � Iout�xb
 s�� �xb
x��#
Z b

�
� �xu
x���t��xu�J�xu
 s� du
 �����
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where J is the source intensity and is the sum of the emitted intensity and the scattered
intensity�

J�x
 s� � �SfI�x
 s�g# �� ���Q�x��

The scattered intensity can be further separated into a di�use source intensity Jd and a
component due to the �rst scatter of the reduced intensity�

�SfI�x
 s�g � Jri�x
 s� # Jd�x
 s�
 ���	�

where Jri is de�ned by Equation ���� This separation is convenient in multiple scattering
algorithms� Indeed we solve the di�use source intensity using a di�usion approximation �see
Section �������

We can rewrite Equation ��� in terms of the transparency alone by de�ning the average
source function along the ray by�

�J�x�
 s� �
Z b

�
� �xu
x���t��xu�J�xu
 s� du

��Z b

�
� �xu
x���t��xu� du

�

�
�

� � � �xb
x��

Z b

�
� �xu
x���t��xu�J�xu
 s� du� ����
�

With this de�nition� the intensity of light reaching point x� along the ray can be expressed
as a linear combination of the background illumination Iout�xb
 s� and the average source
function�

I�x�
 s� � � �xb
x��Iout�xb
 s� # �� � � �xb
x��� �J�x�
 s�� ������

We will use this formulation in our stochastic rendering algorithm �see Section �����

����� Special Cases of the Integral Transport Equation

Usually� the integral transport equation is di�cult to solve since the scattering term involves
the intensity �eld� The integral on the right hand side of Equation ��� therefore cannot be
integrated directly� However� there are some important special cases in which this integration
is possible�

Total Emission

In highly emissive but tenuous or transparent gaseous phenomena such as �re� scattering
e�ects can be ignored and hence � � 
� In this particular case� the integral transport
equation is an integration of the emission Q over the incident ray�

I�x�
 s� � � �xb
x��Iout�xb
 s� #
Z b

�
� �xu
x���t��xu�Q�xu� du�

Speci�cally� when the emission is constant� Q�x� � Q�� we get an analytical expression for
the intensity�

I�x�
 s� � � �xb
x��Iout�xb
 s� # ��� � �xb
x���Q�� ������

Thus� the intensity depends solely on Q� and the transparency of the gaseous phenomenon�
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Single Scattering Approximation

In media with low density or low albedo� scattering events are rare and the scattering term
can be assumed to singularly depend on the reduced incident intensity� In this case� light
reaches the observer from the light sources only after one scatter event� More precisely�

SfIg�x
 s� � SfIri # Idg�x
 s� � SfIrig�x
 s��
With these assumptions� the integral transport equation can be rewritten as�

I�x�
 s� � � �xb
x��Iout�xb
 s� #Z b

�
� �xu
x���t��xu� ��SfIrig�xu
 s� # ��� ��Q�xu�� du� ������

This equation is known as the single scattering integral transport equation� and is used by
most volume rendering algorithms in computer graphics� Blinn used this equation to obtain
analytic solutions for constant planar density �elds  �!� He applied his model to the rendering
of the rings of Saturn� Klassen obtained similar analytic solutions to model the e�ects of
the atmosphere and fog  ��!� Max developed models for haze and simple clouds  ��� ��!�
By modelling the clouds as constant density �elds bounded by a height �eld above and
beneath a plane� and by assuming that the sun is at the zenith� he derived a simple solution�
He simpli�ed the model further by approximating the exponential function by a quadratic�
Nishita et al� developed a similar model to render constant density maps bounded by convex
polyhedra  ��!� Shafts of light and shadowing e�ects were modelled using directional light
sources and shadow volumes� In the absence of any assumptions about the geometry of the
medium� the single scattering scattering equation is solved by direct numerical integration
along rays cast from the viewer into the medium  ��� ��� �
!� In this situation� the medium
is typically given as a set of voxels� Hierarchical representations of the medium were used
to speed up ray casting and to reduce aliasing e�ects  ��� ��!� Volume coherence can be
exploited even more by using scanline algorithms to render the volume� These methods
either process the voxel data base from back to front  ��! or from front to back  	�! using
the techniques of digital compositing  ��!� Ebert et al� designed an e�cient algorithm by
modifying a Abu�er scanliner  ��!�

Typically� though� the contribution of the di�use intensity to the scattering term is non
constant and has to be calculated using more sophisticated techniques� In Section ����� we
review work done in this area and present a new algorithm based on a di�usion process�

��� Representation of the Intensity Field

We now introduce a representation for the intensity �eld that will permit us to compute an
approximation to the general solution of Equation ���� We model the spatial structure of
the intensity �eld using a blob representation �Equation �����

I��x
 s� �
�

���x�

NX
k�

mkIk�s�W �x� xk�� ������

�To account for the e�ects of multiple scattering	 a factor �� � � �xb�x���I�d 	 where I�d is a constant	 can
be added to the right hand side of this equation� This term is useful in practical simulations in order to
�brighten� up pictures of gases�
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Figure ���� The angular distribution of the source intensity�

where each coe�cient in the expansion depends on the angular variable� At this point� we
could expand each of these coe�cients into an orthonormal basis of functions de�ned on the
unit sphere� The standard polynomials with this property are the spherical harmonics �see
Appendix ��A of this chapter�� To approximate highly spiked distributions� many harmonics
of a high degree are required� Unfortunately� in this situation� the number of harmonic basis
functions of a given degree grows quadratically� In practice� then� spherical harmonics are too
expensive to represent arbitrary distributions� In order to resolve this problem� we split the
dependence on the angular variable into a di�use component Idiff and a specular component
Ispec� This separation is common in computer graphics surface re�ectance models  ��!� The
di�use component is given by an expansion of the intensity �eld into a �xed number of
spherical harmonics� The �rst term in the expansion corresponds to the average intensity
over all angles�

I��x� �
�

��

Z
��
I�x
 s� ds�

The next three terms in the harmonic expansion can be combined into a single average
intensity �ux giving the principal direction of the �ux of intensity�

I��x� �
�

��

Z
��
I�x
 s� s ds�

We assume in the remainder of this thesis that these two functions are su�cient to charac
terize the di�use component of the intensity �eld�

Idiff�x
 s� � I��x� # I��x� � s�
Our presentation� however� can be extended to a higher number of harmonics� We will come
back to this point and discuss other possible extensions of the algorithm in Section ������
The specular component of the intensity �eld is modelled as a sum of impulses centred at
the directions s�
 � � � 
 sK�

Ispec�x
 s� �
KX
l�

I l�x���s� sl��

For example� one of these impulses could model the scattering of the light coming from the
sun� See Figure ��� for an illustration of the shape of the angular distribution� We can
use this expansion to complete the description of the intensity �eld� Indeed� each spatial
coe�cient can in turn be expanded in its angular variable�

Ik�s� � I�k # I�k � s#
KkX
l�

I lk��s� sl�� ������
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The intensity consequently is represented by a total of �K # ��N coe�cients�

����� Representation of the Radiative Properties

The scattering properties of the participating medium are characterized by its phase function
p�s�s��� Similar to the angular representation of the intensity� we separate the phase function
into a di�use component and a specular component� The equivalent of the average intensity
and the average �ux of the intensity �eld for the phase function are the �rst two moments
de�ned by��

p� �
�

�

Z �

��
p�� d � � and p� �

�

�

Z �

��
 p�� d � ��

The specularity of most phase functions encountered in practice are characterized either
by strong forward scattering or by strong backward scattering� Instead of considering any
number of discrete directions� we model the specularity of the phase function by a single
term� Following these considerations� we represent the phase function by

p�s � s�� � � # � s � s� # p���s � s� � ��
 ������

where � is either equal to #� �forward scattering� or equal to �� �backward scattering��
The emission function does not depend on direction and is therefore expanded into a blob

representation only�

Q��x� �
�

���x�

NX
k�

mkQkW �x� xk�


where each coe�cient is entirely determined by the temperature of the gas� �Q��k �
E�B��T �xk�� �see Equation ����� The source intensity is thus represented as�

J��x
 s� � �SfIri��g�x
 s� # �SfId��g�x
 s� # ��� ��Q��x�


where both the reduced incident intensity and the di�use intensity are expanded into the
representation given in the previous subsection�

��� Blob Integration

The puzzle of perspective representation is that it make things look
right by doing them wrong� Rudolf Arnheim

In Section ���� we have encountered many equations which necessitate the integration of
a blob representation over a given ray� This is the case for the transparency � which involves
an integral over the density �eld� for both the total emission approximation and the single
scattering approximation� To integrate these functions� we could use a standard integration
schemes� This technique� however� produces visible aliasing artifacts� unless a large number of
samples is used� These artifacts are visible especially in animations� The motivation behind
integration algorithms is to chose the samples according to the blob representation� This has
two advantages� Firstly� since we know the shape of the function� we can limit the number of
samples by choosing them at the �right place�� Secondly� in an animation the samples move

�See the addition theorem in Appendix ��A of this chapter
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Figure ���� Uniform sampling �left� versus blob sampling �right�� In the blob sampling
the samples are placed according to the position of the blobs� Sudden discontinuities in
animations due to moving blobs are handled without over sampling�
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Figure ���� Geometry of the ray intersecting a truncated blob�

naturally with the blob representation� reducing the occurrence of visible artifacts over time�
This is illustrated in Figure ���� For example� if a single blob is moving�the regular sampling
technique misses the blob when it comes into contact with the ray� The blob is added to the
integral only when there is considerable overlap� This discontinuity will produce �ickering
in an animation� The blob sampling method� conversely� detects the blob right from the
beginning� Hence� we are mainly interested in choosing integration schemes which produce
consistent depictions of the phenomenon� High numerical precision is not necessary� Indeed�
our blob representation is� in the �rst place� an approximation� In the remainder of this
section we assume that a hierarchical data structure of bounding spheres has been computed
for the truncated blobs using the algorithm of Section ������

����� Transparency

The transparency along a given ray is a function of the integral of the density �eld over the
ray �see Equation ����� Using the blob representation for the density� this integral for an
arbitrary segment  a
 b! on the ray reduces to�
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We develop algorithms for smoothing kernels depending only on the distance between two
points� From the geometry of Figure ���� we consequently can deduce that the integral �k

depends both on the distance dk of the ray to the blob and on the point on the ray ck closest
to the centre of the blob�

jxu � xkj �
q
d�k # �u� ck��


In addition� each integral depends on the smoothing length � and on the bounds of the
integral a and b� In principle� the integral can then be computed by table lookup� by
precomputing the following integrals and storing them in a table�

�k�b
 
� �
Z b

�
W
�q

d�k # �u� ck��
 �
�
du�

The integrals in Equation ���� can thus be computed from this table via

�k�b
 a� � �k�b
 
�� �k�a
 
��

However� the table is fourdimensional and becomes too large when high precision is required�
For Gaussian smoothing kernels� some simpli�cations can be made� This follows from the
fact that the dependence on the distance dk can be taken out of the integral�
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By using the substitution v � �u� ck��
p

�� in the integral we obtain�
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where �erf� is the error function de�ned by�

erf�v� �
�p
�

Z v

�
exp

�
�w�

�
dw�

Both the exponential and the error function are available on most systems and are usually
optimized through a table lookup scheme�

Although the derivation just presented gives an accurate evaluation of the integral� we
have found that a simple linear approximation of the erf function produces results which are
visually indistinguishable from the exact method� We approximate the erf function within
the interval of overlap with the truncated Gaussian using the following piecewise linear
function�

lerf�v� �

���
��
�� if v � ����
�v if jvj � ���
� if v � ���

Figure ��� shows this approximation along with the error function� If we assume that both
a and b lie within the truncated blob�� then the di�erence

lerf

�
b� ck

�k

�
� lerf

�
a� ck

�k

�
�
b� a

�k
�

�This situation can always be achieved by �clipping� the values of a and b to the truncated interval�
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Figure ���� Error function and the linear approximation that we use�
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Figure ���� Integrating a warped blob� Instead of warping the blob we backtrace several
samples on the ray through the wind �eld�

We rewrite the integral �k in terms of the linear approximation�

�k�b
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����
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where �k is the length of the region of overlap of the truncated blob with the ray �see Figure
����� Usually� we can apply the same approximation to any smoothing kernel which has a
�Gaussianlike shape��

�k�b
 a� � b� a

�k
W �dk
 ��� ������

The transparency between two points is then given by summing up the contribution of each
blob and taking an inverse exponential�

This technique works for regular spherical blobs� To handle warped blobs the algorithm
has to be modi�ed slightly� however� There are two methods of doing this� We can either
integrate the warped blob along the ray or we can backwarp the ray and integrate the
unwarped blob over a curve� Figure ��� illustrates the di�erence between the two approaches�
We use the former one because it takes us back to the spherical blobs integration algorithm�
We sample the interval of overlap of  a
 b! with the sphere bounding the warped blob on a
�nite number M of samples ul� We then backtrace the points xul corresponding to these

�




Figure ���� Selecting the truncated blobs that intersect the ray�

samples through the force �eld yielding the samples x��ul on the backwarped ray� recalling
Figure ���� each pair of backwarped points �x��ul 
x

��
ul��

� de�nes a ray Rl� As in the unwarped
case� we can calculate both the overlap �k�l and the distance dk�l to the centre of the unwarped
blob for each of these rays� The transparency along each ray is then approximated using
Equation ����� By adding up the contributions from each of the M � � rays� we obtain an
approximation of the value of the total integral�

��b
 a� �
M��X
l�

b� a

�k�l
W �dk�j 
 ���

The additional cost of the warping is thus linear in the number of samples chosen and is
independent of the number of blobs�

����� Integral Transport Equation

We extend these integration techniques to the evaluation of the integral appearing in the
integral transport equation �Equation ����� We assume in this section that the coe�cients
appearing in the representation of the source intensity J have been computed� e�g�� by the
shooting algorithm presented in the next section� We will not derive exact expressions for
the integrals but rather use the approximation given in Equation ���� when applicable� Prior
to integrating� we determine the blobs whose truncated domains intersect the ray and store
them into a list L �see Figure ����� This is done using the hierarchical representation of the
blobs by the following recursive algorithm�

SelectBlobs�b�
if b�left� 
 and b�right� 
 then f this is a leaf blob g

Compute distance to ray dk
if dk � radius of blob then

L � L � fbg f add blob to list g
end if

else
SelectBlobs�b�left�
SelectBlobs�b�right�

end if

��
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Figure ��	� Subdivision of the ray induced by the blob overlap�
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Figure ���
� The source intensity is approximated by a piecewise constant function�
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We obtain the list by calling the routine with the root of the blob tree as its argument�
When the blobs are distributed fairly uniformly in space� each ray intersect on average N�
�

blobs� and the cost to reach these blobs is O�N
�

� logN�� Once the list is constructed� we
subdivide the ray into Ki disjoint intervals  uj
 uj��! induced by the overlap of the blobs as
shown in Figure ��	� The overlap of each blob is denoted again by �k� We approximate the
source intensity J on each of these intervals by its value at the midpoint vj � �uj # uj�����
of the interval�

J�xu
 s� � J�xvj 
 s� �

P
kmkJk�s�W �xvj � xk�P

kmkW �xvj � xk�

 ����	�

where the sums are over the blobs overlapping the interval� i�e�� k � L �  uj
 uj��!� This
approximation corresponds to the piecewise constant function depicted in Figure ���
� With
this approximation� the integral of Equation ��� can be integrated exactly on each interval�Z uj��

uj
� �xu
x���t��xu�J�xu
 s� du � J�xvj 
 s�� �xuj 
x����� � �xuj�� 
xuj��


for j � 

 � � � 
Ki � �� The transparency of each interval �j � � �xuj��
xuj� can be computed
using the approximation given in the previous section �Equation ������ By adding up the
integrals for each interval� the integral in Equation ��� is approximated by�

Id�x�
 s� �
KiX
j�

�
�Y
j��j

�j�

�
A ��� �j�J�xvj 
 s��

We have replaced the integral by a �nite sum and product over the intervals� We now present
an algorithm which evaluates this sum� Observe that the product appearing in the sum is
equal to the total transparency up to the jth interval decreases with j� The summation can
consequently be terminated as soon as this transparency falls below a certain threshold� if
an upper bound on the J�xvj 
 s� is known�

f Initialize variables g
I d � �

tau tot � �

f now render from front to back g
for j � 

 � � � 
K � � do

rho � T � J � �

for each blob k � L which overlaps  uj
 uj��! do
m � mkW �xv � xk�
rho � rho 	 m

J � J 	 m
Jk�s�

T � T 	
uj���uuj

�k
W �dk
 ��

end for
tau � exp���t
T�
I d � I d 	 tau tot
���tau�
J�rho

tau tot � tau tot
tau

if tau tot  EPS then exit loop
end for
f combine with background intensity obtained using a standard ray tracer g

��



Figure ����� Each interval is backwarped through the motion �eld�

I � tau tot
Iout�xb
 s� 	 I d

The number of intervals is at most twice the number jLj of blobs intersecting the ray� Both
loops in this algorithm are therefore of O�jLj� and the the total complexity is O�jLj��� When
there is a large overlap of blobs� this algorithm becomes expensive� In Appendix ��C of this
chapter we give an O�jLj� algorithm obtained by an additional approximation of the source
term�

The extension of the above algorithm to warped blobs is straightforward� For each
interval  uj
 uj��!� we backwarp the midpoint vj to obtain x��vj which we then use to evaluate
the smoothing kernel

W �xvj � xk
 �� � W
�
x��vj � x��k 
 �

�
�

The procedure is shown in Figure ���� where the midpoints are denoted by a �#��

��� A Shooting Algorithm for Density Fields

The destruction of local colour had been carried to the extreme by
the impressionists� who had used re�ections to apply the green of
meadow to the body of a cow or the blue of the sky to the stones of
a cathedral� In consequence� modern artists became free not only to
make a red object blue� but also to replace the unity of one local
colour with any combination of di	erent colours� Rudolf Arnheim

In this section we present a method of computing an approximation to the solution of
the transport equation� The algorithm is an extension of the progressive re�nement method
from radiosity to environments containing participating media� This algorithm was �rst
developed for environments composed of opaque di�use surfaces only  ��!� The surfaces of
the environment �rst are subdivided into patches� At each step of the algorithm the energy
from the brightest patch is shot into the environment and collected at the other patches�
As the algorithm proceeds� the environment �brightens up� and successive approximations
to the solution of the transport equation are computed� The method has been extended
to surfaces having more general re�ectance properties using spherical harmonics  	�!� We
extend the shooting algorithm to environments containing participating media modelled by
a blob representation� We assume that the surfaces in the environment are opaque di�use
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Figure ����� Form factor computation between two patches�

re�ectors with a constant emission� In Section ����� we mention how our algorithm can
be extended to surfaces having more general re�ectances� We also include nonphysical
light sources� such as point lights� in our formulation� These light sources are used in most
computer graphics illumination models and are good approximations to actual light sources�
For example� the directional light source is a good approximation of sunlight on a bright
day� A general description of our algorithm is discussed next�

set intensity and unshot intensity of blobs and patches to their emission
shoot from nonphysical light sources to all blobs"patches
while unshot energy is below a threshold do

choose blob"patch with highest unshot power
if patch then

shoot power to all other patches
shoot power to all blobs

end if

if blob then
shoot power to all patches
shoot power to other blobs

end if

end while

Consequently� we must develop shooting algorithms for the three shooting operations involv
ing a blob� patch � blob� blob � patch and blob � blob� These operations and the patch
to patch shooting operations are described in what follows�

����� Patch to Patch

The intensity of light leaving a patch P� and reaching a patch P� along a direction s�� is
given by�

dI in���s� � I� �n� � s��� ds

where n� and n� denote the normals of patch P� and patch P�� respectively� This equation
can be written in terms of an in�nitesimal area dA� by considering the solid angle subtended
by the area�

ds � ��n� � s���dA�

d�



where d is the distance between the points on the two patches� The total intensity incident
at a point on patch P� due to a patch P� is then given by integrating over the whole area

��



A� of patch P��

I in�� � I�

Z
A�

dI���s� � I�

Z
A�

��n� � s��n� � s�
d�

dA� � I�F���

The integral F�� is called a form factor and� in the case of di�use surfaces� depends solely
on the geometry of the patches� The form factor in general can be computed numerically
by transforming the area integral into a contour integral  �!� For simple geometries� analytic
expressions exist for the form factor� The form factor between a disk� of radius r with a
normal n�� and a point on a patch of normal n� is given by  	
!�

F disk
�� �

r�

r� # d���
�n� � s�����n� � s���


where d�� is the distance between the centre of the disk and the point on the patch and
s�� is its direction� When the shooting patch is small or the distance d�� is large� we can
approximate it by a disk with equivalent area and use this form factor to compute the
intensity incident on patch P��

I in�� � I�F
disk
�� �

The BRDF �� of patch P� then gives the fraction of this light which is re�ected�

Iout�� � ��I
in
�� � ��I�F

disk
�� �

Arbitrary patches can be broken up into smaller elements� which are approximately disk
shaped and the intensity can be shot from each element  �
�!�

����� Patch to Blob

The shooting operation from a patch to a blob is actually a special case of the patch to patch
shooting operation� In fact� consider a small surface element at the centre of the blob whose
normal is aligned with the direction s��� then n� � s�� � � and the incident intensity on the
blob is

J in�� � I�F
disk
�� � I�

r�

r� # d���
��n� � s����

When this light reaches the blob� a fraction �� � of it is absorbed and a fraction � of it is
scattered into other directions� The scattered intensity due to the shooting patch is therefore

Jout�� �s� � I�F
disk
�� �p�s�� � s��

Using the angular representation of the phase function� this relation is actually

Jout�� �s� � I�F
disk
�� �

�
� # � s�� � s# p���s�� � s � ��

�
�

We emphasize that this is an equation for the coe�cients appearing in the angular expansion
of the source intensity� This equation states how these coe�cients should be updated at a
shooting step� i�e��

J�
� �� J�

� # I�F
disk
�� � and J�� �� J�� # � I�F

disk
�� � s���

In case the coe�cient p� is nonzero� an additional direction has to be added to the specular
component of the outgoing intensity�

JK���
� � p�I�F

disk
�� � �s�� and K� �� K� # ��

��
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Figure ����� Form factor between a blob and a patch�

����� Blob to Patch

To derive a form factor between a blob and a patch we assume that the distant separating
them is large enough� In this case the distance between the patch and any point in the blob
is approximately equal and parallel to the distance d�� between the centre of the patch and
the centre of the blob� If the patch is assumed to be aligned with this distance� the form
factor is given by the integral over the cross section � normal to d�� �see Figure ������

F�� �
Z
�

�Z �

��
W �x
 y
 z
 �� dz

�
ds �

Z
�

�Z �

��
W �x
 y
 z
 �� dz

�
dx dy

d���
�

�

d��



where the last equality follows from the fact that the smoothing kernel is normalized� A
similar result was obtained for the form factor between a cube of volume and a patch  ��!�
The shooting operation of a blob to a patch is then a particular case of the patch to patch
shooting operation with �n� � s�� � �� Hence� the re�ected intensity at the patch caused by
the intensity coming from the blob is given by�

Iout�� � ��F��J��s��� � ��F��

�
�J�

� # J�� � s�� #
K�X
l�

J l���s�� � sl�

�
A �

����� Blob to Blob

The shooting operation between two blobs is a particular case of the blob to patch shooting
operation� where the receiving patch is aligned with the direction� hence �n� � s�� � � and
n� � s�� � �� In this case� the scattered intensity is given by

Jout�� �s� � �p�s�� � s�J��s���F���

As with the patch to blob operation� each coe�cient in the angular representation of the
receiving blob has to be updated�

����� Light Sources

We derive the shooting operations from three type of light sources commonly used in com
puter graphics� directional light sources� point light sources and spotlights� A directional
light source Idir�s� is de�ned by a unique direction sdir and an intensity I�dir�

Idir�s� � I�dir��s� sdir��

��



Figure ����� The shadow is computed by tracing shadow rays�

The amount of directional light which is re�ected by a patch P� with a normal n� is given
by�

Iout��� � ��I
�
dir��n� � sdir��

Similarly� the amount of directional light scattered by a blob B� is given by

Jou�� �s� � �p�s � sdir�I�dir � I�dir
�
� # � sdir � s# p�� ��s � sdir � ��

�
�

A point light source is a special case of a shooting step from an in�nitesimal blob�

F�� �
�

d���
�

The intensity of the re�ected light at a patch P� is therefore�

Iout�� � ��I
�
pnt

n� � s��
d���

�

Likewise for a blob�

Jout�� �s� � p�s�� � s�I�pnt
�

d���
�
I�pnt
d���

�
� # � s�� � s # p���s�� � s� ��

�
�

A spot light is a point light source with a direction ssl specifying concentration of light� The
spot light intensity at the location of its source has the following distribution in general�

Isl�s� � I�slf�ssl � s�


where f is an arbitrary function modelling the spread and shape of the distribution of light
around the central direction� The form factor is then identical to that of a point source�
The shooting equations are also similar� only the intensity I�pnt has to be replaced with
I�slf�s�� � ssl�� where s�� is the direction pointing to the origin of the spotlight�

����	 Including Shadows

In the shooting operations� we have ignored the e�ects of occlusion by surfaces and the
e�ects of absorption and outscatter by the participating medium� For any two points in the
environment� we can compute a function S�x
x�� which returns zero if there is an occlusion
by a patch� and one if there are none� The amount of light absorbed and outscattered by

��



the gas is given directly by the transparency � �x�
x� between the points �see Equation �����
To account for these e�ects� we multiply each of the form factors by the product of these
two terms� i�e��

F�� �� S�x�
x��� �x�
x��F���

This is actually an approximation if the shooting patch or blob is large� or if the distance
between the shooter and the receiver element is small� Some objects which intersect the cone
subtended by the disk of the shooting element might be missed by a single ray as shown in
Figure ����� One solution to this problem is to subdivide the large disk into smaller disks
and to shoot from each smaller disk� The transparency can be calculated by using the blob
integration technique presented in Section ������ The occlusion term can be calculated using
a standard ray caster�

����
 Multi�Scale Shooting From Blobs

When there are many blobs in the environments� shooting from each blob becomes expensive�
The net illumination coming from many blobs is actually very smooth� Therefore� when
occlusion is rare� it is possible to shoot from a cluster of blobs rather than from each individual
blob� This fact is often used in surface radiosity shooting algorithms where the shooting patch
is usually large and the collecting is done on a subdivision of the other patches  ��!� We can
use our multiscale blob representation to achieve this �see Section ������� At each level of the
hierarchical tree� we have a set of clusters of blobs� The incoming light caused by the cluster
of blobs at the centre of an element �e� can be replaced by the total intensity of the cluster
coming from the centre of mass of the blobs� by considering the following approximation�

I in�� �
nX

k�

Jk�sk�p�Fk�e � �Fk�e
nX

k�

Jk�sk�e�


where �Fk�e is the average form factor calculated using an average area and the centre of mass
of the blobs� The centre of mass of the blobs is calculated as�

�xcm �

Pn
k�mkxkP
k�mk




the average area �A is calculated similarly� These quantities can be calculated while building
the multiscale blob representation� With these de�nitions� the average form factor is given
by

�Fk�e �
� �A

�A# �d�cm�e

n� � scm�e�

To account for shadowing� both the transparency and the occlusion terms can be calculated
using only the centre of mass� However� when the blob cluster gets too large� this approxima
tion might be too coarse if there are many occluding patches in the environment� In practice�
then� we can use an adaptive algorithm in which more blobs are considered in regions with
a variation in shadowing� For example� this can be achieved by comparing the values of the
shadow calculations between consecutive levels in the tree�

�	



����� Extensions

The above algorithm can be extended to intensity �elds expanded into an arbitrary num
ber of harmonics� At each shooting operation to a blob� each harmonic must be updated
accordingly� However� such an extension becomes rapidly expensive because the number of
terms grows quadratically with the order of the approximation� We choose not to implement
the general cases since we are able to achieve convincing visual depictions with our reduced
expansion� As well� the BRDF of the surfaces can be expanded into spherical harmonics�
The generalized algorithm for an arbitrary number of harmonics can then be combined with
this formulation� In fact� shooting operations between patches for this type of re�ectance
functions have been developed by Sillion et� al�  	�!�

��� Multiple Scattering

The optics of �cumulus clouds�� though we see them day after day�
has not yet been su�ciently investigated� You have to be careful� of
course� before accepting the idea that clouds really can absorb light�
you should �rst try to explain everything as if they were solid white
objects� and then remember that they really are scattering mists�
and� �nally consider the possibility of their containing dark dust
particles as well� ����� We ought to extend our investigations to
other types of clouds as well� and try to explain why rain clouds� for
example� are so gray� why in thunder clouds a peculiar leaden
colour can be seen side by side with a faded orange� Is it dust� Our
knowledge� however� of all these things is so incomplete that we
prefer to spur the reader on to begin investigations of his or her
own� M� G� J� Minnaert

The blob to blob shooting operation is accurate only if the blobs are small or if they are at
a large distance from each other� Usually� this situation is not achieved� One possible solution
to this problem is to shoot from a subsampling of the blob into smaller blobs� This method�
however� becomes prohibitively expensive� Another solution is to attempt to compute the
form factor directly� without using the disc approximation� However� this form factor is
generally hard to solve� even for simple spherical blobs� To resolve the scattering of light
amongst the blobs themselves� we will use a di�usion approximation of the scattering process�
This approximation is valid when scattering events abound� These are the exact conditions
under which the e�ects of multiple scattering are important and become visible� We have
already encountered this approximation in Section ������ when the general advectiondi�usion
equation was derived from the transport equation� The calculation of the multiple scattering
can be included into our shooting algorithm by modifying it slightly� We �rst perform all
shooting operations from patches� At this point the intensity due to single scattering events�
namely Jri� is resolved �see Equation ��	�� The di�use source intensity Jd accounts for the
multiple scattering within the gas� We compute this term using a di�usion equation� This
intensity is then added to the source intensity of each blob and shot to the to the patches
of the environment� These steps are iterated until the unshot energy falls below a certain
threshold� The algorithm is summarized as follows�

set intensity and unshot intensity of blobs and patches to their emission�
I � Iemission

J � ��� ��Q�
shoot from nonphysical light sources to all blobs"patches�

	




I � I # �Ilights
J � J # �SfIlightsg�

while unshot energy is below a threshold do

shoot from each patch to all other patches and all blobs�
I � I # �Ipatches
J � J # �SfIpatchesg

solve for multiple scattering within blobs�
compute Jd
J � J # Jd

shoot from each blob to all patches�
I � I # �Jblobs

end while

Before presenting the di�usion approximation and our implementation� we review similar
work done in computer graphics�

����� Previous Work

To model the e�ects of multiple scattering� researchers either make simplifying assumptions
about the participating medium� or resort to expensive simulations� Rushmeier et al� assume
a medium with isotropic scattering properties and derive a radiositystyle algorithm  ��!�
This method essentially models the interchange of energy between cubical elements �zones�
of the environment� Anisotropic e�ects can also be modelled by discretizing the directions�
These methods are known as Discrete Ordinates and have been applied to the rendering
of participating media by Max and Langu%enou et al�  ��� ��!� Other researchers have used
direct MonteCarlo techniques to simulate the paths of light particles in general environments
 �� �
!� None of these models attempt to derive analytical models to account for the e�ects
of multiple scattering� A notable exception is the work of Kajiya and Von Herzen  ��!� They
model the e�ects of multiple scattering by expanding the intensity �eld into a spherical
harmonics basis� This method is known as the PN method in the transport theory literature�
where N is the degree of the highest harmonic in the expansion  ��!� Kajiya and Von
Herzen derived the general method but used the P� expansion in their results as inferred
from their statement� �We truncate the socalled )pwave�� viz� after the l � � term�  ��!�
For this particular case� a di�usiontype equation was obtained for the scattered part of
the illumination �eld� Unfortunately� this characterization was obscured by the level of
generality of their derivation� Also boundary conditions were not discussed in detail�

����� The Di�usion Approximation in Radiative Transfer

As was stated in the Section ������ the di�used intensity is entirely created within the
medium� through the phenomenon of scattering� After many scattering events the coef
�cients of a spherical harmonics expansion of the scattered �eld tend towards zero as shown
in Appendix ��B� This motivates the main approximation made in the di�usion approxima�
tion� namely that we can ignore the specular component of the angular dependence of the
di�use source intensity�

Jd�x� � J�
d �x� # J�d�x� � s�

	�



We give another argument justifying this truncation using spherical harmonics in Appendix
��B� This approximation is usually valid in atmospheric scattering when the ratio of gas
volume versus air is higher than 
�
�  ��!� As stated in Section ����� the di�use source
intensity satis�es the transport equation with an additional source term due to the �rst
scatter of the reduced incident intensity�

s � rJd � ��t� �Jd � Jri � ��� ��Q� �SfJdg� � ����
�

By substituting the reduced expansion of the di�use source intensity into this equation we
get two equations by grouping terms that have the same order� Indeed the left hand side of
Equation ���
 becomes�

s � rJd � s � rJ�
d #r � J�d�

The scattering term on the right hand side can be calculated likewise to be��

�SfJdg �
�

��

Z
��

�� # ��s � s���
�
J�
d �x� # J�d�x� � s�

�
ds� � �J�

d #
��

�
J�d � s�

Using these relations and grouping terms that have the same order we get two equations for
the coe�cients J�

d and J�d�

r � J�d � ��
�
�aJ

�
d � �tJ

�
ri � �aQ

�

 ������

rJ�
d � ��

�
�trJ

�
d � �tJ

�
ri

�

 ������

where J�
ri and J�ri are the �rst two coe�cients of the �rst scatter due to the reduced incident

intensity� The transport cross section �tr is introduced as shorthand notation�

�tr � �� � ������t � �s�� � ���� # �a�

For constant phase functions� the �ux Jri is equal to zero and the transport cross section is
equal to the extinction cross section� These two functions� then� characterize the anisotropy
of the di�use intensity� Equations ���� and ���� are equivalent to the P� equations used by
Kajiya and Von Herzen to render their clouds  ��!� The di�usion aspect of these equations
is� at this point� still hidden� We achieve a single equation for the average di�use intensity
as follows� The average �ux can be extracted from the second equation and substituted into
the �rst one to yield a di�usion equation for the average di�use intensity�

r �
�
�rJ�

d

�
� �J�

d # S � 

 ������

where we have used the following shorthand notations�

��x� � ��tr��x���� 


��x� � �a��x�


S�x� � �t��x�J�
ri�x�� �t

�tr
r � J�ri�x� # �a��x�Q�x��

The boundary condition requiring that no di�use intensity can penetrate the medium at a
surface cannot be satis�ed exactly� because the di�use intensity is approximated only by its

�We use the following identities�
R
��
s
� ds� � �	

R
��
s � s� ds� � � and

R
��
�s � s��s� ds� � ��

�
s�

	�



�rst two moments� Instead� an approximate boundary condition requiring that the total
inward �ux be zero is appropriate The exact form of this condition is  ��!�

J�
d �xs�� ���xs�

�

�n
J�
d �xs� # �

�t
�tr

n � J�ri�xs� � 

 ������

for all points xs lying on the boundary and n denotes the normal to the surface at point
xs� Once the average di�use intensity has been calculated� we can compute the average �ux
from Equation �����

J�d�x� � ��x�
�
�rJ�

d �x� # �t��x�J�ri�x�
�
� ������

The �ux is thus essentially proportional to the gradient of the average di�use intensity�
We can now make certain qualitative remarks concerning the phenomenon of multiple

scattering from this di�usion equation� The e�ect of multiple scattering is to smear out
the initial source intensity S over time� This initial intensity is equal to selfemission from
the medium plus a fraction of the incoming intensity which is neither scattered away nor
absorbed by the medium� The di�usion process is stimulated by the di�usion coe�cient
� and tempered by the absorption rate �� Therefore� the e�ects of multiple scattering
are most pronounced when the di�usion coe�cient is high and the absorption rate is low�
Precisely� the di�usion constant is higher for phase functions favouring forward scattering
�� � 
� versus backward scattering� The same is achieved when the albedo is close to unity�
In particular� clouds have both a high albedo and a strong forward scattering� Multiple
scattering is therefore an important phenomenon in clouds�

����� Numerical Solution of the Di�usion Equation

In Section ����� we presented two general methods to solve di�usion equations� We imple
mented both the multigrid �nite di�erence method and the �nite element blob solution�
The former method is tractable only in twodimensions� We implemented these techniques
mostly in order to obtain approximate solutions which we can use to assess the accuracy
of our blob method� However� these techniques can be of use in particular cases when the
medium is contained in a very thin slice�

MultiGrid Solution in TwoDimensions

The average di�use intensity and the source intensity �rst are sampled on a regular grid of
size M�M � These samples are denoted by Ii�j and Si�j respectively� The di�usionabsorption
operator is then approximated using central di�erences�

�r�r� �� Ii�j � �i���jIi���j # �i���jIi���j # �i�j��Ii�j�� # �i�j��Ii�j�� � ��i�jIi�j
�h�

� �i�jIi�j


where �i�j and �i�j are the sampled versions of the absorption and the di�usion constant�
respectively and h is the grid spacing� By equating this discretized operator to each sample
of the source function� we get a system of equations for the interior points of the domain�
After each relaxation step� we update the boundary by discretizing Equation ����� Let �i
 j�
be a point on the boundary� then the variation along the normal is discretized by�

�

�n
Ii�j � Ii��j� � Ii�j

h
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Figure ����� Directional light source incident on a constant density slab�

where �i�
 j�� is the closest sample to the boundary along the normal� For example� for the
boundary point �i
 
� the closest point is �i
 ��� The boundary condition is thus satis�ed if
the boundary is updated after each relaxation step by�

Ii�j �
��i��j�Ii��j� # �h n �Qi��j�

h # ��i� �j�



where Qi�j is the sampled version of the function �s��trJri� We have implemented the multi
grid scheme outlined in Section ������

Blob Finite Element Solution

For threedimensional problems the multigrid solution is prohibitively expensive� We can
use the numerical blob method of Section ����� �see Equation ������ This equation involves
the gradient of the di�usion constant� which in this case is equal to�

r��x� �
�

�tr
r �

��x�
� � �

�tr

r��s�

��x��
�

The �nite element equation then becomes�

NX
k�

mkI
�
d�k

�
��x�r�G���k
 j��r��x� � rG���k
 j��� � ����G���k
 j�

�
#

mkSk���G���k
 j� � 

 j � �
 � � � 
 N

where the function �� � �t�tr� When N is not too large �N � �


�� this system is solved
using a direct LU decomposition� For larger systems� a relaxation scheme can be used�
However� convergence is not usually guaranteed�

MultipleScattering in a Constant Density

We present numerical results for the the case of a directional light incident on a slab of
constant density� We assume that the direction of propagation is along the positive yaxis
s� and of magnitude ��I��x� and that the density is constant and equal to �� �Figure ������
In this speci�c situation� the reduced incident intensity at each point x � �x
 y� is

Iri�x
 s� � ��I��x� exp���t��y���s� s���

	�



Consequently� the source term due to the reduced incident intensity is equal to�

Jri�x
 s� � �I��x� exp���t��y�p�s � s���
The two �rst coe�cients of this function are then

J�
ri�x� � �I��x� exp���t��y� and

J�ri�x� � �I��x� exp���t��y�
�

��

Z
��
p�s � s�� s ds � �I��x� exp���t��y�� s��

The source term appearing in the di�usion equation is then equal to

S�x� �
�
�t�� #

�t����t
�tr

�
�I��x� exp���t��y� �

�
� #

�t�

�tr

�
�s��I

��x� exp���t��y��

The discretized version of the source term can thus be calculated directly once the initial
distribution of the intensity I��x� is given� Boundary conditions have to be speci�ed on
the limits of the computational grid� The conditions for the lateral borders x � 
 and
x � h�M # �� are given by

I��j �
����j

h # ����j
I��j and IM���j �

��M�j

h # ��M�j

IM�j


for j � �
 � � � 
M � The boundary conditions at the top �y � h�M # ��� and the bottom
�y � 
� of the grid are equal to

Ii�� �
��i��Ii�� # �hQi��

h # ��i��
and

Ii�M�� �
��i��Ii�M � �hQi�M

h # ��i��



where i � �
 � � � 
M � The contribution due to the �ux J�ri in this particular case amounts to

Qi�j �
�s�

�tr
I��hi� exp���t��hj��

For this particular situation� we have implemented the multigrid �nite di�erence scheme
on a grid of size ��� � ��� with a �v�cycle of depth �� Only three relaxation steps were
performed on each level� The solution of the di�usion equation took approximately �

seconds on an SGI Indigo with an RS�


 processor� Each picture was rendered by assuming
that the twodimensional domain has a certain thickness l� The �nal intensity for each pixel
�hi
 hj� is then calculated by�

I�hi
 hj� � �Iback # �� � � ��Ii�j where � � exp ���t��l� �
In our pictures we have set l � �

 and the background colour Iback to blue� The density
was set to be equal to 
��� Figure ���� shows the e�ects of varying the albedo �� extinction
crosssection �t and the �rst moment � of the density� Figure ���� shows the importance of
the boundary conditions� In the picture on the left we have simply set the boundary to be
equal to zero� Notice the unnatural decay to zero especially noticeable at the base of the
beam�
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Comparison with Discrete Ordinates

In order to assess the accuracy of the di�usion approximation� we have compared the results
obtained using the multigrid �nite di�erences method to results obtained using the discrete
ordinates method  ��!� In Figure ���� we compare the results for a constant threedimensional
density de�ned on a grid of size �� � �� � ��� For this situation there is a good agreement
between the two methods� In Figure ���	 the same experiment is conducted on a non
constant density obtained using the spectral synthesis technique of Section ������ There is
a noticeable di�erence between the two methods at the edge of the cloud� In this region
the density is very low and the di�usion approximation does not hold since the amount of
scattering is low�

Comparison with Blob Method

In order to evaluate the accuracy of the blob solution we compare it to a solution obtained
using the multigrid scheme� We have computed solutions in two dimensions for two di�erent
numbers of blobs ��� and ���� The results are shown in Figure ���
 and are compared to a
multigrid �nite di�erence solution� The top pictures show the source term for each method�
The source term is sampled at the centre of each blob in the �nite element method� The
pictures at the bottom show the result after di�usion� The results demonstrate that the
di�usion approximation does a fairly good job at approximating the solution given by the
multigrid scheme� This is achieved by using a discretization which is an order of magnitude
more e�cient both in terms of storage ��� versus ���� � ������ elements� and computation
time �
�� versus �
 seconds�� The blob solution could be used in an interactive graphics
package�

We have implemented the blob solution �nite element method in threedimensions to
calculate the e�ect of multiple scattering in clouds� Figure ���� shows di�erent renderings
at di�erent values for the albedo� The phase function was chosen to be constant�

To demonstrate that our rendering algorithm can handle gases with nonconstant phase
functions� we have computed a little animation of an observer �ying around a backlit cloud
�see Figure ������ The phase function was chosen such that it favours forward scattering as is
common in real clouds� More speci�cally we set the the �rst moment � of the phase function
to ���� We used our stochastic rendering algorithm to add visual detail to the blobs�

Finally� Figure ���� shows a still from an animation of a the motion of a single cloud�
Notice the selfshadowing due to the sun at the zenith�
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��� Stochastic Rendering

Chance and randomness did not look like very promising topics for
precise investigation� and were in fact shunned by many early
scientists� Yet they play now a central role in our understanding of
the nature of things� David Ruelle

In general� the intensity of light at a given point is a function of the geometry of the
scene� the initial lighting conditions �light sources�� the re�ective properties of surfaces and
the scattering properties of a participating medium� If any of these parts are random� then
the resulting intensity �eld will also be random� A stochastic model of the intensity �eld is a
function of a stochastic model for the parts �via the illumination model used�� The intensity
�eld can thus be considered as the result of a transformation applied to a random function�
as explained in Section ���� When this stochastic model can be established� a realization of
the random intensity function can be computed� This technique� then� has the potential to
speed up the rendering� To our knowledge� no work in computer graphics has been devoted
to the calculation of these stochastic models� except for the derivation of re�ectance models
for surfaces� Following is a brief discussion of these models�

��	�� Previous Work

Many re�ectance models for surfaces are derived using a stochastic model for the height
of the surface� Usually� only the mean value of the intensity re�ected from the surface is
calculated� Torrance and Sparrow model the surface by a random distribution of normals
 	�!� Their model has been used in many local illumination models� The �uctuations around
the mean are usually accounted for either by adding an arbitrary value through a texture
map or by perturbing the mean normal of the surface  �!� Recently� He et al� generalized the
work of Torrance and Sparrow to a wavephysics description of light  ��!� As far as we know�
the only work in computer graphics addressing the problem of calculating the correlation of
the re�ected intensity �eld� is the work of Krueger  ��!� His calculations become tractable
for certain idealized situations �e�g�� planar surfaces�� The inclusion of the correlation in a
re�ectance model remains� however� an unexplored area of research in computer graphics�
This is mainly due to the mathematical complexity of the task�

In the case of volume rendering� attempts to calculate a stochastic model for the inten
sity �eld have not been published� However� Gardner�s algorithm to render clouds has the
semblance of a stochastic rendering algorithm in that he perturbs the transparency rather
than the density of the clouds  �
!� Therefore� randomness is added in the rendering instead
of in the modelling� as in our algorithm� His model is heuristic and is not based on any well
established principle that describes the transfer of light in density �elds� Instead� Gardner�s
model is a modi�cation of a standard illumination model for surfaces� However� because his
algorithm is surface based� it has some shortcomings� For example� objects cannot disappear
smoothly through his clouds� Recently Kaneda et al� used Gardner�s model in conjunction
with their atmospheric illumination model  ��!� They rendered the most realistic pictures of
clouds to date�

In this chapter� we explore only a small set of the possible applications of stochastic
rendering� For example� algorithms could be devised to deal with random light sources� We
outline the stochastic model used to describe the density �eld next� This method can be

		



Figure ����� ����k � 
� ����k � ���k and ����k � �F����k�

seen as an alternative to the blob warping described in the previous sections to add visual
detail�

��	�� Stochastic Model for the Density Field

We interpret the blob representation for the density �eld as its mean value at all points in
the volume� The mean is therefore a superposition of the mean values ��k of each individual
blob�

���x� �
NX
k�

mkW �x� xk
 �� �
NX
k�

��k�x�


In other words� the random function can be seen as a weighted sum of �random blobs�� This
interpretation is very convenient for our purposes� Consequently� we describe the correlation
functions of each blob� instead of the correlation function of the entire density �eld� We
want the variance of each blob to be proportional to its mean� A natural choice� then� is to
make the variance directly proportional to the mean� ����k � ���k� However� with this choice�
variations tend to become too large near the centre of the blob� which is unrealistic� We
expect the variance to drop o� with the mean but not to grow to exceedingly large values�
We can avoid the latter by �clamping� the values of the mean� ����k�x� � �F����k�x��� The
clamping function is de�ned as�

F��t� �


t if t � �
� otherwise�

Figure ���� shows the e�ect of the clamping function on the resulting random blob� The
cuto� parameter � and the magnitude � are either provided by a user or are estimated from
data� We assume that the random blobs are transformations of a single homogeneous random
function with zero mean Q �see Section ������� �k�x� � ��k�x�#���k�x�Q�x�� The correlation
function of each blob therefore has the following form�

C��k�x
�$x��� � CQ�x�� � x�����k�x�����k�x���� ������

We assume that the correlation function CQ of the homogeneous random function Q is a
Gaussian with standard deviation � and zero mean� This assumption is important and is
used later when we derive a stochastic model for the intensity �eld�

��	�� Derivation of the Stochastic Rendering Model

We have seen that the amount of light coming from a participating medium and reaching
an observer is given by a linear combination of the background intensity and the average
source function �Equation ������ Because the density �eld is random� the transparency and
the average source function appearing in the equation are also random�

�





Transparency

To derive a stochastic model of the transparency� we make the assumption that all rays
originate from the xy plane and that their directions are in the positive z direction� xu �
�x�
 y�
 u�� In other words� we assume an orthographic projection� The integral in the
equation for the transparency �Equation ���� then becomes a function of the location �x�
 y��
in the xy plane�

��x�
 y�� �
Z b

�
��x�
 y�
 u� du �

NX
k�

Z b

�
�k�x�
 y�
 u� du

�
NX
k�

�k�x�
 y���

Each integral �i is a random �eld which has a well de�ned mean and correlation �see Equation
������

��k�x�
 y�� �
Z b

�
��k�x�
 y�
 u� du


C��k�x�
 y�$x�
 y�� �
Z b

�

Z b�

�
C��k�x�
 y�
 u$x�
 y�
u

��dudu�� ������

In other words� the mean and correlation of �k are directly related to the mean and correlation
of the density �k through an integral� Using the fact that the correlation of the homogeneous
random function Q is Gaussian� the correlation of the integral �k becomes �see Equation
�������

C��k�x�
 y�$x�
 y�� � CQ�x� � x�
 y� � y�
 
� �Z b

�

Z b�

�
CQ�

 

 u� � u����k�x�
 y�
 u����k�x�
 y�
 u

�� dudu�

� CQ�x� � x�
 y� � y�
 
�
Z b

�
���k�x�
 y�
 u����k�x�
 y�
 u�du� ������

The approximation appearing in this equation follows from the fact that the support of the
correlation function CQ is much smaller than the support of the variance ����k�Z b�

�
CQ�

 

 u� � u����k�x�
 y�
 u

�� du� � ���k�x�
 y�
 u��

In the limiting case where the correlation is a delta function� the above relation is exact�
Equation ���� demonstrates that the spatial structure of each integral �k is essentially the
same as the spatial structure of a �slice� of the density �eld� They di�er in that they have
a di�erent mean and variance� Speci�cally� the variance is given by�

����k�x�
 y�� � CQ�

 

 
��
Z b

�
F����k�x�
 y�
 u�� du� ����	�

If both the mean and the correlation are computable� a realization �k�� for each of the
integrals can be generated�

�k���x�
 y�� � ��k�x�
 y�� # ���k�x�
 y��Q��x�
 y�
 
�
 ����
�

�We use the separability of a Gaussian� CQ�x� y� z� � CQ�x� �� ��CQ��� y� ��CQ��� �� z��
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Figure ����� Clamping of the blob�
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Figure ����� Variance ����k versus the distance dk for di�erent values of the clamping ��

where Q� is a realization of the homogeneous random function� A realization for the trans
parency then is equal to exp���tPN

k� �k���x�
 y���� The mean value can be calculated as in
Section ������ The integral of the variance can be calculated similarly and is described next�

Let u�k and u�k be the two parameter values on the ray between which the mean density
of the blob is clamped� i�e�� for which mkW �jxu�xkj
 �� � � �see Figure ������ These values
may not be de�ned if the maximum of the mean is smaller than the clamping value� in which
case we set u�k � u�k � ck� The integral can be computed by integrating over each interval
separately�

Z b

�
F����k�xu�� du �

Z u�
k

�
��k�xu� du #

Z u�
k

u�
k

� du #
Z b

u�
k

��k�xu� du�

Each of these integrals can be computed using the blob integration algorithm of Section ������
For the case of a Gaussian smoothing kernel� the clamping values are given by u�k � ck��uk�
where�

�uk �

vuuut� log

�
� mi

����
�

� h��
exp

��d�i
���

��A�
Realizations of the integrals �k can therefore be generated e�ciently using Equation ���
�
�k�� � ��k # ���kQ��xck�� The choice of xck �the point closest to the centre of the blob�
guarantees that the perturbation is sampled on a plane for each frame and that the samples
are chosen coherently from frame to frame� The latter is important in animated sequences�

�
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where the viewing conditions change� Artifacts can� however� appear for example when
rotating around a cloud since the texture will not vary uniformly across the cloud� Indeed
the texture at the center of the cloud will not change and the change is greatest at the edge
of the cloud� In our animations� however� we have noticed no such artifacts� In Figure ����
we show plots of the variance ����k versus the distance to the centre of the blob dk for di�erent
values of the clamping value �� As expected� the variance increases as the distance decreases�
i�e�� when the ray is near the centre of the blob� The plain line in the graph indicates no
clamping and is equal to the mean ��k� It is interesting to note that Gardner varied the
threshold of his transparency function in a similar way� To derive the statistical description
of the integrals �k� we assume that the viewing rays are parallel� This is of course not the
case in most practical situations� However� if the size of each blob is small relative to the
image� then the rays emanating from a point are approximately parallel across each blob�

Average Source Intensity

The statistics of the average source function are much more complicated to calculate� In
this work we will assume that the average source function is only a function of the average
of the density �eld� There are sound justi�cations for this assumption� First� the average
source function is in fact a convolution of the source function by the �weighting� function
� �

 u���xu��t along the ray� Second� the source function itself involves an integral accounting
for scattering from di�erent directions� This scattering acts to smooth the intensity �eld� In
fact we modelled part of it as a di�usion process� The same smoothing phenomenon caused
by indirect illumination is also observed in radiosity environments  �
!�

��	�� Algorithm

Following� we give an overview of our stochastic rendering algorithm� It is a modi�cation of
the algorithms given in Sections ����� and ������

gamma � �

for each blob intersecting the ray do

Calculate av gamma � ��k and s gamma � ���k
Sample Q at midpoint� Q � Q��xck�
Update integral� gamma � gamma 	 av gamma 	 s gamma
Q

end for

Calculate transparency� tau � exp���t
gamma�
Calculate av J � �J�x�
 s� from the blob representation
using the algorithm described in Section ���
Combine� I � tau
Iout�xb
 s� 	 ���tau�
av J

Whenever a shadow ray is computed� only the transparency tau must be calculated� The
complexity of this algorithm is O�N�� where N is the number of blobs� Unlike volume
rendering algorithms� our algorithm is independent of the resolution of random perturbation
of the density �eld� In the next section� we describe results obtained using our algorithm�
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��	�� Results
If we had always lived in a land where there are no clouds� only low
mist or haze� what would we have thought if a sranger had come to
tell us that in his country these layers of mist rise high in the sky
and become purple� crimson� scarlet and gold� John Ruskin

We implemented the stochastic rendering algorithm into a standard raytracer� Prior to
rendering� we precompute the tables for the transparency and we generate a realization of
the homogeneous random �eld Q� The latter is generated using the inverse spectral method
of Section ������ The spectral density is obtained by taking the inverse Fourier transform of
the correlation function� As stated in Section ������ this method has the advantage that the
resulting realization can be de�ned and is periodic on a regular threedimensional lattice�
Therefore it can be evaluated e�ciently using trilinear interpolation and is de�ned for all
points in space� The artifacts caused by the periodicity of the �eld are not visible in our
images because the �eld is used only to perturb the illumination� We used a table of size
�� � �� � �� in all of our results� A user has control over the shape of the density �eld by
specifying the position� centre and mass of each blob of the mean density �see Section �������
The perturbation is controlled by providing the magnitude � of the variance� the clamping
value � and the correlation function of the homogeneous �eld Q� In all the results we have
assumed a constant phase function p� i�e�� scattering is constant in all directions� Next we
specify some of our results obtained using the stochastic rendering algorithm�

We model clouds in a way similar to Gardner� An individual cloud is generated by
randomly placing blobs in an ellipsoid provided by a user� The size and mass of each blob
are made inversely proportional to their distance from the centre of the ellipsoid to ensure
that the density is maximum in the centre of the cloud� Clusters of individual clouds can be
generated by randomly generating such ellipsoids� In Figure ���� we show four pictures of
the same cloud with di�erent values for the magnitude � and the clamping value �� Clouds
in the left column have a lower perturbation � than the ones on the right$ and the ones on
the bottom have a lower threshold value � than the ones on the top� Figure ���� shows
one of the clouds with self shadowing� two di�erent clusterings of such clouds and an areal
view of downtown on a foggy day� Clouds are characterized by a high amount of scattering�
therefore we have set the albedo close to one� Figure ���	 shows four frames from an animated
sequence of a cloud interacting with Toronto�s CN Tower� This demonstrates that our model
handles the interaction of clouds with solid objects� This is an improvement over Gardner�s
illumination model�
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Figure ����� Di�erent values for the perturbation � and the threshold �� From top to bottom
and left to right� �a� small � high �� �b� high � high �� �c� small � small �� �d� high � and
small ��
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Figure ����� Di�erent pictures of clouds created using the stochastic rendering algorithm�

�
�



Figure ���	� Four frames of an animation of a cloud interacting with the CN tower� Notice
the smooth disappearance of the tower in the cloud�

�
�



��� Rendering Hair

The appearance of hair shares many characteristics of density �elds� Indeed� light is scattered
and absorbed by each hair strand� A noticeable di�erence with gases� however� is that
the scattering depends strongly on the orientation of each hair� Consequently� the phase
function does not only depend on the angle between the incoming and outgoing angles� We
generalize our rendering algorithm to handle fuzzy segments instead of blobs� Each hair is
then approximated by a set of adjacent fuzzy segments� Prior to presenting our model we
review previous work done in this area�

��
�� Previous Work

Researchers have modelled hair either by modelling each hair explicitly or by modelling the
hairs as a solid texture� The latter approach is useful to model short furlike hair� Perlin
and Ho�ert directly volume rendered the solid texture to depict fur  ��!� Kajiya and Kay on
the other hand modelled the fur as a distribution of microfacets and derived an illumination
model from this distribution  ��!� Although� their results are impressive the method is too
expensive for practical applications� Explicit models of hair fall into twocategories� Either
the hair is modelled as an opaque cylinder or as a translucent segment� The explicit cylinder
model was used by Anjyo et al� to render opaque thick hair  �!� The model works well
in depicting dark hair but fails to render the translucency exhibited by blonde hair for
example� The latter problem has been solved using depth bu�ers by both LeBlanc  ��! and
Rosenblum et al�  ��!� In both algorithms shadowing is achieved by projecting the hairs into
a zbu�er centred at each light source� Various shadowing e�ects are achieved by combining
the various depth bu�ers� This method has the advantage that the hardware rendering
capabilities of graphics workstation can be used to calculate the shadows� However� it is
prone to aliasing when the number of hairs is very large� The aliasing can be avoided by
either perturbing the samples or by �ltering adjacent values� at the cost of loss of detail and
increase in computation time� Our approach is similar to theirs� as we pre�lter each hair
segment in world space instead of screen space� Our method� however� uses the e�cient blob
integration techniques of Section ��� and the shooting algorithm of Section ��� to compute
the shadowing and the illumination of the hairs respectively�

��
�� Hair Illumination Model

Our illumination model is very similar to the ones used in most previous models� Hair is
visible to us because each hair strand both re�ects and refracts light� The e�ects of refraction
and multiple re�ections can be modelled as the scattering of light within a density �eld of
hairs� This model is� however� not complete� since highly directional re�ections from hair are
often visible� This e�ect is particularly apparent for greased hair� We assume that the width
of each hair strand is thin and that the distribution of re�ected light due to the incoming
intensity coming from a direction s is equal to the �re�ected cone� aligned with the direction
t of the hair as illustrated in Figure ���
� This is equivalent to adding a term pspec to the
phase function which depends on the direction of the hair strand�

pspec�s � s�
 t� � pspec��s� � t� ��s � t�� � pspec���s� # s� � t�� ������
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Figure ���
� The intensity re�ected from a hair is approximated be a cone�

Consequently� the shooting operations from patches and light sources to the hair blobs have
to be changed accordingly� We represent each hair as a density �eld de�ned around a segment
zv � z� # vt�

H�x� � W �distH�x�
 ��


where distH gives the shortest distance to the hair segment and W is a smoothing kernel
�see Section ����� The point closest on the segment �assuming the direction t is normalized�
is equal to the projection of the vector x� z� onto the segment�

zclosest � z� # ��x� z�� � t�t�
In the case when this point does not lie within the hair segment� zclosest is one of the endpoints
of the segment� Consequently� the distance is equal to�

dH�x� � j�x� z�� # ��x� z�� � t�tj�
Following� we give an integration method to compute the transparency due to an ensemble
of such fuzzy segments�

��
�� Fuzzy Segments Integration

The results presented in this subsection are a generalization of the spherical blob integration
to fuzzy segments� In order to compute the optical depth due to a single fuzzy segment
along a ray xu � x� # us� the following integral has to be calculated

��a
 b� �
Z b

a
W �dH�xu�
 �� du�

Similarly to the blob integration technique we approximate this integral by �see Equation
������

��a
 b� � b� a

R

d�
R
W �d�
 ��


where d� is the shortest distance of the ray to the segment� d� is the halfdistance that the
ray traverses through the truncated fuzzy segment �see Figure ����� and u� is the closest
point on the ray to the segment� The shortest distance to the segment is calculated by the
condition that the di�erence between the ray and the segment xu � zv has to be orthogonal
to both the direction of the ray and the direction of the segment�

�xu � zv� � s � 
 and �xu � zv� � t � 
�

�
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Figure ����� Geometry of the integration of a fuzzy segment along a ray�

Solving for u and v one obtains�

u� � �x� � z�� � �s� �s � t�t����� �s � t���

v� � �x� � z�� � t# u��s � t��

The denominator �� �s � t�� vanishes when the ray and the segment are aligned and in this
case the shortest distance is given by d� � jx� � zclosestj for example� In general� the closest
distance is then given by d� � jxu� � zv� j� From the geometry of Figure ���� it follows that
the distance along the ray is given by

d� � d�� sin� �
q
R� � d��� sin�


where R is the radius of the truncated blob and � is the angle between the direction of the
segment and the direction of the ray� and hence

sin� �
q

� � �s � t���

The optical depth due to many segments is obtained by summing up the contributions of
each of them�

��
�� Hair Rendering

The hair can be rendered by adding shooting operations from the patches and the light
sources towards the extremities of each hair segment� The intensity on each point of the
segment is then interpolated using the parameter v� on the segment� Each shooting operation
is identical with an additional specular component due to the re�ected cone �see Equation
������ Indeed� from a patch� the contribution to the source intensity due to the specular
scattering is given by

Jspec � Iout� �F��pspec�s � s��
 t��
Similarly for the light sources� The integration of the source intensity is then similar to the
one for the blobs given in Section ������
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Figure ����� Spherical coordinates used in the de�nition of the spherical harmonics basis
functions�

Appendix ��A Spherical Harmonics

Spherical harmonics form an orthonormal basis for the space of functions de�ned on the unit
sphere� Each direction s can be represented by two angles � �  ����
 ���! and 	 �  

 ��!
as illustrated in Figure ����� The spherical harmonics are then de�ned from the Legendre
polynomials Pl�� as�

Yl�m�s� � Yl�m��
 	� �

vuut�l # �

��

�l �m�'

�l # m�'
Pm
l �cos ��eim�


where the functions Pm
l are the associated Legendre polynomials of degree l and order m � 


de�ned by�

Pm
l �� � ����m�� � ��m
� d

m

dm
Pl���

For negative m� the spherical harmonics are de�ned through the following relation�

Yl�m�s� � �����mY �
l��m�s��

For each positive order l� we have �l # � harmonics with m � �l
 � � � 
 l� The Legendre
polynomials are de�ned by the following recurrence relations�

�l # ��Pl���� � ��l # ��Pl�� � lPl����
 l � �


with the �rst two polynomials equal to

P��� � � and P��� � �

The Legendre polynomials are themselves an orthogonal basis for functions on the interval
 ��
 �!� Z �

��
Pl��Pl��� d �

�

�l # �
�ll��

The Legendre polynomials are related directly to the spherical harmonics through the addi�
tion theorem�

Pl�s � s�� �
lX

m�l

�
��

�l # �

�
Y �
l�m�s��Yl�m�s�� ������
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Appendix ��B Proof of Angular Smoothing Due to

Multiple Scattering

Both the phase function and the angular component of the intensity �eld can be expanded
into spherical harmonics�

p�s � s�� �
�X
l�

lX
m�l

plY �
l�m�s��Yl�m�s�


I�x
 s� �
�X
l��

l�X
m��l�

I l
��m�

�x�Yl��m��s�


speci�cally p� � �� and p� � ������ Because of the orthonormality property of the spherical
harmonics� each single scatter event becomes a simple multiplication by the coe�cients of
the phase function�

SfIg�x
 s� �
X
l��m�

X
l�m

plI l
��m�

�x�Yl�m�s�
�

��

Z
��
Y �
l�m�s��Yl��m��s�� ds� �

X
l�m

pl

��
I l�m�x�Yl�m�s��

The accumulative e�ect on the intensity �eld of n scattering events at a location x can be
expressed through the scattering functional S �see Eq� ���� as

SnfIg�x
 s� � Sn��fSfIgg�x
 s� �
�X
l�

lX
m�l

�
pl

��

�n
I l�m�x�Yl�m�s��

This last expression tends towards I����x� as n tends towards in�nity� This is a consequence
of the fact that each coe�cient pl is strictly smaller than �� in absolute value� with the
exception of the �rst one� This follows directly from the de�nition of each coe�cient�

jplj �
������

Z ��

��
p�x�jPl�x�j dx

���� � ��
Z ��

��
p�x�jPl�x�j dx

� ��
Z ��

��
p�x� dx � ���

the last inequality follows from the fact that jPl�x�j � � for l � 
� This demonstrates that
the dependence of the intensity �eld diminishes as the number of scatter events n increases�

Appendix ��C E	cient Integration of the Transport

Equation

The algorithm of Section ����� can be improved by making the following additional approx
imations� �see Equation ���	�

J�xu
 s� ��

P
kmkJk�s�W �dk
 ��P

kmkW �dk
 ��



on each interval� Here� the values of the smoothing kernel can be computed before calculating
the integral� At each interval� either a new blob overlaps or an overlap ends� The source
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Figure ����� Linear Approximation of the source intensity when the approximation of Ap
pendix ��C is used�

intensity can thus be updated for each consecutive interval by either adding the intensity of
the blob which starts to overlap the interval�or subtracting the intensity to end the overlap�
The approximation is shown in Figure ����� It is fairly coarse� however the visual results are
comparable with those obtained from the algorithm of Section ����� at a computation time
which is an order of magnitude faster� The algorithm follows�

I d � �

tau tot � �

gamma � J � rho � �

for j � 

 � � � 
Ki � � do
k � index of blob that enters or exits the interval
if blob enters then

m � mkW �dk
 ��
gamma � gamma 	 m
 �

�k

J � J 	 m
Jk�s�
rho � rho 	 m

else if blob exits then
m � mkW �dk
 ��
gamma � gamma � m
 �

�k

J � J � m
Jk�s�
rho � rho � m

end if
tau � exp���t�uj�� � uj�
gamma�
I d 	� tau tot
���tau�
J�rho

tau tot � tau tot
tau

if tau tot  EPS then exit loop
end for
I � tau tot
Iout�xb
 s� 	 I d

Care has to be taken with regard to numerical instabilities� When subtracting the values
from the variable rho� gamma and J the previous values should cancel� In general� with
�nite precision� the result is non zero� When many blobs intersect the ray� small residuals
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can accumulate to produce visible artifacts� In practice then� we clamp the variables to
zero whenever they fall below a given threshold� We e�ectively remove the inner loop� The
algorithm therefore runs in time O�jLj� when there is no warping� The warping of the blob
is included in the calculation of the value of the smoothing kernel� as in Section ������
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Chapter �

Depiction of Gases� Fire and Hair

Modelling is certainly not a scienti�c endeavor� even though it is
customary to report it as such� Successful modelling is nearly
always reported as a more or less logical reconstruction of
occurrences� Derivations are presented in logical sequences which
has little relationship to the manner in which the modelling e	ort
progressed� Generally many attempts were made to produce results
and only the one �nally chosen was reported� The reason why this
is so is that the modeller wants to make his work acceptable to the
scienti�c community� Also� it provides a convenient� acceptable
frame for reporting� As a result� an unrealistic view is presented as
to what modelling actually is and how it is done� J�J� Leendertse

In this chapter we outline our visual simulations� based on the methodology and tech
niques presented in the previous chapters� Speci�cally� models are developed to depict
turbulent gases� the spread and evolution of �re and the motion and appearance of hair�
The evolution of each of these phenomena can be modelled as a advectiondi�usion process
subjected to a motion �eld� As well� the appearance of these phenomena can be calculated
using the density �eld rendering algorithms discussed in the previous chapter� In the �rst
section� we review previous work� Then� in the second section� our general methodology
is described� The subsequent sections illustrate concrete applications of this methodology
related to the depiction of gases� �re and hair�

��� Previous Work

We review relevant work dealing with the depictions of both the motion and the rendering
of gases� �re and hair� Previous work in this area falls approximately into two categories� In
the �rst group� researchers animate the density �eld directly using threedimensional texture
maps� In the second approach� the density �eld is animated through the use of motion �wind�
�elds� Our work falls into the latter category�

Solid textures were �rst introduced by Perlin and Peachy  ��� ��!� These textures were
employed to add visual detail to smooth surfaces either by modifying the intensity� or by
perturbing the normal  �!� Solid textures were later utilized to perturb a transparent layer
around objects and were called hypertexture  ��!� These hypertextures were applied in de
picting �re balls and hair� among other e�ects� Kajiya and Kay also modelled hair� by
deriving an illumination model from a distribution of microfacets de�ned within a layer
around an object  ��!� In particular� they created a very realistic picture of a teddy bear�
The animation of the parameters of a solid texture was �rst explored by Ebert  ��!� In the
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same spirit as Perlin�s work� Ebert proposed many procedural models which were discovered
empirically� Sakas used statistical models of turbulence to derive meaningful parameters
 ��!� These parameters are based on energy cascade models similar to the ones considered in
this thesis �see Section ������� However� we apply these models to the simulation of motion
�elds� not the density �eld� In both Ebert�s and Sakas work the texture is rendered using
voxel traversal algorithms� This method is disadvantageous� especially in Ebert�s model�
since realtime rendering is not yet possible on standard workstations�

In the second approach� the motion of the density �eld is subjected to a motion �eld�
One of the �rst models to use this approach is Reeve�s particle system model  ��!� He used
his particle system to generate the explosions in the opening scene of �Wrath of Khan�  ��!�
He also applied his model to the generation of grass and leaves  �	!� Although he did not
state it explicitly� his grass model could have been applied to the modelling of hair� Sims
extended this particle systems work by using particles which were blurred both in time and
space  	�!� This rendering approach is therefore similar to our blob method  	�!� These
models� however� did not attempt to derive a realistic rendering algorithm for the depiction
of these particle systems� Also� the motion �elds used in these simulations are deterministic
and the depiction of turbulent motion is rather di�cult� Shinya and Fournier were the �rst
to introduce stochastic wind �elds into animations  �	!� Their �elds were twodimensional
and they invoked the Taylor Hypothesis �see Section ������ to model the evolution over time�
They used this model to animate various phenomena such as grass� However� they did not
apply the model to the animation of gaseous phenomena� Stam and Fiume generalized the
turbulent wind �eld synthesis technique to threedimensional random vector �elds evolving
over time and proposed an e�cient rendering algorithm based on blobs of density� On the
other hand� Chiba et al� modelled twodimensional turbulent �elds as the superposition
of point vortex �elds evolving over time  ��!� They applied their model to the animation
of gases and �re� They also developed a model for the spread of �re by subdividing the
environment into cells� The propagation of the �re is determined by both the amount fuel
and the amount heat at each cell� Their model is restricted to twodimensional domains�
Perry and Picard used a spread model from the �re engineering literature to model the
spread directly onto each surface  ��!� The spread is entirely determined by its direction and
the angle of the surface�

The animation of hair has only received minimal attention in the graphics community�
Both Anjyo and Rosenblum et al� model each hair strand as a �exible beam  �� ��!� The
simulations that they present are convincing for thick hair exhibiting inertia� However� for
light hair their method is computationally expensive� In addition� inter hair collisions have
to be calculated on a pairwise basis and are therefore expensive� Realtime simulations can
only be achieved with a small number of hairs�

��� Interlocking Models

Fluids such as gases� water or �ames are described by their density� velocity and temperature
�elds� For arbitrary �uids� the evolution of these quantities is described by the hydrody
namic equations presented in Section ������ The quantities describing the �uid are strongly
coupled through these equations� For example� the temperature �eld introduces gradients
in the velocity �eld� but the velocity �eld advects and di�uses the temperature �eld� In the
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case of reacting �uids such as �re� additional equations are needed to account for the under
lying chemical reactions� The full physical simulation of this set of equations is extremely
expensive� Their nonlinear nature and the wide range of scales required would severely strain
computational speed and memory available on even the most powerful computers� As out
lined in the introduction of this thesis� even if such a simulation were available it would be of
limited interest to computer graphics� because the user�s ability to control the phenomenon
would be missing� The degree of user control must be balanced against the need for turbulent
behaviour of a gas� which is di�cult to model without an underlying physical or statistical
model driving it� In our simulations� we allow the user to control the phenomenon through
the speci�cation of a motion �eld� We assume that this motion �eld is incompressible and
consequently its density can be considered to be constant� Once the motion �eld is speci�ed�
the evolution of both the temperature of the �uid and the density of a substance immersed
in the wind �eld can be approximated by an advectiondi�usion process� At each instant of
time� the phenomenon can be rendered from its density and temperature using one of the
algorithms of the previous chapter� The visual simulation of the phenomenon is thus broken
down into three components� a model for the motion �eld� an advectiondi�usion process
and a rendering model� The separation of the simulation into these components has several
advantages over direct physical simulations� For each component we can trade accuracy for
speed� Typically� an animator �rst starts with an approximate method of solution� Once a
particular motion has been sketched� the animation can be �ne tuned by using more accurate
techniques� to achieve higher realism for example� The three models are now described in
detail�

��� Motion Fields

A motion �eld is a vector �eld u�x
 t� which varies over space and time� We separate this
motion �eld into two components� a smooth �eld u� and a turbulent �eld u�� The smooth
�eld corresponds to the global motion of the phenomenon and physically corresponds to the
large scales� An animator utilizes the smooth �eld to sketch the global motion� The turbulent
�eld corresponds to the small scale detail� which adds irregularity and hence realism to the
motion� The small scale motion is usually hard for an animator to specify directly� For this
reason� we model the turbulent �eld as a random function whose macroscopic parameters
are speci�ed by the animator� The resulting �eld is obtained from a composition of these
two �elds� The most straightforward composition is a simple addition of these two terms�

u�x
 t� � u��x
 t� # u��x
 t�� �����

In this situation� the resulting �eld does not satisfy the hydrodynamic Equations ���� ��	
and ���
� even if both components do� Indeed� if we assume that both �elds satisfy the
hydrodynamic equations� then a simple calculation shows that the conditions

�u� � r�u� � 
 and �u� � r�u� � 



are su�cient for the addition of the two �elds to satisfy the hydrodynamic equations� The
�rst term represents the e�ect of the large scales on the turbulent ones� and the second term
represents the e�ect of the small scales on the smooth �eld� These terms are in general non
zero� For example� the turbulence behind an object in movement is strongly dependent on
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Figure ���� A�ne transformation of a �eld�

the global motion of the object� The in�uence of the turbulent scales on the smooth scales is
usually more di�cult to visualize� But� it is well known that tiny disturbances at the small
scales can modify the larger scales� In our model� however� this interaction is undesirable
since the smooth scales are speci�ed entirely by the animator� Hence� we assume that there
is no e�ect from the smaller scales on the smooth �eld�

�u� � r�u� � 
�

Since the turbulent scales are random and the smooth �eld is entirely speci�ed by the
animator� we can attempt to derive models for the e�ect of the smooth �elds on the turbulent
scales� The general form of our motion �eld is then�

u�x
 t� � u��x
 t� # Ffu�
u�g�x
 t�
 �����

where F is some mapping� Ensuing� we describe the smooth component in more detail�

	���� Smooth Motion Fields

We model the smooth motion �eld as a superposition of simple primitive �elds� This model
is similar to the wind �eld models which were used to animate particle systems  	�! and to
animate leaves and other objects  �
�!� As in geometric modelling� the primitive �elds are
de�ned in a local coordinate system� Then� particular instances are obtained from a�ne
transformations of the primitive �eld� To evaluate the �eld we have to transform back to
the local coordinate system and evaluate the primitive �eld� The vector so evaluated has to
be transformed back through the linear part L of the a�ne transformation M �see Figure
����� Precisely� an instance ui is obtained from a primitive �eld up via�

ui�x
 t� � Lup�M
��x
 t�


and the linear part of the a�ne transformation is the upper left ��� block of matrixM� Our
primitive smooth �elds are all centred at the origin and usually have a directional component
which is pointed in the positive zdirection� In order to localize the �elds in space� we add a
decaying factor depending on a �distance� d from a �source� region� de�ned accordingly for
each primitive� The decay will be modelled by a function W �d
 �� similar to the smoothing
kernel considered in Chapter �� In the remainder of this subsection x � �x
 y
 z�� Next we
describe the di�erent primitive �elds that we consider in this thesis� The �rst three �elds
are depicted in Figure ����
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Figure ���� Three examples of smooth �elds

Directional Fields

Many phenomena� such as steam rising from a co�ee cup� are characterized by a strong
directional component� Steam rises because of the heat �eld created by the hot co�ee� So�
we consider a simple directional motion �eld which decays with the distance from a given
surface� In local coordinates� the direction is upward in the zdirection and zero outside the
semiin�nite column de�ned by the unit square on the xyplane�

udir�x
 y
 z� �


W �z
 ���

 

 ��T if �x
 y� �  ��
 �!�  ��
#�! and z � 




 elsewhere�

The sudden cuto� can be smoothed out by multiplying the �eld by a smooth function which
is zero outside of the unit square� In practice� however� the sudden cuto� has not produced
serious visible artifacts�

Radial Fields

Radial �elds are used to de�ne repulsive �elds around objects� The �eld is directed outwards
from the unit sphere and drops o� with the distance d � jxj � � from the surface of the
sphere� Inside the sphere the �eld is directed inwards� The direction of the forces can be
re�ected by having a negative magnitude� The de�nition is�

urad�x� �


d
jdjW �d
 �� x

d�� if d �� 



 elsewhere�

For nonspherical objects� the a�ne transformation is used to �t a small set of ellipsoidal
�elds around an object� This problem is akin to the calculation of bounding ellipsoids around
arbitrary objects to speed up ray casting algorithms  �!�

Cone Fields

Heat �elds are characterized by an outward expansion of the directional �eld� due to the
di�usive nature of the propagation of temperature� We must then de�ne a �eld which is zero
outside of a cone and has a directional dropo� inside� The exact de�nition is given by�

ucone�x
 y
 z� �


W �jxj
 �� x

jxj if x� # y� � z��


 elsewhere�
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Figure ���� Two examples of simple vortex �elds

Vortex Fields

An eddie of a velocity �eld is usually depicted as a small whorl around a given direction and
is called a vortex� In particular we can consider the velocity �eld obtained from a set of such
vorticies� Indeed� animators have used such combinations of vortex �elds to evoke turbulent
�elds  	�!� In this thesis� we present two vortex �elds which an animator can use to add
particular eddies to the turbulent motion �eld� These two �elds are depicted in Figure ����
Vortex �elds can be used also for large scale e�ects such as the evolution of a tornado or the
generation of mushroom clouds in an explosion� The �rst vortex �eld is the velocity resulting
from a single vorticity de�ned on a line� In local coordinates� the velocity turns around the
zaxis counterclockwise� The de�nition of the �eld is given by�

ulvort�x� �
�

��

W �jxj
 ��

x� # y�
��y
 x
 
��

The second vortex �eld is obtained by considering the �eld which is obtained by turning
around a circle of radius R� In local coordinates the circle lies in the xyplane and the �eld
is equal to�

ucvort�x� �
�

��

�zx
 zy
 �x�� x�x# �y� � y�y�p
x� # y���x� x��� # �y � y��� # z���
�




where

�x�
 y�
 z�� �
Rp

x� # y�
�x
 y
 
�

is the point closest to x on the circle� The derivation of these equations is given in Appendix
��A of this chapter�

	���� Turbulent Motion Fields

As stated in the introduction of this chapter� we model the turbulent component of the mo
tion �eld by a random function� Algorithms to synthesize realizations of incompressible and
isotropic random functions were given in Section ���� Speci�cally� we choose the spectral
synthesis technique since it generates a periodic motion �eld de�ned on a fourdimensional
lattice� The periodicity is an important feature of our turbulent �eld because it permits the
de�nition of the �eld for any point in space and time� Also� the �eld can be computed e�
ciently using �linear interpolation from nearby points on the grid� A simple algorithm which
performs this interpolation is given in Appendix ��B of this chapter� In practice we have
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Figure ���� Turbulent �elds with di�erent spatial structures� From top to bottom and left
to right� �a� Large L� �b� Smaller L� �c� Same L as �b� but larger grid size� �d� Same as �c�
but even larger grid size�

opted for a resolution of �� in both space and time� This resolution is satisfactory for most
of our simulations� No substantial improvement in the quality of the motion was observed
by increasing the resolution� Also� no periodic artifacts were visible at this resolution�

Control Parameters

The macroscopic features of the turbulence are entirely determined by the shape of the energy
spectrum �Equation ������ For the modi�ed Kolmogorov spectrum these parameters are the
size of the largest eddie L and the standard deviation � of the temporal spread function
G� �see Equation ������ The size of the largest eddie determines the spatial structure of
the turbulence� Large values of L correspond to �elds with larger spatial structures� i�e��
eddies� The converse is true for smaller values of this parameter� The e�ect of changing this
parameter is equivalent to the �roughness� parameter used in the generation of fractal terrain
 		!� In the top of Figure ��� we show two �elds with di�erent �roughness� parameters� The
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Figure ���� The smooth �eld has the e�ect of warping the grid of the turbulent �eld�

temporal spread � is the equivalent of the roughness parameter for the variation of the �eld
over time� Large spread values correspond to a highly chaotic motion �eld over time as many
temporal frequencies contribute to the total energy� Conversely for small spreads� the �eld
is smoother over time� In practice� the same e�ects can be achieved by changing the spacing
of the turbulence grid once the �eld has been computed� The two �elds on the bottom
of Figure ��� were actually obtained by increasing the grid size of the topright �eld� In
particular� the grid spacing of the turbulence can be changed in real time and consequently
an animator can explore di�erent settings and results in real time� This speeds up the design
process considerably� In exact terms� more than one turbulence grid can be used in the same
environment� creating a nested hierarchy of grids�

Interaction with the Smooth Fields

Usually� the simple superposition �Equation ���� of the smooth �eld with the turbulent one
has worked well in practice� However� we brie�y discuss di�erent possible compositions�
In some cases� the turbulence is a function of the magnitude of one of the smooth �elds�
For example� the turbulence caused by heat becomes stronger and of a di�erent nature the
closer the proximity� This can be achieved by masking the turbulence by the smooth �eld
�see Equation �����

Ffu�
u�g�x
 t� � f �ju��x
 t�j�u��x
 t��
where f can be any arbitrary function provided by an animator� For example� a simple
decaying exponential can be used to smoothly dissipate the scales of the turbulence� In
many cases� however� the smooth �elds do not only change the magnitude of the turbulence
but also change its spatial and temporal behaviour� Usually� the structure of a turbulent
�eld subjected to a forcing term is not isotropic� In fact� the turbulent �eld is distorted
by the smooth �elds� This is similar to the problem that we encountered with our regular
spherical blobs� To account for the distortion� we can use a similar solution by backwarping
the domain along thee smooth vector �elds �see Figure ����� In fact� the nonzero advecting
term �u� � r�u� appearing in the hydrodynamic equations describes these deformations� As
in the blob warping method� we can evaluate the �eld by backtracing through the smooth
�eld�

Ffu�
u�g�x
 t� � u�

�
x�

Z t

�
u��x�s�
 s� ds
 t

�
�
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Consider the case when the smooth �eld u� is a constant direction� Then the turbulent �eld
is given by�

u��x� u�t
 t�


i�e�� the turbulence is translated along the direction� This e�ect is evident when watching
smoke or clouds moving along a given wind direction� In general� when the smooth �eld
varies over space� the �eld must be recalculated at each time step� Max et al� have developed
algorithms to advect grids in unsteady velocity �elds and have obtained good results for short
time ranges  ��!�

��� Advection
Di�usion Processes

We model the evolution of a phenomenon subjected to a motion �eld using an advection
di�usion process� The equation which describes this class of processes was derived in Chapter
� �Equation ����� Although this description is approximate� it is well suited to the visual
depiction of phenomena as varied as steam and human hair� The resulting simulations are not
necessarily physically accurate� but capture the essential characteristics of the phenomenon�
Following� we present these equations for the evolution of the density and the temperature
�eld of a gaseous phenomena�

	���� Density and Temperature

A gaseous phenomenon is entirely described by its density� velocity and temperature �elds�
We suppose that the velocity of the gaseous phenomenon is entirely determined by the motion
�elds described in the previous section� Also we have assumed that the motion �eld u�x
 t�
is incompressible and its density �f �x
 t� is therefore presumed to be constant�� This density
should not be confused with the density � of gas particles� which is not constant and evolves
over time� For example� in the case of clouds� the density of water droplets is nonconstant
and �uctuates wildly� The evolution of the density distribution over time under the in�uence
of this motion �eld is given by the following advection di�usion equation�

��

�t
# u � r� � ��r��� ��� # S��

In the general formulation of this equation given in Section ������ �� characterizes the dif
fusion of the particles as they interact with the molecules of the motion �eld� In practice�
however� this term models the di�usion caused by the small scales of the motion �eld which
are not explicitly modelled by the turbulent �eld� i�e�� caused by the subgrid scales� The
source term and the absorption rate both depend on the phenomenon under consideration
and are described for di�erent cases in the next subsection�

An accurate description of the evolution of the temperature �eld is usually very com
plicated� We use a simpli�ed model which is often used in theoretical investigations of �re
propagation  	� ��!� These descriptions assume that the kinetic energy is negligible compared
to the energy released by the heated gas� and that pressure and buoyancy �uctuations are

�Although some of our smooth 
elds are not strictly incompressible	 they are approximately so since their
speed is an order of magnitude slower than the speed of sound ����
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small� In this setting� the evolution of the temperature �eld is described by the following
advectiondi�usion equation�

�fCp

�
�T

�t
# u � rT

�
� �Tr�T � LT # ST 


where Cp is the speci�c heat at a constant temperature of the gas and �T is the thermal
di�usivity� Although the thermal di�usivity usually depends on the temperature� we assume
that it is constant� The loss of temperature LT is dominated by radiation which is charac
terized by the absorption cross section of the gas� The speci�c heat Cp of the gas describes
how e�ectively its temperature can be lifted� The source term depends on the heat released
during the creation of the gas and is discussed in the upcoming subsection� The density of
the motion �eld �f is assumed to be constant as stated in the beginning of this section� The
source term depends on a simple chemical reaction described next�

	���� The Creation and Spread of Fire

In the case of �re� the source term can be related to a simple combustion equation� In
fact� �res result from the combustion of fuels and oxidizers� As the molecules of these
compounds come into contact at a su�ciently high temperature� a chemical reaction becomes
possible� The burning compounds resulting from this reaction are called the �ame� We are
not interested in a complete physical model of this reaction� but rather are interested in
those mechanisms that are essential to a good visual representation of it� Given the density
�fuel of the fuel and its temperature Tf at a given point� the source term S is given by the
Arrhenius formula� Assuming a constant concentration of oxidants  	!�

S��f lame � �a exp

�
� Ta
Tfuel

�
�fuel� �����

Ta is the activation temperature� which is directly related to the energy Ea released during
the reaction by Ta � Ea�R� where R is the universal gas constant� The term �a is a
�frequency�� depending on the exact nature of the combustibles� characterizing the rate of
the reaction�

The initial temperature of the �ame is related to the heat released during the reaction
modelled by Equation ���� The source term appearing in the di�usion equation for the
evolution of the temperature of the �ame is then equal to

ST�flame � CpS��f lameTa�

Fire loses heat mainly through radiation� This loss is equal to the divergence of the
radiant heat �ux�

LT�flame �
Z �

�

Z
��
s � rI��x
 s� ds d� �

Z �

�

Z
��
�t����x�J�x
 s� ds d�


where the last identity follows from the scattering equation �Equation ����� With �ames�
we can assume that most of the heat is radiated through emission and we consequently set
the albedo to zero� In this case the source intensity J is equal to the black body emission
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Figure ���� The �ame and the fuel of the solid exchange heat mainly through radiated heat�

multiplied by the emission spectrum E� �see Equation ����� The loss of temperature is then
given by�

LT�flameT � �
Z �

�

Z
��
��t��E�B��T �ds d� � ������a�T

�


where mean absorption cross�section ��a is de�ned by

��a �

R�
� �t��E�B��T � d�R�

� B��T � d�
�

�

�T �

Z �

�
�t��E�B��T � d��

Therefore� this constant depends on the emissive and the absorptive properties of the �ame�
The loss of temperature with time� then� is faster than the linear loss term usually found in
advectiondi�usion equations� Indeed

�T

�t
� �CT � implies T �t� �

�

��Ct # T��
� ��
�




where T� is the initial temperature of the �ame� However� we can still use the blob simulation
technique by using this function instead of the exponential one�

Under our assumptions� the creation of the �ame is entirely determined by the density
and the temperature of the fuel� The spread of �re is then a function of the values of these
�elds� The evolution of a gaseous fuel� such as natural gas� is also described by an advection
di�usion equation� Solid fuels such as logs� paper or a match are modelled by de�ning a
�thin layer� of fuel around the surface de�ning the solid� In particular� the shape of the
object cannot change as the object burns� However� most objects do change when they
burn and eventually collapse into ashes� These e�ects are� however� di�cult to model� so
we concentrate on a simple model �rst� Both the density and the temperature of the fuel
are then de�ned on a subdivision of the surface into patches� The evolution of these �elds is
governed by a di�usion equation� since the object is supposed to be una�ected by the wind
�eld�

The loss of the density of the fuel is proportional to the source term of the �ame� Indeed�
in the combustion reaction� part of the fuel is transformed into the �ame� hence

L��fuel � �S��f lame�

The source term S��fuel of the fuel is speci�ed by an animator� For example� a �ame thrower
can be modelled by having a directional source term at the tip of the gun� The source term
for the temperature of the fuel is determined from the heat of nearby radiating �ames as
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illustrated in Figure ���� The source term for the temperature of the fuel is then the fraction
of this radiation which is incident upon the fuel� This is similar to a shooting operation from
a blob to a patch �solid fuel� or to a blob �liquid fuel� presented in Sections ����� and �����
respectively where a form factor F�� is calculated� By adding up the contributions from all
wavelength� the total heat due to a nearby blob of a radiating �ame is then given by �for a
solid fuel�

ST�fuel � �fuel��aF���T
�
flame


where ��a is the average absorption crosssection of the fuel� In practice� we have used the
multiscale blob representation of the �ame� and shoot only from a small number of blobs�
The fuel also loses heat due to radiation similarly to the �ame� In this case the loss term
appearing in the di�usion equation for the evolution of the temperature of a gaseous fuel is

LT�fuel � ���fuel��a�T
��

For a solid fuel the factor �� is replaced by the factor ���

	���� Smoke Creation

When the �ame cools o�� soot particles cluster together to form heavy smoke particles�
Also at the time of the reaction� other compounds other than the �ame are created which
propagate further into the environment� To the best of our knowledge� there are no analytical
models to describe this phenomenon in the literature� Therefore� we have modelled the
creation of smoke by using a simple Arrhenius type equation� Once the temperature of the
�ame drops o�� the density of smoke particles increases�

S��smoke � �b exp
�
�Tflame

Tb

�
�flame


where Tb is a typical temperature at which smoke creation becomes important� The frequency
�b models the rate of smoke creation�

	���� Method of Solution

To solve the advectiondi�usion equations� we use the blob representation and the blob
simulation algorithm given in Section ������ Both the blob and temperature �elds for each
gas in the environment are expanded into a blob representation�

��x
 t� �
NX
k�

mk�t�W �x� xk�t�
 ��

T �x
 t� �
�

��x
 t�

NX
k�

mk�t�Tk�t�W �x� xk�t�
 ���

To update both these �elds� the algorithm of Section ����� can be applied directly� In
environments containing �re� the evolution of the �ames� the fuel and the smoke have to be
coupled together in order to yield a simulation� The algorithm is�
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Initialize fuel maps on the burning objects
for each time step do

for each solid object do
Di�use temperature of the object
Collect radiant heat from �ame blobs and update temperature
Generate �ame blobs and update fuel density

end
for each gaseous fuel do

Advect and di�use the temperature and the density
Collect radiant heat from �ame blobs and update temperature
Generate �ame blobs and update density

end for
for each �ame blob do

Advect and di�use density and temperature
Generate smoke blobs

end for
for each smoke blob do

advect and di�use density of the smoke
end for

end for

The di�usion of the temperature on the surface of each object is performed using a �nite
di�erence method on the subdivision of each surface� We have used a Crank�Nicholson
scheme� because it is stable for any time step  ��!�

Speci�cally� the complexity of each time step depends only linearly on the number of
blobs� By varying the rate and the size of the blobs� simulations with di�erent accuracy
and speed can be obtained� The blob representation also has the advantage that it can
be mapped into several di�erent rendering models� This enables the animator to choose
between di�erent depictions at di�erent stages of the design process� For example� the
coarsest depiction of a blob is to display only its centre� These di�erent rendering models
are outlined in the subsequent section�

��� Rendering

Realistic representation ����� depends not upon imitation or illusion
or information but upon inculcation� Almost any picture may
represent almost anything� that is� given picture and object there is
usually a system of representation� a plan of correlation� under
which the picture represents the object� Nelson Goodman

We have developed several blob rendering methods based on the techniques and algo
rithms explained in the previous chapter� The methods usually trade o� visual quality for
computational speed� Each algorithm is based on a approximation of the general trans
port equation� We now present these algorithms� starting from the coarsest approximation
and moving on to more sophisticated renderings� But �rst� we provide an overview of the
rendering parameters which are available to an animator�
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Figure ���� The transparency of a single blob �far right� can be approximated by projecting
a set of translucent hardware shaded polygons�
of the transparency

	���� Rendering Parameters

The animator controls the depiction of the density �eld by modifying the scattering� absorp
tion and emissive properties of the medium� We have assumed that all these quantities are
sampled only at three frequencies corresponding to the red� green and blue channels of a
video display� These rendering characteristics depend on the density and on the tempera
ture of the density �eld� Once the latter two �elds are �xed� an animator can change the
�look� of the phenomenon as follows� The scattering properties of the medium are entirely
speci�ed by the albedo and the phase function� The albedo gives the amount of scattering
versus absorption for each wavelength and is a value between 
 �no scattering� and � �total
scattering�� The meaning is therefore fairly obvious to an animator� The phase function is
characterized by its �rst moment � � ���
 �� and a factor � � f��
#�g accounting for total
forward or backward scattering� An animator can model the anisotropy of the scattering
using these parameters� The emission of the medium is controlled by the emission spectrum
E� which multiplies the black body radiation given by the temperature �see Equation �����
Using this parameter� an animator can control the colour of the emission� The strength
of the emission is given by the temperature� However� we do allow an animator to specify
values bigger than � for the emission spectrum� The amount of transparency of the gas is
a function of the extinction cross section �t and the density of the blob� The range of the
extinction cross section extends from zero �totally transparent� to in�nity �totally opaque��
This range is not realistic for an animator to work with� In practice� we allow the animator
control over the transparency � �or equivalently the opacity� of a single blob� The extinction
cross section is then recovered via�

�t � ��

��
log�� �


where �� is for example the average value of the density of the blobs� In our model there are�
then� only � parameters which specify the rendering properties of the density �eld�

	���� Real�Time Rendering of Blobs

In situations when each blob has the same illumination� the total transparency reaching the
observer depends solely on the transparency of the blobs �see Equation ������ In this case�
the transparency due to the blobs at a pixel  x
 y! on the screen is calculated by multiplying
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the transparencies due to each single blob�

�tot x
 y! �
NY
j�

�j x
 y!�

For a given density and size� the transparency of a single blob can be precomputed and
stored in a pixel map �j  x
 y!� In practice� each map can be obtained through an a�ne
transformation from a single pixel map calculated for a particular smoothing kernel� This
method was �rst introduced by Westover  �
�!� On machines which have fast polygon shading
and alpha blending capabilities� we can apply polygons instead of the pixel maps  ��!� Indeed�
the projection of a spherical blob can be approximated by a triangular tesselation as shown
in Figure ���� The alpha value of each vertex is set to the alpha value of the blob� The alpha
value across each triangle is then computed by an interpolation of the graphics hardware�
The rendering method is thus linear in the number of blobs� and produces very good results
when the emission of the blobs is constant� Even when this is not the case� this approximation
can be used to adjust the size and the transparency of the blobs in real time�

	���� High Quality Rendering

Once the general appearance of the density �eld has been modelled using the realtime ren
dering approximation� high quality individual frames can be rendered for a �nal animation�
We identify two di�erent levels of rendering� In the �rst method only direct lighting is mod
elled� Hence we consider only one shooting operation from the patches and light sources
to the blobs and one shooting operation from the blobs towards the surface patches� This
approximation accounts for most visible light observed in real environments and is su�cient
in most practical situations� For highly di�use environments� or in the presence of thick
scatterers� the multiplescattering in the environment and in the density �eld can increase
the realism by �brightening up� and �colour blending� parts of the scene� In both these
algorithms� we can choose to ignore shadowing e�ects� In practice� we have assigned a �ag
to each object and density �eld indicating shadow calculations should be performed on or
from them�

��� Interactive Modeller

We have combined each of the components into an interactive modeller� The program called
�Whorl� allows a user to design motion �elds and view their e�ect on blobs in real time�
This modeller can output rendering scripts to a standard raytracer called �Optik� which
we have modi�ed to include the density rendering e�ects� We now explain both programs
in more detail�

	�	�� Whorl

Overview

Whorl allows a user to interactively design motion �elds� We use the �Forms�  ��! graphical
user interface which we have modi�ed to handle a slider with values that can be typed
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in manually� A particular �eld is designed as the superposition of instances of primitive
�elds� The instances are placed in the environment using translations� rotations and scaling�
Furthermore� the magnitude and the decay of the �eld can be controlled� The user has a
choice of precalculated turbulent motion �elds with di�erent eddie sizes and temporal decays�
Once a turbulent �eld is loaded� its characteristics are modi�ed using a�ne transformations
as in the smooth �eld� The user can then either visualize the �eld as a twodimensional slice
of the wind �elds� or can view its a�ect on moving blobs� The generation of the blobs is
entirely speci�ed by a region and a rate� The blobs are then generated uniformly on the
region at the given rate� The animator also speci�es the initial size and densities of the blobs�
The evolution of the blobs is then controlled through the motion �elds and by the di�usion
and absorption rates� The appearance of the blobs is modi�ed by varying the parameters
described in Section ������ Motion �elds only in�uence blob sets to which they are assigned�
This allows motion �elds to a�ect only certain blob sets in the environment� In addition to
the blobs and the wind �elds� we have included simple objects in Whorl such as spheres�
cubes and cones� As in the smooth wind �elds� each object is instantiated and transformed
using a�ne transformations� In addition to its rendering parameters� each object has some
parameters which characterize its burning properties� These are speci�c heat� heat di�usion
and an initial fuel map� At each step of the simulation� the temperature on each object is
updated and �ame blobs are generated accordingly� A user starts a �re by lighting a �virtual
match� somewhere in the environment using the mouse� Essentially all the parameters in
Whorl can be modi�ed using spline or linear interpolants� This is important when certain
e�ects have to be choreographed� Each speci�cation made by the user can be stored in a
script� which can be further modi�ed for �netuning a simulation�

Data Structures

Next we describe the data structures in C language of the main objects used in Whorl�
We de�ne types for threedimensional vectors of �oats �VECTOR�� spectral colour samples
�COLOUR� and four by four transformation matrices �MATRIX�� The basic wind �elds that we
consider are entirely described by a transformation matrix� magnitude� drop o� factor and
a function which evaluates the �eld at a given location� Turbulent wind �elds also need a
pointer to a four dimensional table of vectors and a temporal scaling factor�

typedef

struct

f
int type� �
 type of field 
�

float magnitude� �
 magnitude of the field 
�

float halfdist� �
 drop off factor 
�

MATRIX m� �
 transformation matrix 
�

float �
eval func���� �
 field evaluation field 
�

�
 ��� following fields are only used by turbulent fields 
�

int N� �
 size of grid defining the turbulence 
�

float 




V� �
 vector data 
�

t scale� �
 temporal scaling 
�

��




�
 ��� following field is only used by ring vortex field 
�

float radius�

g FIELD TYPE�

Each blob is de�ned by its position� age� and illumination parameters� There are two
size parameters accounting for the di�erent spreads of the density and the temperature of
each blob�

typedef

struct

f
float age� �
 time elapsed since creation 
�

VECTOR pos� �
 position of the blob 
�

float size dens� �
 spread of the density 
�

float size temp� �
 spread of the temperature 
�

float dens� �
 density at center of the blob 
�

float temp� �
 temperature at the center of the blob 
�

�
 ��� illumination parameters� 
�

COLOUR extinction� emission� albedo�

g BLOB TYPE�

The characteristics of each set of blobs is de�ned by a function which generates new
blobs at each time step� the parameters of the advectiondi�usion equation and by a set of
illumination parameters�

typedef

struct

f
BLOB TYPE 
 blobs� �
 pointer to the actual blobs 
�

�
 ��� blob generation parameters 
�

int new N� �
 number of new blobs to generate at each time step 
�

float new size� �
 initial spread 
�

float new dens� �
 initial density of each blob 
�

float new temp� �
 initial amount of temperature 
�

int new type� �
 type of region over which blobs are to be generated 
�

MATRIX m� �
 transformation to be applied to the region 
�

void �
new func���� �
 function which generates new blobs 
�

�
 ��� blob evolution parameters 
�

FIELD TYPE 
 fields� �
 list of fields which affect the blobs 
�

float diff dens� �
 diffusion coefficient for the density 
�

float diff temp� �
 diffusion coefficient for the temperature 
�

float abs dens� �
 absorption coefficient for the density 
�

float abs temp� �
 absorption coefficient for the temperature 
�

�
 ��� initial blob illumination parameters 
�
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COLOUR extinction� �
 extinction cross section 
�

COLOUR emission� �
 self�emission 
�

COLOUR albedo� �
 albedo 
�

�
 ��� blob warp parameters 
�

int warp active� �
 flag indicating if warping is on 
�

float delta t� �
 used if the warping interval is kept constant 
�

float int size� �
 size of the integration step 
�

float increase� �
 increase factor for sphere bounding warped blob 
�

�
 ��� following only used for flame blobs 
�

FIRE TYPE 
 fire�

g BLOB SET TYPE�

The data structure for the objects are given by the type� transformation matrix and
surface illumination and burning properties�

typedef

struct

f
int type� �
 type of the object 
�

MATRIX m� �
 transformation 
�

SHADING MODEL shade prop� �
 surface illumination parameters 
�

�
 ��� burning properties of the object 
�

float diff coeff� �
 fuel diffusion 
�

float av abs� �
 average absorption coefficient 
�

float spec heat� �
 specific heat of the object 
�

int fuel res� �
 resolution of the fuel map 
�

float 

 fuel dens� �
 density of the fuel 
�

float 

 fuel temp� �
 temperature of the fuel 
�

float 

 burnt tex� �
 burnt texture map 
�

g OBJECT TYPE�

The data structure SHADING MODEL depends on the type of shading model used �usually
Phong�s model�� The �re data structure is created using two blob sets� one for the �ame
and one for the smoke�

typedef

struct

f
OBJECT TYPE 
 burn objects� �
 list of objects which are allowed to burn 
�

float Ta� �
 activation temperature of flame 
�

float Ts� �
 smoke creation temperature 
�

float spec heat� �
 specific heat 
�

BLOB SET TYPE f� �
 density of flame 
�

BLOB SET TYPE s� �
 density of smoke 
�

g FIRE TYPE�
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In order to change the various parameters of these data structures over time we maintain
a �change list� which contains pointers to data structures which are to be updated according
to a given scheme at each time step� Each element in the change list is given by�

typedef

struct

f
int n change� �
 size of data to be changed �in floats� 
�

float 
change data� �
 pointer to the data structure to be changed 
�

void �
change func�����
 function used to change the data 
�

void 
 data� �
 data that is used to do the change 
�

g CHANGE TYPE�

The last two �elds in the data structure are dependent on the type of change� The
three types supported by our system are constant value� linear interpolation and spline
interpolation�

Code of Main Algorithms

The main loop of the modeller checks for events and handles them using callback routines
from the �Forms� interface� The program is either in �simulation� mode or in �idle� mode�
In the simulation mode time is incremented and all the primitives such as wind �elds and
blobs are updated�

main��

f
�
 ��� initialize variables�windows�interface 
�

do initialize all ���

time � ����

�
 ��� main loop 
�

for����

f
�
 ��� check for user action via FORMs 
�

obj � fl check forms ���

if � obj �� quit button � break� �
 user wants to stop 
�

if � obj �� FL EVENT � handle devices ���

�
 ��� update scene 
�

time 	� time step�

if � simulation �� IDLE � continue�

do changes � time ��

update blob sets � time� time step ��

update fire � time ��

update view � time ��

g
�
 ��� clean up at end of the program 
�

cleanup ���

g
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The function do changes�� updates the data structures pointed by each element in the
change list of type CHANGE TYPE� The function update blob sets�� generates new blobs and
updates the the properties of existing blobs�

void update blob sets � float time� float time step �

f
BLOB SET TYPE 
bs�

for � bs�head blob set list � bs � bs		 �

f
bs��new func � bs� time step �� �
 create new blobs 
�

update blobs � bs� time� time step ��

g

return�

g
The blob creation function for non�ame blob sets usually generates blobs uniformly

within a given domain� For example� this domain could be a box� The transformation
matrix m in the de�nition of the blob set gives the location� size and orientation of the
domain� A typical function is given by the following code�

void new func � BLOB SET TYPE 
bs� float time step �

f
BLOB TYPE 
 b�

int i�

for � i�� � ibs��new N � i		 �

f
b � �BLOB TYPE� get memory �sizeof�b���

b��pos � uniform sample � bs��new type �� �
 generate a sample location 
�

b��pos � matrix mult � bs��m� b��pos �� �
 transform 
�

b��dens � time step
bs��new dens�bs��new N�

b��temp � time step
bs��new temp�bs��new N�

add new blob � bs� b �� �
 add blob to list 
�

g

return�

g
The function update blobs moves and changes the properties of the blobs according to

the algorithm of Section ������

void update blobs � BLOB SET TYPE 
bs� float time� float time step �

f
BLOB TYPE 
b�

FIELD TYPE 
f�

VECTOR vel�
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float volume�

for � b�bs��blobs � b � b		 �

f
�
 ��� advect blobs 
�

for � f�bs��fields � f � f		 �

f
vel � calc velocity � f� b��pos� time ��

b��pos 	� time step 
 vel�

g

�
 ��� update other properties 
�

b��age 	� time step�

b��size dens � sqrt�bs��new size

�	b��age
bs��diff dens��

b��size temp � sqrt�bs��new size

�	b��age
bs��diff temp��

volume � �bs��new size�b��size dens�

��

b��dens � bs��new dens
exp��bs��abs dens
b��age�
volume�

volume � �bs��new size�b��size temp�

��

b��temp � bs��new temp
exp��bs��abs temp
b��age�
volume�

g

return�

g
The spread of the �ame is computed by the following routine which updates the temper

ature maps of all the objects in the scene�

void update fire � float time step �

f
FIRE TYPE 
 fi�

OBJECT LIST 
 obj�

int i� j�

VECTOR c mass�

float diff� c size� c power� form fact� fuel power�

for � fi � head fire list � fi � fi		 �

f
�
 ��� calculate average values of flame 
�

c mass � �
 center of mass 
�

c size � �
 average size 
�

c power � �
 average power radiated 
�

�
 ��� collect temperature of the flame on the objects 
�

for � obj�fi��burn objects � obj � obj		 �

f
for � i�� � iobj��fuel res � i		 �

for � j�� � jobj��fuel res � j		 �
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f
form fact � �
 form factor between patch and center of mass of fire 
�

fuel power � �
 � 
 �obj��fuel temp�i��j��

� 
�

diff � �form fact
c power � �
PI
fuel power��obj��spec heat�

obj��fuel temp 	� obj��fuel dens�i��j�
obj��av abs
diff�

g
�
 ��� diffuse temperature using Crank�Nicholson scheme 
�

do diffuse � obj��fuel temp� time step ��

g
g

return�

g

The creation of �ame and smoke blobs is done by de�ning appropriate routines pointed
by the new func �eld of the blob set type� These two functions are given next�

void new flame blobs � BLOB SET TYPE 
bs� float time step �

f
OBJECT TYPE 
 obj�

float rate�

int i� j�

for � obj�bs��fire��objects � obj � obj		 �

f
for � i�� � iobj��fuel res � i		 �

for � j�� � jobj��fuel res � j		 �

f
rate � exp��bs��fire��Ta�obj��fuel temp�i��j���

bs��new dens � obj��fuel dens�i��j�
rate�

bs��new temp � bs��fire��spec heat 
 bs��fire��Ta
rate�

new func � bs� time step ��

g
g
return�

g

void new smoke blobs � BLOB SET TYPE 
bs� float time step �

f
BLOB TYPE 
 b�

float rate�

for � b�bs��fire��f�blobs � b � b		 �

f
rate � exp��b��temp�bs��fire��Ts��

bs��new dens � b��dens
rate�

���



bs��new temp � ���� �
 not important for smoke 
�

new func � bs� time step ��

g

return�

g

	�	�� Optik

Optik is a standard raytracing platform in existence in the Dynamic Graphics Project for
many years� Code has been added� allowing for the ray tracing of gaseous phenomena
�including �re�� The code is called each time a ray returns with an illumination value� This
value is then modi�ed to account for absorption� scattering or emission by the density along
the ray� The e�ects of multiple scattering and emission of light from the density into the
environment are resolved by adding a �shooting� pass prior to the ray tracing� Essentially�
then� only two new routines have to be provided to the ray tracer� one preprocessing routine
and a routine which calculates the interactions of the density with a ray� These routines are
described next at a high level�

Pseudo Code

The preprocessing routine �rst calculates the hierarchical representation of all the blobs in
the scene using the algorithm of Section ������ Each pair of blobs are grouped together by a
blob that bounds them� Also average emission� center of mass and illumination properties
are kept at each level node of the tree� Once the tree is constructed the interactions of light
between the density and the rest of the environment are accounted for using the algorithm
of Section ���� In short�

Preprocess�

Build hierarchical tree of blobs
Calculate interactions with the environment

Once the intensity coming from the blobs has been precalculated the scene can be rendered
from a given view point by a modi�ed ray tracing algorithm� The intensity value returned
by the ray tracer is then modi�ed by the following algorithm�

Density Interactions�

if shadow ray then
return transparency alone

end if

Build list of blobs intersecting the ray �Section ������
Sort list from front to back
Render list using the algorithm of Section �����

���



��� Results

	�
�� Non�Reactive Gases

In the introduction of this thesis we gave a concrete example of the design of a visual
simulation of smoke rising from a stack� This is just one instance of many gaseous phenomena
which can be modelled in this fashion� Several other examples are discussed next� The exact
values of the parameters used in some of the simulations are given in Appendix ��C�

Steam Rising from a Co
ee Cup

We used a single directional heat �eld to model the upward motion of the steam� The
turbulence was chosen to be relatively slowly evolving over time� The blobs were generated
uniformly on the surface of a disk corresponding to the surface of the �co�ee�� Figure ���

depicts a �nal rendered image�

Smokey Planet

We can use our model to generate �nonrealistic� landscapes� In this example we used
di�erent colours for the smoke� The trails of smoke in Figure ���� were generated from disk
shaped sources similarly to the co�ee steam�

Cigarette Smoke

We generated two trails of smoke at the tip of the cigarette shown in Figure ����� We
favoured �blueish� scattering in order to approximate the Rayleigh scattering from small
dust particles� Notice both the shadow and the re�ection of the smoke in the ashtray�

Interaction of Object with the Gas

We model the e�ect of moving objects on the gas by �tting a set of repulsive radial �elds
�see Section ������ around arbitrary objects� Although this is a gross approximation of the
actual wind �elds caused by moving objects� we did obtain convincing results with this simple
technique� In Figure ���� we show four frames from an animation of a sphere passing through
a wall of smoke� Notice also the shadowing of the sphere on the gas� which is obtained via
our shooting algorithm�

Turbulent Morphing

Our models can also be used for special e�ects such as morphing� The cylindrical range
data of two human heads was converted into two sets of blobs and input to the animation
system� The scene was illuminated by setting the selfillumination parameter of each blob
to the illumination given by the range data� The albedo was set to zero and dissipation was
set to a large value to allow rapid dissolution of each set of blobs �with one run in reverse��
Figure ���� shows four frames from the animation�

���



Figure ���� The hairs are modelled as trajectories of blobs through the wind �elds�

	�
�� Fire

Using the �re creation"spread model described in Section ����� a user can choreograph dif
ferent burning processes� The spread is essentially controlled by a fuel map which can be
painted onto objects in the scene� The spread is starting by applying a certain amount of
heat somewhere in the environment� The simulation then commences and the user watches�
Additional control is achieved through the rates of the reaction and the burning properties
of the objects �di�usion rate"speci�c heat�� It was found that it required some expertise to
control the spread �re� However� we did manage to compute some convincing �re spreads�
Some of these simulations are described next�

Smokeless Fire

Figure ���� shows a frame of an animation of the spread of �re and the burning of a structure
made of �sticks�� Notice how the �re naturally illuminates the environment through emission�
This e�ect is calculated using our shooting algorithm described in Section ���� Figure ����
is another example�

Fire with Smoke

In Figure ���� we show four frames from an animation with the emission of dark smoke�
We allocated a �nite amount of fuel in the middle of the �re� The �re then extinguishes
naturally when the amount of fuel decreases� Notice both the shadowing of the smoke and
the emission due to the �re�

MultiColoured Fire

By playing around with the parameters of the �re model� we can generate �ames emitting
di�erent colours� Figure ���� shows this� Notice also the very wispy smoke on the foreground
which we have added for dramatic e�ect�

	�
�� Hair

We model the motion and appearance of hair by tracing blobs with a �xed lifetime through
the motion �eld� The total history of the particle then constitutes one hair as shown in
Figure ���� Each consecutive pair of blobs in the history de�ne a single hair segment� The
user can adjust the length and the resolution of the hairs by changing the lifetime and the

��	



Figure ��	� The curliness of each hair can be modelled by adding a twist�

number of blobs per hair respectively� Care has to be taken that the base blob of each hair
is generated at the same location from frame to frame� This can be achieved by using the
same seed for the random blob generator� Alternatively� the location and other parameters
such as the colour of the hair can be texture mapped to allow a user to create a desired hair
style or furpattern� The collisions of the hairs amongst themselves and with objects such
as the head are accounted for naturally by the continuity of the motion �elds� This enables
a user to view complex simulations of hair in real time on a graphics work station� To add
complexity to the hair we allow the user to perturb each hair individually� For example in
order to create curly hair an additional twist can be added to each hair strand� This e�ect
is depicted in Figure ��	�

Adding dynamic behaviour to the hairs is often di�cult using only motion �eld� We
have resolved this problem by adding the e�ect of gravity by assigning a mass to each blob�
Hence� thick straight hair exhibits more inertia than light curly hair� for example�

Hair Results

In the top of Figure ���	 we show a rendering of a single hair� The hair on the right has
a stronger twist� The two pictures on the bottom of the �gure show the combination of
many hairs emanating from a sphere� The picture on the right has selfshadowing of the
hair turned on� In Figures ���
 and ���� we show two pictures of �hairy creatures� created
using the hair model� These last two pictures were created by Duncan Brinsmead and are
included in this thesis with the permission from Alias"Wavefront�
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Figure ����� Vortex �eld around a circle�

Appendix ��A Derivation of Vortex Fields

Very often a motion �eld is described by its vorticity �eld ��� � r�u instead� The equation
for the evolution of the vorticity usually is simpler especially for twodimensional motion
�elds� The velocity �eld can be recovered from the vorticity �eld through the integral  ��!��

uvort�x
 t� � � �

��

Z
R�

�x� x�������x�
 t�
jx� x�j� dx��

This equation is then used to derive the velocity of the motion �eld from the equivalent
vortex �eld� We will derive two motion �elds taken from a vortex de�ned on a line and a
circle respectively� If the vorticity is constant on the zaxis and pointed upward� then the
corresponding velocity is given by�

uvort�x� � � �

��

Z �

��
�x
 y
 z� s�� �

 

 ��

�x� # y� # �z � s���
�

�

ds �
�

��

�

x� # y�
��y
 x
 
��

To avoid the singularity near the zaxis and to localize the vortex �eld at the centre� we
multiply the �eld by the smoothing function�

ulvort�x� �
�

��

W �jxj
 ��

x� # y�
��y
 x
 
��

We now consider the case where the vorticity is de�ned by the vectors tangent to a circle of
radius R lying in the xy plane and centred at the origin� For this vorticity� there is no closed
form for the integral� We then approximate the integral by considering the contribution from
the point on the circle closest to the point x� This point can be calculated from geometrical
arguments as depicted in Figure �����

xc � �x�
 y�
 
� �
�p

x� # y�
�xR
 yR
 
�


and the vorticity at this point is given by the tangent to the circle�

����xc� �
�p

x� # y�
��y
 x
 
��

�Assuming no boundaries� In the presence of boundaries an additional term must be added to this
equation�
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The vorticity due to the circle is then given by

ucvort�x� � � �

��

�x� xc�� ��y
 x
 
�p
x� # y�jx� xcj� �

�

��

�zx
 zy
 �x�� x�x# �y� � y�y�p
x� # y���x� x��� # �y � y��� # z���
�

�

As for the line vortex� we multiply this velocity by a weighting function decaying with the
distance from the circle�

Appendix ��B Four
linear Interpolation of the Grid

Values

Assume the vectors are stored in a the four dimensional grid Ui�j�k�l� The spacing� orientation
and location of the grid are entirely determined by the a�ne transformation M� After
multiplication by this matrix� we suppose that the origin of the grid is at the origin of the
space� and has a spacing of one in each spatial dimension� After a scaling by the temporal
spacing lt� the temporal spacing can be assumed to be unity as well� Let �Nx
 Ny
 Nz
 Nt�
denote the respective resolutions of the grids in the corresponding coordinates� The algorithm
then computes the velocity at a point �x
 y
 z
 t� as follows�

�i
 j
 k
 l� � � x!
  y!
  z!
  t!�
�a
 b
 c
 d� � �x
 y
 z
 t�� �i
 j
 k
 l�
i � �i # Nx�modNx

j � �j # Ny�modNy

k � �l # Nz�modNz

l � �l # Nt�modNt

u�x
 y
 z
 t� � FourInterp�U
 i
 j
 k
 l
 a
 b
 c
 d�

In this algorithm �FourInterp� denotes the quadrilinear interpolation of �� sample values
to produce a continuous u�x
 y
 z
 t��

Appendix ��C Values of the parameters used in the

simulations

In this section we give the exact parameters used in three of our simulations� �cigarette�
�Figure ������ �co�ee� �Figure ���
� and �bon�re� �Figure ������ All turbulent wind �elds
were generated on a grid of size ���� Two di�erent set of statistical parameters were used�
The �rst one �Turb�� has � � �� � � � and ��L � �� The second one �Turb�� has parameters
� � �� � � � and ��L � �� Since the cuto� wave number of Turb� is higher than Turb��
Turb� has smaller spatial structures� In each of the simulation there is a single directional
wind �eld pointing in the �upward� ydirection� The values of the �elds in each simulation
are summarized in the following table�
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simulation �eld type magnitude half distance scale location
cigarette Turb� � NA � � � � 
 
 


directional ��� �
 � � � NA 
 � 

co�ee Turb� � NA � � � � 
 
 


directional � �


 � � � NA 
 � 

bon�re Turb� � NA � � � �
 
 
 


Turb� ��� NA �
 �
 �
 � 
 
 

directional �
 	
 � � � NA 
 �
 


The generation of blobs in the cigarette and the co�ee simulations are speci�ed by the
user� The de�nition of the source terms for both simulations is summarized in the following
table�

simulation new N new type new dens new size position scale
cigarette � box 
�� 
�
� ��	 
 
 
�� 
 
�
�

� box 
�� 
�
� ��	 � 
 
�� 
 
�
�
disk � disk 
�� 
�� 
 � 
 ��� ��� ���

The �ame blobs and the smoke blobs in the bon�re example are generated by burning
a rectangular object of size �
 by �
 located at location �

���
 
� and oriented along the
positive yaxis� The fuel map has a resolution of �
� �
 and has an initial density of � and
an initial temperature of �	
� The speci�c heat of the fuel and the di�usion were both set to
�� The mean absorption cross section was set to 
��� The parameters of the reaction of the
creation of the smoke and the �ame were� Ta � ��

� Ts � ��

� �a � 
��� and �b � �� The
initial density and spread for the �ame blobs and the smoke blobs are �
�
���� and �
�
���
�
respectively� The speci�c heat of the �ame was set to ��

Next we describe the parameters a�ecting the evolution of the blobs� In the simulation
of the �ame blobs we have set the di�usion of the density of the �ame equal to the di�usion
of the temperature of the �ame�

simulation di�usion dissipation time step
cigarette 
 
�

� 
��
co�ee 
 
�
� 
��
bon�re ��ame� � 
�	 
��
bon�re �smoke� ��� 
�� 
��

The illumination parameters of the simulation are given next� In each case the phase
function is constant�

simulation extinction albedo emission
cigarette 
��� 
��� ���� 
�	 
�	 
�	 
 
 

co�ee ��� ��� ��� 
�	 
�	 
�	 
 
 

bon�re ��ame� 
��� 
�
	 
 
 
 
 black body
bon�re �smoke� � � � 
�� 
��� 
��� 
 
 


Blob warping is performed only in the bon�re simulation� Each �ame blob was back
warped for a � seconds and each smoke blob for ��� seconds� The number of integration
intervals were 	 and � for the �ame and smoke blobs� respectively� The bounding radius was
take to be ��� bigger than the unwarped radius for both type of blobs�
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Chapter 	

Conclusions

The interval during which a painting is mistaken for the real thing�
or a real thing for a painting� is the triumphant moment of
trompe
l�oeil art� The artist appears to be as potent as nature� if
not superior to it� Almost immediately� though� the spectator�s
uncertainty is eliminated by his recognition that the counterfeit is
counterfeit� Once the illusion is dissolved� what is left is an object
that is interesting not as a work of art but as a successful
simulation of something that is not art� Harold Rosenberg

��� Summary of Results

In this thesis we have introduced several new methodologies for the visual simulation of
natural phenomena� The method of separation of scales both in the design process and in
the physical component of the simulation has proven to be e�ective� This was demonstrated
for the large class of phenomena whose behaviour is subjected to a motion �eld� This is
the case for both the density and the temperature �elds of gaseous phenomena� The user
controls the phenomenon through the motion �eld� This �eld is separated into a smooth
and a turbulent component� The user designs the �eld by specifying the smooth component
exactly and by providing the macroscopic statistical features of the turbulent component�
We have developed new algorithms to generate turbulent components from its statistical
description� Once the motion �eld is speci�ed� it can be used to simulate many di�erent
phenomena� We have developed models for the evolution of density �elds� temperature �elds
and hair strands under the in�uence of motion �elds�

Stochastic models have been found to be successful in the simulation of small turbulent
scales� The use of stochastic models is appropriate in case a physical simulation does not
exist or is computationally too expensive� The derivation of proper stochastic models for
natural phenomena is therefore an important part of a simulation� Very often a phenomenon
A� for which a stochastic model is known� causes another phenomenon B� For example the
wind causes ripples on the sea surface� We have outlined a general methodology to derive a
stochastic model for B from the known stochastic model of the phenomenon A� An important
example which we call stochastic rendering is to derive a stochastic model for the intensity
�eld� given a stochastic model for the surface� density� light sources� etc� We have derived
in particular a stochastic model for the intensity due to a density distribution�

We have outlined a general method of solving physical equations on an unordered set
of points� This is preferable to algorithms which operate on a regular grid� especially for
high dimensional problems� This methodology was used to derive e�cient algorithms to

���



solve advectiondi�usion type equations� These equations were used to resolve the evolution
of both the density and the temperature �elds subjected to a wind �eld� The method has
been used in the solution of the spatial variation of the intensity of light within a density
distribution�

We have extended the global illumination solution to include light e�ects due to density
distributions� In particular we have given a new method to solve for the e�ects of multiple
scattering within the density distribution� The propagation due to multiple scattering is
modelled as a di�usion process which can be derived directly from the scattering equation�
The advantage of this method is that we get a set of equations which are local instead of
the usual integral global equations of radiative transfer�

��� Future Research

The general methodology that we have proposed in this thesis has the potential of being
applied to the simulation of many other phenomena� In particular the use of motion �elds
to control the simulation could be used to simulate water and the propagation of light in an
environment� In the latter case this would allow artists to create speci�c illumination e�ects
which are not necessarily realistic� One drawback of the use of motion �elds is that they do
not induce a dynamic behaviour automatically� Adding a dynamic component to the motion
�elds would greatly enhance the realism of the hair simulation and has the potential to be
used for the realistic simulation of water� The use of stochastic models has proven to be very
powerful in synthesizing complicated motions which are hard to create manually� Its use can
be applied to many other phenomena� In particular the technique of stochastic derivation has
not been explored to its fullest in this thesis� For example� stochastic rendering algorithms
can be developed for the scattering from rough surfaces� the illumination from �uctuating
light source and to simulate the caustics due to a random water surface� Another large area
of application of the stochastic method is the motion of objects under the in�uence of a
turbulent force� The general method of solving equations on an unordered set of data points
can be re�ned and applied to many more areas of computer graphics and in other �elds� For
example the blob warping technique could be extended to blobby surfaces in order to model
surfaces which are deformed by a surrounding �eld� The di�usion approximation to the
propagation of light in a dense medium can be used to model subsurface multiplescattering
and glows from light sources�
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