
Notes on Adjoint Control of Graphical Simulations

Jos Stam
Alias Systems

1 Introduction

These notes are a compilation of several documents that I wrote up while I was trying to understand
the adjoint method and its implementation. This work is a collaboration with Antoine McNamara,
Arien Treuille and Zoran Popovic which resulted in two SIGGRAPH publications on the control
of fluids such as smoke and water [5, 3]. I hope that these notes complement those publications
and that they might be useful to some.

Traditionally, computer graphics simulations are controlled “by hand” by tweaking the parame-
ters of the model. In a physics-based animation this typically involves specifying initial conditions
and external forces that drive the animation towards a specified goal. The basic idea explained
in these notes is to let the computer do the tweaking for us. The problem we are trying to solve
has three ingredients: (1) a simulator, (2) a set of control parameters and (3) a target behavior. In
computer graphics we can think of many different applications that fit into this framework. As we
will see below the simulator really can be any piece of code. So examples of (1) include a renderer,
a physics-based simulator, a surface modeler, etc. The set of parameters can be considered as input
variables to the simulator. For complicated simulations the effect of the parameters on the results
can be unpredictable. In this case the automatic control methods are most useful. Examples of a
target behaviors are: matching key-frames, minimizing the running time, maximizing smoothness,
... Any goal that can be put into a cost function really.

In these notes I will first present some theory and then try to provide enough information so
that the reader can implement their own version of a controller for their application. The theory
comes mostly from [2] and the implementation recipes come from [1].

2 Some Theory

The reader who hates math might as well skip this section and go straight to Section 3 which is
more “hands on” and geared towards a concrete implementation.

2.1 Control Problem

Control theory is often first presented in a continuous setting and then discretized to yield imple-
mentations. We do not take this approach in these notes. Instead we start from a general discrete
setting and then show that the adjoint method really is a general almost trivial result in linear al-
gebra. This is an example of how generalization can in fact simplify a problem’s solution, at least
conceptually. This happens quite often in math: simplification by generalization.

1

In general, a simulation can be viewed as a sequence of states q1, q2, · · · , qN , where each state
is a finite dimensional vector say of dimension n: qi ∈ Rn. In physical simulations each state
is completely determined by the one preceding it. However, we will not restrict the theory to
this case, but rather assume that the evolution of the states is governed by the following general
equation:

E(q, u) = 0. (1)

The vector q = (q1, · · · , qN) is simply a concatenation of all the states. The variable u contains the
control parameters and we assume it has size p, so that u ∈ Rp. The function E : Rn ×Rp → Rn

defines a relationship between the states and the control vector. The only restriction we set on
this function is that it should be differentiable in its arguments. The goal in optimization is to find
a set of controls which minimize a given cost function J(q, u). This cost function can be quite
general and may depend on both the states and the controls. Again all we ask for is that it is at least
once differentiable. We have now formalized all three ingredients of our control problem: (1) The
simulator (Equation 1), (2) the controls u and (3) the target behavior given by the cost function
J(q, u).

There are many techniques to solve these kind of problems. When the evolution of the states
is smooth with respect to the controls it makes most sense to use an optimizer which takes into
account derivatives. In fact we only need the first derivative as there are many good optimizers for
which this information is sufficient to find a solution. The optimizer in this paper can be treated as
a black box. It’s input consists of the current control u, the cost function J and the derivative of the
cost function with respect to the controls: dJ

du
. The optimizer then outputs a new control value. By

iterating this process hopefully we arrive at a minimum of the cost function. Treating the optimizer
as a black box seems like cheating since all the hard work is done there. However, we still have
to provide it with the derivative of the cost function. It is not all that obvious how to compute this
derivative at first. The goal of these notes is to show exactly how this can be done in practice.

Formally we can compute the derivative of the cost function as follows:

dJ

du
=

∂J

∂q

dq

du
+

∂J

∂u
∈ Rp. (2)

This expression involves the derivative of the state with respect to the control. An equation for it
can be derived by taking the derivative of Equation 1 with respect to the control:

∂E

∂q

dq

du
+

∂E

∂u
= 0. (3)

This equation is actually a set of p systems of linear equations involving the same linear operator.
This becomes clearer if we introduce some more standard algebraic notation:

A =
∂E

∂q
, x = (x1, · · · ,xp) =

∂q

∂u
and f = (f1, · · · , fp) = −∂E

∂u
.

Then Equation 3 actually stands for the following linear equations:

Axk = fk, k = 1, · · · , p. (4)

To compute the gradient of the cost function we need to compute gTx, where

gT =
∂J

∂q
∈ Rn.

2

f1 f2 fp
...........

x1 x2 xp
...........

A-1

A-T

...........

yT gT

=

Figure 1: Illustration of the adjoint method.

At this point we have completely cast the control problem into an algebraic setting. Solving for the
x’s is known as the method of propagating derivatives forward. This operation involves solving
p linear systems and is costly for many controls. This is the reason why in practice the adjoint
method is used to which we turn next.

2.2 Adjoint Method

In the adjoint method, instead of solving Equation 4 we solve the following equation for the vector
y:

ATy = g. (5)

The solution of this equation allows us to directly compute the gradient of the cost function. Indeed
we have that

gTx = (ATy)Tx = yTAx = yT f = (yT f1, · · · ,yT fp).

This simple result is really all there is to the adjoint method. The gain is immediately clear.
Instead of having to solve p linear systems, we only solve one linear system for y and then take
p dot products yT fk. In practice the dot product is much cheaper than the linear solve and the
computational gain is enormous. In fact the cost of the method is virtually independent of the
number of controls.

The reason that the adjoint method works so well for our control problem is that we do not need
the entire state x of derivatives only its reduction by the vector g. The adjoint method propagates
this reduction vector back so that it can be applied directly to the right hand side f . Figure 1
illustrates this situation.

2.3 Lagrange Multipliers

Another way to arrive at the adjoint equation is to view the control problem can as a constrained
optimization procedure. We want to minimize the cost function under the constraint given by

3

Equation 1. This directly suggests including the constraint into the cost function via Lagrange
Multipliers. Indeed we can define a new cost function:

L(q, u) = J(q, u)− pT E(q, u). (6)

The minima of this cost function are given by

∂L

∂q
= 0 and

∂L

∂p
= 0.

The second equation is simply our constraint, that is why we introduced the Lagrange multiplier p
in the first place. The first equation is more interesting and provides an equation for the multipliers:

(
∂E

∂q

)T

p =
∂J

∂q
. (7)

This equation is the same one as Equation 5.

3 Implementation: Adjoint Code Methods

There is a huge gap between the theory presented in the preceding section and an actual implemen-
tation. This section will outline an almost automatic way to translate a simulator into it’s adjoint
version. I gleaned these results from the web by googling on the phrase “adjoint code.” In fact
there are software packages out there that will translate code into its associated adjoint. Unfor-
tunately, these packages seem to be restricted to FORTRAN code only. I prefer to code in C. Of
course I could translate all my code to FORTRAN use the tools and then convert it all back to C us-
ing NETLIB’s “f2c.” This however would result in rather ugly code. Alternatively, I will describe
some recipes here that will help in translating C code to its adjoint counterpart. To demonstrate
the usefulness of these recipes I will apply them to many algorithms found in physical simulations.
The ultimate goal is to program an automatic compiler which turns any C code into it’s adjoint
code. Hopefully these notes will lead to such an implementation one day.

3.1 Adjoint translation

A program is composed of a set of instructions. In this note we will try to describe how to translate
the instructions into their adjoint counterparts. We will denote the adjoint to an instruction I by
A(I). So if a piece of code is made up of the following instructions:

I1, I2, · · · , In.

Then the associated adjoint program will be the following sequence of instructions:

A(In), A(In−1), · · · , A(I1).

The adjoint program reverses the order of the instructions. To each active variable x of the program
(one that depends on one of the controls appearing in the optimization problem) we associate an
adjoint variable x′. The adjoint of a single instruction is obtained by computing the differential
of the instruction with respect to the variables. The equivalent adjoint instruction is then obtained

4

by transposing the differentials. For example the instruction I = x ← y2 has the following
differential: (

dy
dx

)
←
(

1 0
2y 0

)(
dy
dx

)
.

So that the adjoint version of this expression becomes:(
y′

x′

)
←
(

1 2y
0 0

)(
y′

x′

)
.

So the corresponding code is

y′ ← y′ + 2y x′

x′ ← 0.

The adjoint of the assigned variable is set to zero because it’s previous value is lost and therefore
has no influence on the cost function. Let’s consider a more involved instruction like I = x ←
x3 + sin(y2)z. In this case the diferential is


 dz

dy
dx


←


 1 0 0

0 1 0
sin(y2) 2y cos(y2)z 3x2




 dz

dy
dx


 .

So that the equivalent adjoint code is

z′ ← z′ + sin(y2) x′

y′ ← y′ + 2y cos(y2)z x′

x′ ← 3x2 x′

Notice that we need to keep the non-adjoint values of the variables around when updating adjoint
variables. We can generalize these examples for the following instruction

I = x← f(x, y, · · · , z).

In this case the differential is


dz
...

dy
dx


←




1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

fz(x, y, · · · , z) · · · fy(x, y, · · · , z) fx(x, y, · · · , z)







dz
...

dy
dx


 .

The corresponding adjoint code is

z′ ← z′ + fz(x, y, · · · , z) x′

...

y′ ← y′ + fy(x, y, · · · , z) x′

x′ ← fx(x, y, · · · , z) x′

This takes care of most assignment-like instructions occuring in a simulation. Let’s now look
at how to translate higher level constructs like for-loops and if-statements. The for loop is easy to

5

translate. All we have to do is reverse the order of the loop and replace the instructions with their
adjoints:

A




for i = 0, · · · , n do
Ii

end for


 =

for i = n, · · · , 0 do
A(Ii)

end for
.

If-statements are also easily handled:

A




if B then
I1

else
I2

endif




=

if B then
A(I1)

else
A(I2)

endif

where B is some conditionial statement. If this statement depends on some of the variables then
these have to be computed (or stored) before evaluating the conditional statement.

3.2 Applications

We now apply these rules to compute the adjoint versions of some well known algorithms. Let’s
start with the Gauss-Seidel solver with a fixed number of iterations. In one dimension the algorithm
is (assuming periodic boundary conditions):

GaussSeidel(x, f)
for k = 0, · · · , K do

for i = 0, · · · , n− 1 do
xi ← (fi + xi−1 + xi+1) /2

end for
end for

Then using the recipes from the previous section we can derive the adjoint:

A(GaussSeidel(x′, f ′))
for k = K, · · · , 0 do

for i = n− 1, · · · , 0 do
x′

i+1 ← x′
i+1 + x′

i/2
x′

i−1 ← x′
i−1 + x′

i/2
f ′

i ← f ′
i + x′

i/2
x′

i ← 0
end for

end for

Now consider the Conjugate Gradient algorithm:

CG(x, b)
r ← b−M(x)
for k = 0, · · · , K do

z ← P (r)
ρ0 ← 〈r, z〉

6

if k = 0 then
p← z

else
β ← ρ0/ρ1

p← z + βp
end if
q ←M(p)
β ← 〈p, q〉
α← ρ0/β
x← x + αp
r ← r − αq
ρ1 ← ρ0

end for

In the algorithm M is the matrix we try to invert and P is a preconditioner. Let’s assume we are
trying to solve Poisson’s equation in two-dimensions with periodic boundary conditions. In this
case:

M(x)
for i = 0, · · · , n− 1 do

for j = 0, · · · , n− 1 do
yi,j ← 4xi,j − xi−1,j − xi+1,j − xi,j−1 − xi,j+1

end for
end for
return y

and

P (x)
for i = 0, · · · , n− 1 do

for j = 0, · · · , n− 1 do
yi,j ← xi,j/4

end for
end for
return y

The adjoints of these two functions are equal to themselves because of the symmetry of the
operators involved:

A(M) = M and A(P) = P.

The adjoint of the dot product 〈p, q〉 is

AD(n′, p′, q′)
for j = n− 1, · · · , 0 do

for i = n− 1, · · · , 0 do
p′i,j ← p′i,j + qi,j n′

q′i,j ← q′i,j + pi,j n′

end for
end for

7

Finally here is the adjoint of the conjugate gradient algorithm.

A(CG(x′, b′))
ρ′

0, ρ
′
1, α, β ← 0

p′, z′, q′, r′ ← 0
for k = K, · · · , 0 do

ρ′
0 ← ρ′

0 + ρ′
1

ρ′
1 ← 0

α′ ← α′ − 〈q, r′〉
q′ ← q′ − α r′

α′ ← α′ + 〈p, x′〉
p′ ← p′ + α x′

β ′ ← β ′ − ρ0/β
2 α′

ρ′
0 ← ρ′

0 + α′ /β
α′ ← 0
AD(β ′, p′, q′)
β ′ ← 0
p′ ← A(M(q′))
q′ ← 0
if k = 0 then

z′ ← z′ + p′

p′ ← 0
else

β ′ ← β ′ + 〈p, p′〉
z′ ← z′ + p′

p′ ← β p′

ρ′
1 ← ρ′

1 − ρ0/ρ
2
1 β ′

ρ′
0 ← ρ′

0 + β ′ /ρ1

β ′ ← 0
end if
AD(ρ′

0, r
′, z′)

ρ′
0 ← 0

r′ ← A(P (z′))
z′ ← 0

end for
b′ ← b′ + r′

x′ ← x′ − A(M(r′))
r′ ← 0

We now compute the adjoint of the semi-Lagrangian advection step. In one dimension the
algorithm is

SL(a, b, u)
for i = 0, · · · , n− 1 do

x← i− ui

k ← index(x)
t← x− k

8

ai ← (1− t)bk + tbk+1

end for

These steps are easily adjointed as follows:

A(SL1(a′, b′, u′))
for i = n− 1, · · · , 0 do

x′, t′ ← 0
b′k+1 ← b′k+1 + ta′

i

b′k ← b′k + (1− t)a′
i

a′
i ← 0

t′ ← t′ + b′k+1 − b′k
x′ ← x′ + t′

t′ ← 0
u′

i ← u′
i − x′

end for

Or with the optimizing flag turned on we get:

A(SL1(a′, b′, u′))
for i = n− 1, · · · , 0 do

b′k+1 ← b′k+1 + ta′
i

b′k ← b′k + (1− t)a′
i

a′
i ← 0

u′
i ← u′

i + b′k − b′k+1

end for

We now give the algorithm in two-dimensions:

SL2(a, b, u, v)
for i = 0, · · · , n− 1 do

for j = 0, · · · , n− 1 do
x← i− ui,j

y ← j − vi,j

k ← index(x)
l ← index(y)
s← x− k
t← y − l
ai,j ← (1− s)(1− t) bk,l + (1− s)t bk,l+1 + s(1− t) bk+1,l + st bk+1,l+1

end for
end for

A(SL2(a′, b′, u′, v′))
for j = n− 1, · · · , 0 do

for i = n− 1, · · · , 0 do
b′k,l ← b′k,l + (1− s)(1− t) a′

i,j

b′k,l+1 ← b′k,l+1 + (1− s)t a′
i,j

b′k+1,l ← b′k+1,l + s(1− t) a′
i,j

9

b′k+1,l+1 ← b′k+1,l+1 + st a′
i,j

a′
i,j ← 0

u′
i,j ← u′

i,j + (1− t)(bk,l − bk+1,l) + t(bk,l+1 − bk+1,l+1)
v′

i,j ← v′
i,j + (1− s)(bk,l − bk,l+1) + s(bk+1,l − bk+1,l+1)

end for
end for

4 Adjoint Stable Fluids

It is now time to show some actual code. I have chosen to adjoint my simple implementation of the
Stable Fluids Algorithm given in [4]. The code is also available on the course notes CDROM. All
the hard work was done in the preceding section where we derived the adjoint versions of a simple
linear solver and of the semi-Lagrangian solver. Here is the code of the solver:

#define IX(i,j) ((i)+(N+2)*(j))

#define SWAP(x0,x) {float * tmp=x0;x0=x;x=tmp;}
#define FOR EACH CELL for (i=1 ; i<=N ; i++) { for (j=1 ; j<=N ; j++) {
#define END FOR }}

void add source (int N, float * x, float * s, float dt)

{
int i, size=(N+2)*(N+2);

for (i=0 ; i<size ; i++) x[i] += dt*s[i];

}

void set bnd (int N, int b, float * x)

{
int i;

for (i=1 ; i<=N ; i++) {
x[IX(0 ,i)] = b==1 ? -x[IX(1,i)] : x[IX(1,i)];

x[IX(N+1,i)] = b==1 ? -x[IX(N,i)] : x[IX(N,i)];

x[IX(i,0)] = b==2 ? -x[IX(i,1)] : x[IX(i,1)];

x[IX(i,N+1)] = b==2 ? -x[IX(i,N)] : x[IX(i,N)];

}
x[IX(0 ,0)] = 0.5f*(x[IX(1,0)]+x[IX(0 ,1)]);

x[IX(0 ,N+1)] = 0.5f*(x[IX(1,N+1)]+x[IX(0 ,N)]);

x[IX(N+1,0)] = 0.5f*(x[IX(N,0)]+x[IX(N+1,1)]);

x[IX(N+1,N+1)] = 0.5f*(x[IX(N,N+1)]+x[IX(N+1,N)]);

}

void lin solve (int N, int b, float * x, float * x0, float a, float c)

{
int i, j, k;

10

for (k=0 ; k<20 ; k++) {
FOR EACH CELL

x[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)]))/c;

END FOR

set bnd (N, b, x);

}
}

void diffuse (int N, int b, float * x, float * x0, float diff, float dt)

{
float a=dt*diff*N*N;

lin solve (N, b, x, x0, a, 1+4*a);

}

void advect (int N, int b, float * d, float * d0, float * u, float * v, float dt)

{
int i, j, i0, j0, i1, j1;

float x, y, s0, t0, s1, t1, dt0;

PUSH(d0); PUSH(u); PUSH(v);

dt0 = dt*N;

FOR EACH CELL

x = i-dt0*u[IX(i,j)]; y = j-dt0*v[IX(i,j)];

if (x<0.5f) x=0.5f; if (x>N+0.5f) x=N+0.5f; i0=(int)x; i1=i0+1;

if (y<0.5f) y=0.5f; if (y>N+0.5f) y=N+0.5f; j0=(int)y; j1=j0+1;

s1 = x-i0; s0 = 1-s1; t1 = y-j0; t0 = 1-t1;

d[IX(i,j)] = s0*(t0*d0[IX(i0,j0)]+t1*d0[IX(i0,j1)])+

s1*(t0*d0[IX(i1,j0)]+t1*d0[IX(i1,j1)]);

END FOR

set bnd (N, b, d);

}

void project (int N, float * u, float * v, float * p, float * div)

{
int i, j;

FOR EACH CELL

div[IX(i,j)] = -0.5f*(u[IX(i+1,j)]-u[IX(i-1,j)]+v[IX(i,j+1)]-v[IX(i,j-1)])/N;

p[IX(i,j)] = 0;

END FOR

set bnd (N, 0, div); set bnd (N, 0, p);

lin solve (N, 0, p, div, 1, 4);

FOR EACH CELL

u[IX(i,j)] -= 0.5f*N*(p[IX(i+1,j)]-p[IX(i-1,j)]);

v[IX(i,j)] -= 0.5f*N*(p[IX(i,j+1)]-p[IX(i,j-1)]);

11

END FOR

set bnd (N, 1, u); set bnd (N, 2, v);

}

void dens step (int N, float * x, float * x0, float * u, float * v, float diff, float dt)

{
add source (N, x, x0, dt);

SWAP (x0, x); diffuse (N, 0, x, x0, diff, dt);

SWAP (x0, x); advect (N, 0, x, x0, u, v, dt);

}

void vel step (int N, float * u, float * v, float * u0, float * v0, float visc, float dt)

{
add source (N, u, u0, dt); add source (N, v, v0, dt);

SWAP (u0, u); diffuse (N, 1, u, u0, visc, dt);

SWAP (v0, v); diffuse (N, 2, v, v0, visc, dt);

project (N, u, v, u0, v0);

SWAP (u0, u); SWAP (v0, v);

advect (N, 1, u, u0, u0, v0, dt); advect (N, 2, v, v0, u0, v0, dt);

project (N, u, v, u0, v0);

}

The code for the adjoint solver is almost as simple. I found this actually a lot of fun to code
and did it one line at the time using the recipes. It involves quite some mental gymnastics where
you have to revert all the instructions and compute derivatives on the fly. After this while this
becomes almost automatic. Of course it would be nicer if the process was just automated. Notice
that for the semi-Lagrangian step the values of the forward simulation are required. I used a very
simple technique to have these values around when doing the adjoint simulation. When simulating
forward I simply “push” the values on an a heap and then “pop” them when needed. This is simply
implemented using two macros. First I allocate a heap of size 9*(N+2)*(N+2)*k, where N is
the grid size and k is the number of time steps taken. Then the two macros are simply:

#define PUSH(a) { int l; for (l=0 ; l<(N+2)*(N+2) ; l++) heap[heap top++] = a[l]; }
#define POP(a) { int l; for (l=(N+2)*(N+2)-1 ; l>=0 ; l--) a[l] = heap[heap top--]; }

This technique of course can become very costly in terms of memory usage for long simulation
and or large grids. In fact, there is some memory wasted in the above implementation. Another
option is to run the simulation forward uptil the point where we need the values. But that is very
costly in terms of CPU time. Ideally a tradeoff between these two extremes is desireable.

#define IX(i,j) ((i)+(N+2)*(j))

#define SWAP(x0,x) {float * tmp=x0;x0=x;x=tmp;}
#define AFOR EACH CELL for (j=N ; j>=1 ; j--) { for (i=N ; i>=1 ; i--) {
#define END FOR }}

static void a add source (int N, float * ax, float * as, float dt)

{

12

int i;

for (i=(N+2)*(N+2)-1 ; i>=0 ; i--) as[i] += dt*ax[i];

}

static void a set bnd (int N, int b, float * ax)

{
int i;

ax[IX(N+1,N)] += 0.5f*ax[IX(N+1,N+1)];

ax[IX(N,N+1)] += 0.5f*ax[IX(N+1,N+1)];

ax[IX(N+1,N+1)] = 0.0f;

ax[IX(N+1,1)] += 0.5f*ax[IX(N+1,0)];

ax[IX(N,0)] += 0.5f*ax[IX(N+1,0)];

ax[IX(N+1,0)] = 0.0f;

ax[IX(0 ,N)] += 0.5f*ax[IX(0 ,N+1)];

ax[IX(1,N+1)] += 0.5f*ax[IX(0 ,N+1)];

ax[IX(0 ,N+1)] = 0.0f;

ax[IX(0 ,1)] += 0.5f*ax[IX(0 ,0)];

ax[IX(1,0)] += 0.5f*ax[IX(0 ,0)];

ax[IX(0 ,0)] = 0.0f;

for (i=N ; i>=1 ; i--) {
ax[IX(i,N)] += b==2 ? -ax[IX(i,N+1)] : ax[IX(i,N+1)]; ax[IX(i,N+1)] = 0.0f;

ax[IX(i,1)] += b==2 ? -ax[IX(i,0)] : ax[IX(i,0)]; ax[IX(i,0)] = 0.0f;

ax[IX(N,i)] += b==1 ? -ax[IX(N+1,i)] : ax[IX(N+1,i)]; ax[IX(N+1,i)] = 0.0f;

ax[IX(1,i)] += b==1 ? -ax[IX(0 ,i)] : ax[IX(0 ,i)]; ax[IX(0 ,i)] = 0.0f;

}
}

static void a lin solve (int N, int b, float * ax, float * ax0, float a, float c)

{
int i, j, k;

for (k=19 ; k>=0 ; k--) {
a set bnd (N, b, ax);

AFOR EACH CELL

ax[IX(i,j+1)] += a*ax[IX(i,j)]/c;

ax[IX(i,j-1)] += a*ax[IX(i,j)]/c;

ax[IX(i+1,j)] += a*ax[IX(i,j)]/c;

ax[IX(i-1,j)] += a*ax[IX(i,j)]/c;

ax0[IX(i,j)] += ax[IX(i,j)]/c;

ax[IX(i,j)] = 0.0f;

END FOR

13

}
}

void a diffuse (int N, int b, float * ax, float * ax0, float diff, float dt)

{
float a=dt*diff*N*N;

a lin solve (N, b, ax, ax0, a, 1+4*a);

}

static void a advect (int N, int b,

float * d0, float * u, float * v,

float * ad, float * ad0, float * au, float * av,

float dt)

{
int i, j, i0, j0, i1, j1;

float x, y, s0, t0, s1, t1, dt0;

POP(v); POP(u); POP(d0);

dt0 = dt*N;

a set bnd (N, b, ad);

AFOR EACH CELL

x = i-dt0*u[IX(i,j)]; y = j-dt0*v[IX(i,j)];

if (x<0.5f) x=0.5f; if (x>N+0.5f) x=N+0.5f; i0=(int)x; i1=i0+1;

if (y<0.5f) y=0.5f; if (y>N+0.5f) y=N+0.5f; j0=(int)y; j1=j0+1;

s1 = x-i0; s0 = 1-s1; t1 = y-j0; t0 = 1-t1;

ad0[IX(i1,j1)] += s1*t1*ad[IX(i,j)];

ad0[IX(i1,j0)] += s1*t0*ad[IX(i,j)];

ad0[IX(i0,j1)] += s0*t1*ad[IX(i,j)];

ad0[IX(i0,j0)] += s0*t0*ad[IX(i,j)];

au[IX(i,j)] += dt0*(t0*(d0[IX(i0,j0)]-d0[IX(i1,j0)]) + t1*(d0[IX(i0,j1)]-d0[IX(i1,j1)]))*ad[IX(i,j)];

av[IX(i,j)] += dt0*(s0*(d0[IX(i0,j0)]-d0[IX(i0,j1)]) + s1*(d0[IX(i1,j0)]-d0[IX(i1,j1)]))*ad[IX(i,j)];

ad[IX(i,j)] = 0.0f;

END FOR

}

static void a project (int N, float * au, float * av, float * ap, float * adiv)

{
int i, j;

a set bnd (N, 2, av); a set bnd (N, 1, au);

AFOR EACH CELL

ap[IX(i,j-1)] -= -0.5f*N*av[IX(i,j)];

14

ap[IX(i,j+1)] -= 0.5f*N*av[IX(i,j)];

ap[IX(i-1,j)] -= -0.5f*N*au[IX(i,j)];

ap[IX(i+1,j)] -= 0.5f*N*au[IX(i,j)];

END FOR

a lin solve (N, 0, ap, adiv, 1, 4);

a set bnd (N, 0, ap); a set bnd (N, 0, adiv);

AFOR EACH CELL

ap[IX(i,j)] = 0.0f;

av[IX(i,j-1)] += 0.5f*adiv[IX(i,j)]/N;

av[IX(i,j+1)] += -0.5f*adiv[IX(i,j)]/N;

au[IX(i-1,j)] += 0.5f*adiv[IX(i,j)]/N;

au[IX(i+1,j)] += -0.5f*adiv[IX(i,j)]/N;

adiv[IX(i,j)] = 0.0f;

END FOR

}

void a dens step (int N, float * x, float * x0, float * u, float * v,

float * ax, float * ax0, float * au0, float * av0, float diff, float dt)

{
a advect (N, 0, x0, u, v, ax, ax0, au, av, dt);

SWAP (ax0, ax);

a diffuse (N, 0, ax, ax0, diff, dt);

SWAP (ax0, ax);

a add source (N, ax, ax0, dt);

}

void a vel step (int N, float * u, float * v, float * u0, float * v0,

float * au, float * av, float * au0, float * av0, float visc, float dt)

{
a project (N, au, av, au0, av0);

a advect (N, 2, v0, u0, v0, av, av0, au0, av0, dt);

a advect (N, 1, u0, u0, v0, au, au0, au0, av0, dt);

SWAP (av0, av); SWAP (au0, au);

a project (N, au, av, au0, av0);

a diffuse (N, 2, av, av0, visc, dt); SWAP (av0, av);

a diffuse (N, 1, au, au0, visc, dt); SWAP (au0, au);

a add source (N, av, av0, dt); a add source (N, au, au0, dt);

}

References

[1] R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on
Mathematical Software, 24(4):437–474, 1998.

15

[2] M. B. Giles and N. A. Pierce. An introduction to the adjoint method to design. Flow, Turbu-
lence and Combustion, 65:393–415, 2000.

[3] A. McNamara, A. Treuille, Z. Popovic, and J. Stam. Fluid control using the adjoint method.
ACM Transactions on Graphics. Special issue: Proceedings of ACM SIGGRAPH 2004,
23(3):(to appear), 2004.

[4] J. Stam. Real-Time Fluid Dynamics for Games. In Proceedings of the Game Developer
Conference, March 2003.

[5] A. Treuille, A. McNamara, Z. Popovic, and J. Stam. Keyframe control of smoke simula-
tions. ACM Transactions on Graphics. Special issue: Proceedings of ACM SIGGRAPH 2003,
22(3):716–723, 2003.

16

